
This article was downloaded by: [129.137.83.250] On: 09 October 2017, At: 13:32
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Backward Sampling Framework for Interdiction
Problems with Fortification
Leonardo Lozano, J. Cole Smith

To cite this article:
Leonardo Lozano, J. Cole Smith (2017) A Backward Sampling Framework for Interdiction Problems with Fortification. INFORMS
Journal on Computing 29(1):123-139. https://doi.org/10.1287/ijoc.2016.0721

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2016, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoc.2016.0721
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


INFORMS Journal on Computing
Vol. 29, No. 1, Winter 2017, pp. 123–139
ISSN 1091-9856 (print) � ISSN 1526-5528 (online) https://doi.org/10.1287/ijoc.2016.0721

© 2016 INFORMS

A Backward Sampling Framework for
Interdiction Problems with Fortification

Leonardo Lozano, J. Cole Smith
Department of Industrial Engineering, Clemson University, Clemson, South Carolina 29634

{llozano@g.clemson.edu, jcsmith@clemson.edu}

This paper examines a class of three-stage sequential defender-attacker-defender problems. In these problems
the defender first selects a subset of assets to protect, the attacker next damages a subset of unprotected

assets in the “interdiction” stage, after which the defender optimizes a “recourse” problem over the surviving
assets. These problems are notoriously difficult to optimize, and almost always require the recourse problem to
be a convex optimization problem. Our contribution is a new approach to solving defender-attacker-defender
problems. We require all variables in the first two stages to be binary-valued, but allow the recourse problem to
take any form. The proposed framework focuses on solving the interdiction problem by restricting the defender
to select a recourse decision from a sample of feasible vectors. The algorithm then iteratively refines the sample
to force finite convergence to an optimal solution. We demonstrate that our algorithm not only solves interdic-
tion problems involving NP-hard recourse problems within reasonable computational limits, but it also solves
shortest path fortification and interdiction problems more efficiently than state-of-the-art algorithms tailored for
that problem, finding optimal solutions to real-road networks having up to 300,000 nodes and over 1,000,000
arcs.

Keywords : interdiction; fortification; shortest path problem; capacitated lot sizing problem
History : Accepted by Karen Aardal, Area Editor for Design and Analysis of Algorithms; received December

2014; revised January 2016; accepted May 2016. Published online December 21, 2016.

1. Introduction
We consider defender-attacker-defender problems
that are modeled as three-level, two-player Stackel-
berg games. In the first stage a defender (also known
as the “owner” or “operator”) can fortify a subset of
assets, while in the second stage an attacker (often
called the “interdictor”) destroys a subset of the un-
protected assets. The attacker’s goal in the second
stage is to maximize damage to the defender’s objec-
tive, which is determined by solving an optimization
problem in the third stage, using the surviving assets
from the initial system.

Formally, let w, x, and y be the decision vari-
ables for the first-, second-, and third-stage problems,
respectively. We assume that the third-stage problem
can take any general form, while the first- and second-
stage problems include only binary variables, i.e., w ∈

80119nw and x ∈ 80119nx , where nw4nx5 is the num-
ber of variables required to model asset fortification
(attack). Let W be the set of feasible solutions to the
first-stage problem. Let X4w5 be the set of feasible
second-stage solutions given a defense vector w, and
let Y4x5 be the set of feasible third-stage solutions for
a given attack vector x. Also, define X =

⋃

w∈WX4w5
and Y =

⋃

x∈XY4x5, i.e., X and Y are the set of all
possible second- and third-stage feasible solutions,

respectively. Finally, let f 4y5 be the defender’s objec-
tive function. We study problems of the form:

P2 z∗
= min

w∈W
max

x∈X4w5
min

y∈Y4x5
f 4y50 (1)

We refer to the first-, second-, and third-stage prob-
lems as fortification, attack, and recourse problems,
respectively.

These problems have multiple applications in areas
such as military and homeland security operations
(Brown et al. 2005a, 2006, 2009; Morton et al. 2007; Pan
et al. 2003; Washburn and Wood 1995), facility protec-
tion (Church and Scaparra 2007; Church et al. 2004;
Scaparra and Church 2008a, b), survivable network
design (Smith et al. 2007), and power grid protection
(Salmerón et al. 2004, 2009). At a more abstract level,
interdiction problems can often be modeled as games
that take place over networks having well-studied
recourse problems. Some of these network interdic-
tion problems include shortest path (Bayrak and Bai-
ley 2008, Cappanera and Scaparra 2011, Fulkerson
and Harding 1977, Golden 1978, Held and Woodruff
2005, Held et al. 2005, Israeli and Wood 2002), max-
imum flow (Cormican et al. 1998, Royset and Wood
2007, Wollmer 1964, Wood 1993), and multicommod-
ity flow (Lim and Smith 2007) studies.

123

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

mailto:llozano@g.clemson.edu
mailto:jcsmith@clemson.edu


Lozano and Smith: Backward Sampling Framework
124 INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS

Of particular interest in this paper are previ-
ous studies on defender-attacker-defender problems
that fit within our problem framework. Church and
Scaparra (2007) consider fortification decisions for the
interdiction median problem with fortification (IMF),
which arises in the context of facility protection. They
reformulate the three-level problem into a single-
level mixed-integer programming (MIP) problem by
explicitly enumerating all possible attack plans. If the
number of attack plans is not too large, then the
resulting MIP can be solved via commercial branch-
and-bound software. Scaparra and Church (2008b)
extend this idea by reformulating the problem as a
single-level maximal covering problem with prece-
dence constraints. They propose a heuristic algorithm
for finding upper and lower bounds, which they use
to reduce the size of the original model. Scaparra and
Church (2008a) formulate the IMF as a bilevel pro-
gramming problem and solve it with a specialized
implicit enumeration algorithm that efficiently solves
the lower-level interdiction problem. This approach
was extended by Cappanera and Scaparra (2011) for
the allocation of protective resources in a shortest-
path network.

Another line of research in this field focuses on
duality as a mechanism for formulating interdiction
problems. Brown et al. (2006) study the problem of
protecting critical components in an electric power
grid. Their approach combines the second- and third-
stage problems by taking the dual of the third-stage
problem, and solves the resulting problem using a
special Benders’ decomposition algorithm in which
the subproblem is an MIP. Smith et al. (2007) take a
similar approach for the survivable network design
problem. They rely on the dual of the third-stage
problem to combine the second- and third-stage prob-
lems into a disjointly constrained bilinear program,
which is then transformed into a MIP by apply-
ing a standard linearization technique. The resulting
bilevel problem is solved with a cutting-plane ap-
proach. Prince et al. (2013) followed these ideas for a
three-stage procurement optimization problem under
uncertainty. They transform the third-stage (noncon-
vex) procurement problem into a large-scale short-
est path problem, which can then be solved by the
foregoing strategies. Because the MIP is too large to
solve using standard approaches, the authors propose
a scaling approach to quickly obtain optimal MIP
solutions. For a comprehensive literature review on
interdiction problems, see Brown et al. (2005b), Smith
(2010), Smith and Lim (2008).

The Prince et al. (2013) study is notable in that
its recourse problem is nonconvex. The authors obvi-
ate this nonconvexity by formulating an equivalent
linear programming model that is pseudopolynomial
in size. There are relatively few studies that regard

interdiction problems having more general noncon-
vex recourse problems. One example of such study is
considered by Tang et al. (2016) who provide an exact
approach for solving two-stage interdiction problems
having mixed-integer recourse variables and (gen-
eral) integer interdiction variables. Their approach is
based on the dualization of a convex restriction of
the recourse problem, which is iteratively enlarged
as their algorithm converges to an optimal solu-
tion. Their approach is capable of solving relatively
modest-sized problems to optimality. Moore and Bard
(1990) also consider bilevel problems, but assume that
the interdictor seeks to optimize its own objective
(instead of minimizing the defender’s objective), and
the interdictor’s objective function depends on the
defender’s decisions. See also the work of Bard and
Moore (1992), Dempe (2002), and Vicente et al. (1996)
for related work on solving discrete bilevel problems.

We present a novel backward sampling framework
for solving three- (and two-) stage interdiction prob-
lems in which the recourse problem can take any
form (e.g., it can be nonlinear, and can have inte-
ger variables), provided that all variables in the first
two stages are restricted to be binary-valued. Hence,
both fortification and interdiction of critical assets in
the problem are “all or none” type decisions. An
asset that is fortified is completely immune to attacks,
and no assets can be only partially attacked. This
framework is primarily designed to improve the solu-
tion of the interdiction problem, by solving relatively
easy interdiction problem relaxations in which the
defender is restricted to choose its recourse actions
from a sample of the third-stage solution space. These
problems provide upper bounds on the optimal inter-
diction solution; lower bounds can then be obtained
by fixing an interdiction solution and optimizing the
(original) recourse problem as a function of the fixed
interdiction actions. This framework avoids lineariz-
ing a (potentially large) bilinear program, and also
eliminates the need for applying combinatorial Ben-
ders’ cuts at the interdiction stage (although we still
require them to solve the fortification problem).

Using our framework, we construct an algorithm
for the shortest path interdiction problem with forti-
fication (SPIPF) that compares favorably to the cur-
rent state-of-the-art algorithm, finding optimal solu-
tions over random grid networks having up to 3,600
nodes and 17,000 arcs, and over real-road networks
having up to 300,000 nodes and more than 1,000,000
arcs. We also consider the capacitated lot sizing inter-
diction problem with fortification (CLSIPF), in which
the NP-hard third-stage problem is modeled as a MIP.
We extend our framework to solve the CLSIPF, and
demonstrate its ability to solve instances of this new
problem class.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS 125

The remainder of this paper is organized as follows.
Section 2 presents the backward sampling framework
and establishes the finite convergence of our approach
to an optimal solution. Sections 3 and 4 describe
how to specialize the framework for the SPIPF and
CLSIPF, respectively. Section 5 presents our computa-
tional experiments, and Section 6 concludes the paper
with a summary of our work and a discussion of
future extensions.

2. The Backward Sampling
Framework

The core idea behind the backward sampling frame-
work is to iteratively sample the third-stage solution
space so that instead of solving the original prob-
lem P directly, we solve restricted problems defined
over smaller recourse solution spaces. We exploit this
idea to more efficiently solve two-level max–min inter-
diction problems over x and y, given a fixed defense
vector w. The solution of these restricted problems
yields an upper bound on z∗, and also affords a mech-
anism for finding a lower bound on z∗ as well. Finally,
we embed this procedure within an outer optimization
scheme that optimizes over w. Section 2.1 describes
our sampling procedure. Section 2.2 presents our pro-
posed approach for solving the interdiction problems,
and Section 2.3 discusses the outer optimization algo-
rithm. Section 2.4 analyzes strategies for improving
the effectiveness of the overall algorithm.

For convenience, we provide a summary of relevant
definitions and notation used throughout the paper in
Table 1.

2.1. Sampling the Third-Stage Solution Space
The sampling procedure selects a subset of third-stage
solutions Ŷ ⊆ Y, and throughout the algorithm aug-
ments Ŷ with new third-stage solutions from Y. The
sampling procedure would ideally be able to quickly
identify several near-optimal solutions; however, we
do not require this procedure to guarantee the gen-
eration of any new solutions in order for our frame-
work to converge to an optimal solution. An appro-
priate strategy would tailor the sampling procedure
for the problem at hand, as would be done for heuris-
tic approaches. Some candidate methods may involve
randomly restarted greedy heuristics, such as the use
of optimal y-vectors corresponding to fixed x-values,
along with neighboring solutions (obtained, e.g., by
2-opt swaps); or solutions generated via metaheuris-
tics. We present two problem-specific sampling proce-
dures in this study (see Sections 3 and 4), but empha-
size that any sampling method can be employed in
our overall (exact) optimization scheme.

For any attack vector x and third-stage solution
sample Ŷ, we denote by Ŷ4x5≡ Ŷ∩Y4x5 the subset of

Table 1 Relevant Definitions and Notation

Symbol Explanation

Section 1
W Set of feasible solutions to the first-stage problem
X4w5 Set of feasible second-stage solutions given a w ∈W
X Set of all possible second-stage feasible solutions
Y4x5 Set of feasible third-stage solutions for a given x ∈X
Y Set of all possible third-stage feasible solutions

Section 2.1
Ŷ A sample of third-stage solutions
Ŷ4x5 Ŷ∩Y4x5

Section 2.2
Q4w5 Two-level interdiction problem associated with a w ∈W
z I 4w5 Optimal objective function value for Q4w5
x∗ An optimal solution to the attacker problem for a given w ∈W
y∗ An optimal solution to the recourse problem for a given x ∈X
Q4w1 Ŷ5 Two-level interdiction problem associated with a

w ∈W and a sample Ŷ⊆Y
z I 4w1 Ŷ5 Optimal objective function value for Q4w1 Ŷ5

zR4x̂5 Real damage of an attack x̂ ∈X, obtained
by solving zR4x̂5= miny∈Y4x̂5 f 4y5

Yz Set of feasible third-stage solutions whose objective value is
less than or equal to z

Section 2.3
C Set of covering constraints added to the fortification problem
W4C5 Set of feasible first-stage solutions that satisfy

all constraints in C
z̄ Global upper bound on z∗

Section 2.4
�̂ Tentative covering constraint
C� Set of tentative covering constraints
L Waiting list that stores triples 4ŵ1 zR4x̂51 �̂5
� Parameter that controls the addition of elements into L

solutions that belong to Ŷ and are feasible given the
attack vector x. Anticipating the case for which there
exists an attack x ∈ X for which Ŷ4x5 = �, we seed
Ŷ with an artificial third-stage solution ya that cannot
be interdicted and has objective value f 4ya5= �. This
artificial solution ensures that Ŷ4x5 6= � for any x ∈X.

2.2. Solving Bilevel Interdiction Problems
Consider any feasible defense vector w ∈W and let

Q4w52 zI 4w5= max
x∈X4w5

min
y∈Y4x5

f 4y5 (2)

be its associated two-level interdiction problem. Note
that if there exists a defense w ∈W such that X4w5=

�, then problem (2) is not defined. Hence, without
loss of generality, we assume that X4w5 6= �1 ∀w ∈W.

Let Ŷ⊆Y be any third-stage solution sample and

Q4w1 Ŷ52 zI 4w1 Ŷ5= max
x∈X4w5

min
y∈Ŷ4x5

f 4y5 (3)

be the restricted problem in which recourse (third-
stage) decisions are restricted to Ŷ. The following
result establishes that solving a restricted problem
Q4w1 Ŷ5 yields a valid upper bound on zI 4w5, which
is in turn a valid upper bound on z∗.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
126 INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS

Proposition 1. Consider any w∈W and third-stage so-
lution sample Ŷ⊆Y. Then we have zI 4w1Ŷ5≥zI 4w5≥z∗.

Proof. Because Ŷ ⊆ Y, we have that Ŷ4x5 ⊆ Y4x5,
which implies miny∈Ŷ4x5 f 4y5 ≥ miny∈Y4x5 f 4y5 for any
attack x. As a result, zI 4w1 Ŷ5≥ zI 4w5. Also, Q4w5 is a
restriction of problem P in which w is fixed, and so
zI 4w5≥ z∗. This completes the proof. �

We now establish conditions under which we can
obtain an optimal solution to Q4w5, for some w ∈ W,
from a restricted problem Q4w1 Ŷ5. First, let 4x̂1 ŷ5 be
an optimal solution to the restricted problem Q4w1 Ŷ5.
We say that zI 4w1 Ŷ5 is the perceived damage of x̂ given
Ŷ, because the interdictor perceives that the recourse
decision must come from Ŷ. However, the defender
may instead select from uninterdicted solutions in Y,
and so we define the real damage of attack x̂ over the
original third-stage solution space Y as

zR4x̂5= min
y∈Y4x̂5

f 4y50 (4)

Observe that zR4x̂5 ≤ zI 4w5 ≤ zI 4w1 Ŷ5 for any x̂ ∈

X4w5. Proposition 2 states a condition in which an
optimal solution to Q4w1 Ŷ5 also optimizes Q4w5.

Proposition 2. Let w ∈ W be a feasible defense, Ŷ
be a third-stage solution sample, and 4x̂1 ŷ5 be an optimal
solution to Q4w1 Ŷ5. If zI 4w1 Ŷ5= zR4x̂5, then 4x̂1 ŷ5 opti-
mizes Q4w5.

Proof. Suppose by contradiction that 4x̂1 ŷ5 is not
optimal to Q4w5, and that there exists an attack x′ ∈

X4w5 such that zR4x′5 > zR4x̂5. However, Ŷ4x′5⊆Y4x′5
implies that miny∈Ŷ4x′5 f 4y5≥ zR4x′5 > zR4x̂5= zI 4w1 Ŷ5,
which contradicts the fact that 4x̂1 ŷ5 is an optimal
solution to Q4w1 Ŷ5. �

Our algorithm uses these results to solve Q4w5,
given w ∈ W, by iteratively solving restricted prob-
lems Q4w1 Ŷi5 defined over different third-stage sam-
ples Ŷi ⊆ Y. Algorithm 1 presents this approach, in
which each iteration i yields an upper bound UBi on
zI 4w5 from solving Q4w1 Ŷi5, and a lower bound LBi

on zI 4w5 by obtaining zR4x̂5, for some x̂ ∈ X4w5. As
we will demonstrate, the sequence of UBi-values is
nonincreasing, although the LBi-values need not be
monotone. The main while-loop (line 4) is executed
until the optimality condition described in Proposi-
tion 2 is met. Line 6 solves the restricted problem
Q4w1 Ŷi5 defined over the current sample Ŷi. Line 7
calculates the real damage zR4x̂5 for attack x̂ and sets
LBi equal to this value (see Remark 2 for additional
explanation). Line 8 creates Ŷi+1 by including solu-
tions in Ŷi along with ŷ∗, i.e., an optimal third-stage
response to attack x̂.

If the perceived damage obtained is less than the
upper bound at the previous iteration, then a new

upper bound on zI 4w5 has been obtained, and the
algorithm executes lines 10–12. Line 10 removes from
Ŷi+1 all those solutions whose objective value is
greater than UBi, and lines 11–12 attempt to add new
solutions to Ŷi+1 from YUBi

≡ 8y ∈ Y � f 4y5 ≤ UBi9 by
sampling the third-stage solution space Y and retain-
ing only those samples having objective no more
than UBi. If the optimality condition in line 14 is sat-
isfied, then line 15 returns an optimal solution.

Remark 1. Using a large sample size increases the
chances of obtaining tighter upper bounds in line 6.
However, if �Ŷ� is too large, then Q4w1 Ŷ5 will be large
as well, and may potentially be too difficult to solve.
On the other hand, if third-stage solutions in Ŷ are
not diverse, then the attacker can easily interdict all
y ∈ Ŷ by attacking a few critical assets. This leads to
poor upper bounds from solving Q4w1 Ŷ5. It is thus
desirable to use a sampling scheme that generates a
diverse sample of moderate size, containing optimal
or near-optimal uninterdicted third-stage solutions,
which are likely to be optimal responses to attacks
x̂ explored by the algorithm. Sections 3.2.1 and 4.2.1
present our sampling scheme tailored for the SPIPF
and CLSIPF, respectively.

Remark 2. Intuitively, it may seem better to set LBi

to the maximum of LBi−1 and the real damage at itera-
tion i, given by miny∈Y4x̂5 f 4y5. However, doing so cre-
ates the possibility that the optimal objective is found,
but not a solution that achieves that objective. This
could happen if the objective value (perceived dam-
age) for x̂ obtained in line 6 is such that zI 4w1 Ŷi5 >
zR4x̂5, even though zI 4w1 Ŷi5= maxk=110001i8LBk9.

Proposition 3 shows that the sequence of UBi-
values obtained is nonincreasing, and Proposition 4
states the finiteness and correctness of the proposed
algorithm.

Proposition 3. The upper bounds UBi produced by
Algorithm 1 are nonincreasing, and at iteration i, Ŷ1

UBi
⊆

Ŷ2
UBi

⊆ · · · ⊆ Ŷi+1
UBi

, where Ŷj
UBi

≡ 8y ∈ Ŷj � f 4y5≤ UBi9.

Proof. We establish the result by induction. As a
base case, UB0 =�≥UB1 is obvious. Also, if UB1 =UB0,
then Ŷ2 =Ŷ1 ∪8ŷ∗9 for some ŷ∗, and if UB1<UB0, then
each y∈Ŷ1 such that f 4y5≤UB1 also belongs to Ŷ2.
Hence, Ŷ1

UB1
⊆Ŷ2

UB1
in either case. Next, suppose that

by induction, UBi−1 ≥UBi and Ŷi
UBk

⊆Ŷi+1
UBk

∀i=110001k,
for some k≥1. We compute UBk+1 =zI 4w1Ŷk+15.
Note that because UBk =zI 4w1Ŷk5, then zI 4w1Ŷk5=
zI 4w1Ŷk

UBk
5 (because the attacker can ignore solu-

tions y∈Ŷk2 f 4y5>UBk). Noting that Ŷk
UBk

⊆Ŷk+1
UBk

by
assumption, we have that Ŷk

UBk
⊆Ŷk+1 and UBk =

zI 4w1Ŷk
UBk

5≥zI 4w1Ŷk+15=UBk+1.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS 127

Algorithm 1 (Solving bilevel interdiction problem Q4w5 via backward sampling)
Input: Problem P and a feasible defense w ∈W
Output: An optimal solution to Q4w5

1: Set UB0 = � and LB0 = −� F Initialization
2: Select Ŷ1 ⊆Y as a sampling of the third-stage solution space, and compute f 4y5 for each

solution y ∈ Ŷ1 F See Remark 1
3: Set counter i = 0
4: while LBi < UBi do F Main while-loop
5: Set i = i+ 1
6: Solve UBi = zI 4w1 Ŷi5= maxx∈X4w5 miny∈Ŷi4x5 f 4y5 and obtain an optimal solution 4x̂1 ŷ5
7: Solve LBi = zR4x̂5= miny∈Y4x̂5 f 4y5 and obtain an optimal solution ŷ∗ F See Remark 2
8: Set Ŷi+1 = Ŷi ∪ 8ŷ∗9
9: if UBi < UBi−1 then

10: Remove from Ŷi+1 all solutions having objective value greater than UBi

11: Select Ŷ′ ⊆Y as a sampling of the third-stage solution space
12: Add to Ŷi+1 all new solutions in Ŷ′ ∩YUBi

13: end if
14: if LBi = UBi then
15: Terminate with solution 4x̂1 ŷ5
16: end if
17: end while

Moreover, since Ŷi
UBk

⊆ Ŷi+1
UBk

∀ i = 11 0 0 0 1 k by as-
sumption, UBk+1 ≤ UBk implies that Ŷi

UBk+1
⊆ Ŷi+1

UBk+1

∀ i = 11 0 0 0 1 k. For i = k+1, if UBk+1 = UBk, then Ŷk+2 =

Ŷk+1 ∪ 8ŷ∗9, and otherwise any y ∈ Ŷk+1 satisfying
f 4y5 ≤ UBk+1 also belongs to Ŷk+2. Hence, Ŷk+1

UBk+1
⊆

Ŷk+2
UBk+1

. This completes the proof. �

Proposition 4. Algorithm 1 terminates finitely with
an optimal solution.

Proof. The first time that an attack x̂ is a part of an
optimal solution to zI 4w1 Ŷi5 at line 6, the algorithm
includes a corresponding optimal recourse response
ŷ∗ into Ŷi+1. Suppose that x̂ is a part of an optimal
solution to zI 4w1 Ŷk5 for a second time at iteration
k > i. Proposition 3 guarantees that ŷ∗ ∈ Ŷk for k > i.
Therefore, upon encountering x̂ at iteration k, an opti-
mal recourse response is ŷ∗, thus ensuring that the
optimality condition stated in Proposition 2 is met.
Finite termination of the algorithm then follows from
the finiteness of X. �

We now discuss similarities and differences be-
tween our sampling approach and Benders’ decom-
position (Benders 1962). Consider a two-level interdic-
tion problem in which the recourse problem is a linear
program whose objective function is parametrized by
the attacker’s decisions. Let A be the recourse con-
straint coefficient matrix, b be the right-hand-side vec-
tor, and D be a diagonal matrix with penalty values
corresponding to attack decisions. We consider the
following problem:

max
x∈X

min 4c + Dx5ᵀy (5)

s.t. Ay = b (6)

y ≥ 00 (7)

Since the recourse problem is a linear program, we
reformulate (5)–(7) by considering its dual:

max
x∈X

max bᵀÏ (8)

s.t. AᵀÏ ≤ c + Dx0 (9)

Note that solving (5)–(7) with our sampling algo-
rithm is the same as solving (8)–(9) using Benders’
decomposition since recourse solutions included in
the sample are feasible solutions to the Benders’ dual
subproblem. However, if the attacker’s decisions also
impact the recourse constraints, then this equivalence
is no longer true because recourse solutions in the
sample need not be feasible solutions to the Benders’
dual subproblem. Moreover, if the recourse problem
takes a more general form (e.g., an integer program),
then we cannot establish a direct mapping from our
sampling approach to Benders’ decomposition since
a strong dual may not be available to transform the
original max–min problem into a max–max type of
problem.

Also, previous approaches for two-stage max–max
(or min–min) problems employ variations of Ben-
ders’ decomposition. These approaches employ gen-
eral duality (Carøe and Tind 1998), inference duality
(Hooker and Ottosson 2003), or disjunctive decom-
position algorithms (Sen and Sherali 2006) to gener-
ate valid inequalities that approximate the recourse
problem value function. Our sampling algorithm also

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
128 INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS

approximates the recourse problem value function
by iteratively adding new solutions into the sample.
However, our approach differs in that it attacks min–
max (or max–min) problems, and it does not rely on
any notion of duality in order to generate the desired
value function approximation.

2.3. Optimizing the Defense Decisions
We now propose an approach to solve the three-level
problem P. This approach is based on the identifica-
tion of critical attacks, i.e., attacks that must be blocked
in order to improve the defender’s incumbent objec-
tive value. Formally, we define a critical attack as any
attack x̂ such that its real damage zR4x̂5 is greater than
or equal to a target upper bound z̄. Our approach
adds a covering constraint wᵀx̂ ≥ 1 to the fortification
problem for each critical attack x̂, which states that at
least one of the assets attacked by x̂ must be fortified.

Proposition 5. For problem P having optimal objec-
tive value z∗, consider any attack x̂ ∈X. If z∗ < zR4x̂5, then
any optimal solution 4w∗1x∗1y∗5 satisfies w∗ᵀx̂ ≥ 1.

Proof. By contradiction, suppose that z∗ < zR4x̂5,
and that there is an optimal solution 4w∗1x∗1y∗5
such that w∗ᵀx̂ = 0. Then x̂ ∈ X4w∗5, and so z∗ =

maxx∈X4w∗5 miny∈Y4x5 f 4y5 ≥ zR4x̂5. This contradicts the
assumption that z∗ < zR4x̂5 and concludes the
proof. �

These covering constraints can be seen as a gen-
eral case of the combinatorial Benders’ cut (Codato and
Fischetti 2006) where the fortification problem acts as
a master problem and Q4ŵ5 as a subproblem. Simi-
lar so-called supervalid inequalies were introduced by
Israeli and Wood (2002) for a two-level shortest path
interdiction problem.

Our approach explores different defense vectors
ŵ ∈ W and solves the associated interdiction prob-
lems Q4ŵ5 with a variation of Algorithm 1 that stops
whenever it identifies a critical attack. When such
an attack is identified, the algorithm adds a cov-
ering constraint to the fortification problem, forcing
the defender to block each identified critical attack.
When the fortification problem becomes infeasible,
the algorithm terminates with the incumbent solu-
tion being optimal. This process must eventually ter-
minate with an infeasible first-stage problem because
X4w5 6= �1 ∀w ∈W, by assumption.

Algorithm 2 presents the proposed approach. Let C
be the set of covering constraints added to the forti-
fication problem and W4C5≡ 8w ∈W � w satisfies all
constraints in C9. The algorithm starts with C = �

and a global upper bound z̄ = �. The main while-
loop (line 4) is executed until the fortification prob-
lem becomes infeasible. The two main steps inside
this while-loop are selecting a feasible defense ŵ ∈

W4C5 (line 5), and solving its associated interdic-
tion problem Q4ŵ5 with a variation of Algorithm 1
(lines 6–23). The inner while-loop (line 7) is executed
until LBi = zR4x̂5≥ z̄, for some x̂ ∈X4ŵ5, indicating that
x̂ is a critical attack. At this point, Algorithm 2 stops
solving Q4ŵ5 and adds a covering constraint to C.
Finally, lines 8–22 replicate Algorithm 1, except for
updating the global upper bound z̄ (line 13), adding
a covering constraint to C if a critical attack is iden-
tified (lines 17–19), and updating the incumbent solu-
tion when an optimal solution to Q4ŵ5 has an objective
value equal to z̄ (lines 20–22).

Algorithm 2 terminates finitely because each critical
attack x̂ ∈X triggers the generation of a covering con-
straint to C, which excludes the fortification action ŵ
from W4C5. Finite termination of the algorithm then
follows from the finiteness of W and from Proposi-
tion 4.

The correctness of Algorithm 2 results directly from
Propositions 1 and 5. Note that the upper bound z̄ is
nonincreasing throughout the execution of the algo-
rithm. Proposition 5 states that each of the covering
constraints is necessary to achieve an objective value
less than z̄. As a result, once W4C5 becomes empty
we conclude that z∗ ≥ z̄. Since z̄ is an upper bound,
we also have that z∗ ≤ z̄, which guarantees that the
algorithm terminates with the optimal value z̄ = z∗.
For any ŵ that reduces z̄, the algorithm solves Q4ŵ5
to optimality, i.e., until LBi = UBi = z̄, and updates
the incumbent solution. As a result, the algorithm ter-
minates with an optimal incumbent solution since its
objective value is equal to z̄= z∗.

2.4. Accelerating the Algorithm
We now describe a mechanism designed to reduce
the number of restricted interdiction problems that
are solved to optimality. The idea is to “pause” the
exploration of any ŵ ∈W whenever the potential rel-
ative improvement to the current global upper bound
is sufficiently small. At this point, we add a tentative
covering constraint to the fortification problem, guess-
ing that the best known attack x̂ corresponding to ŵ
is critical (which it will indeed be if the global upper
bound is reduced by a relatively small amount). We
store ŵ in a waiting list to be revisited later in the
execution of the algorithm, at which time we either
confirm that x̂ was critical and discard ŵ from the
waiting list, or conclude that the attack may not be
critical and continue exploring ŵ.

Formally, let C be the set of covering constraints
derived from (known) critical attacks and C� be the
set of tentative covering constraints. Let L be a wait-
ing list that stores triples 4ŵ1 zR4x̂51 �̂5, where ŵ is
a defense vector that must be revisited, zR4x̂5 is the
real damage for an attack x̂ ∈ X4ŵ5 that we guess

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS 129

Algorithm 2 (Backward sampling framework)
Input: Problem P
Output: An optimal solution to P

1: Set the global upper bound z̄= � and covering constraints set C= � F Initialization
2: Select Ŷ1 ⊆Y as a sampling of the third-stage solution space, and compute f 4y5 for each solution y ∈ Ŷ1

3: Set counter i = 0
4: while W4C5 6= � do F Main while-loop
5: Select any ŵ ∈W4C5
6: Initialize UBi = � and LBi = −�

7: while LBi < z̄ do
8: Set i = i+ 1
9: Solve UBi = zI 4ŵ1 Ŷi5= maxx∈X4ŵ5 miny∈Ŷi4x5 f 4y5 and obtain an optimal solution 4x̂1 ŷ5

10: Solve LBi = zR4x̂5= miny∈Y4x̂5 f 4y5 and obtain an optimal solution ŷ∗

11: Set Ŷi+1 = Ŷi ∪ 8ŷ∗9
12: if UBi < z̄ then
13: Update global upper bound z̄← UBi

14: Remove from Ŷi+1 all solutions having objective value greater than UBi

15: Select Ŷ′ ⊆Y as a sampling of the third-stage solution space
16: Add to Ŷi+1 all new solutions in Ŷ′ ∩YUBi

17: else if LBi ≥ z̄ then F A critical attack has been identified
18: Add the covering constraint wᵀx̂ ≥ 1 to C
19: end if
20: if LBi = UBi = z̄ then
21: Update the incumbent solution 4w̄1 x̄1 ȳ5← 4ŵ1 x̂1 ŷ5
22: end if
23: end while
24: end while
25: Return 4w̄1 x̄1 ȳ5

is critical, and �̂ is the corresponding covering con-
straint. Algorithm 3 formally states the accelerated
backward sampling algorithm. If W4C∪C�5 6= �, then
line 6 selects a defense ŵ ∈W4C∪C�5 and lines 7–22
explore problem Q4ŵ5 as in Algorithm 2. When x̂
has not been shown to be critical, line 23 computes
the ratio 4z̄− LBi5/z̄, assuming that z̄ > 0, to measure
the percent reduction to z̄ that could be achieved by
continuing to solve Q4ŵ5. If this ratio is not greater
than some parameter � > 0, then lines 24–25 store
4ŵ1 zR4x̂51wᵀx̂ ≥ 15 in L, add the corresponding ten-
tative covering constraint to C� , and stop the explo-
ration of the current ŵ. When W4C ∪ C�5 = �, if
C� 6= �, then lines 30–39 reconsider the items stored
in the waiting list. The first for-loop (lines 30–34)
iterates over L and moves from C� to C all the
covering constraints corresponding to attacks with
zR4x̂k5 > z̄, discarding the associated wk from further
exploration. Note that if zR4x̂k5 = z̄, then we cannot
yet discard wk: even if z̄ = z∗, the algorithm might
not have updated the incumbent 4w̄1 x̄1 ȳ5. The sec-
ond for-loop (lines 35–39) iterates over the remaining
items in L and resumes exploration for any wk that is
still in W4C5, but with � = 0. Finally, line 40 discards

the remaining constraints in C� , empties the waiting
list, and returns to the main while-loop.

We further note that setting the value of the pre-
cision parameter � to zero is equivalent to using no
waiting list L, which in turn converts Algorithm 3 to
Algorithm 2.

3. Shortest Path Interdiction Problem
with Fortification

A significant amount of research has been dedicated
to the shortest path interdiction problem. However,
few studies consider the SPIPF, in which the defender
is able to fortify a subset of arcs before being attacked.
Brown et al. (2006) include fortification decisions for
the problem of protecting an electric power grid, and
Smith et al. (2007) consider fortification against three
attacker strategies (including both heuristic and opti-
mal strategies) in the context of survivable network
design. Both approaches are based on a dualization
of the recourse problem followed by a decomposition
algorithm that generates Benders’ cuts, and can be
easily adapted for the SPIPF. Cappanera and Scaparra
(2011) propose an implicit enumeration algorithm that
is capable of finding optimal solutions to the SPIPF
on networks having up to 225 nodes and 996 arcs.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
130 INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS

Algorithm 3 (Backward sampling framework with waiting list)
Input: Problem P and a threshold parameter � > 0
Output: An optimal solution to P

1: Set z̄= � F Initialization
2: Initialize covering constraints sets C= �, C� = �, and waiting list L= �

3: Select Ŷ1 ⊆Y as a sampling of the third-stage solution space, and compute f 4y5 for each solution y ∈ Ŷ1

4: Set counter i = 0
5: while W4C∪C�5 6= � do F Main while-loop
6: Select any ŵ ∈W4C∪C�5
7: Initialize UBi = � and LBi = −�

8: while LBi < z̄ do
9: Set i = i+ 1

10: Solve UBi = zI 4ŵ1 Ŷi5= maxx∈X4ŵ5 miny∈Ŷi4x5 f 4y5 and obtain an optimal solution 4x̂1 ŷ5
11: Solve LBi = zR4x̂5= miny∈Y4x̂5 f 4y5 and obtain an optimal solution ŷ∗

12: Set Ŷi+1 = Ŷi ∪ 8ŷ∗9
13: if UBi < z̄ then
14: Update global upper bound z̄← UBi

15: Remove from Ŷi+1 all solutions having objective value greater than UBi

16: Select Ŷ′ ⊆Y as a sampling of the third-stage solution space
17: Add to Ŷi+1 all new solutions in Ŷ′ ∩YUBi

18: else if LBi ≥ z̄ then F A critical attack has been identified
19: Add the covering constraint wᵀx̂ ≥ 1 to C
20: end if
21: if LBi = UBi = z̄ then
22: Update the incumbent solution 4w̄1 x̄1 ȳ5← 4ŵ1 x̂1 ŷ5
23: else if 4z̄− LBi5/z̄≤ � and LBi < z̄ then
24: Add 4ŵ1 zR4x̂51wᵀx̂ ≥ 15 to the waiting list L
25: Add the covering constraint wᵀx̂ ≥ 1 to C� and go to line 6
26: end if
27: end while
28: end while
29: if C� 6= � then F Reconsider items stored in the waiting list
30: for each list member k ∈L represented by 4wk1 zR4x̂k51�k5 do
31: if zR4x̂k5 > z̄ then
32: Add �k to C, remove �k from C� , and remove 4wk1 zR4x̂k51�k5 from L
33: end if
34: end for
35: for each list member k ∈L represented by 4wk1 zR4x̂k51�k5 do
36: if wk ∈W4C5 then
37: Resume solving Q4wk5 with a threshold � = 0
38: end if
39: end for
40: Reset C� ← �, L← �, and go to line 5
41: end if
42: Return 4w̄1 x̄1 ȳ5

3.1. Problem Statement
The SPIPF is formally defined on a directed graph
G= 4N1A5, where N is the set of nodes and A⊆N×N
is the set of arcs, s is the source node, and t is the
destination node. For each arc 4i1 j5 ∈A there are two
nonnegative attributes: the cost cij ≥ 0 of traversing
the arc, and the delay (or penalty) dij ≥ 0 incurred
when traversing an interdicted arc (so that crossing

an interdicted arc costs cij + dij ). Let w be the fortifi-
cation decision variables defined over the arcs, where
W ≡ 8w2 eᵀw ≤ Q1w ∈ 80119�A�9 enforces a cardinal-
ity constraint on the number of fortified arcs and
ensures that the variables are binary. Similarly, let x ∈

X4w5 be the second-stage attack decision variables,
where X4w5 ≡ 8x2 eᵀx ≤ B1xij ≤ 1 −wij ∀ 4i1 j5 ∈ A1x ∈

80119�A�9 ensures that a maximum of B unprotected

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS 131

arcs are attacked, and forces the x-variables to be
binary. Finally, let y be the third-stage arc-flow vari-
ables. The SPIPF can be formally stated as

min
w∈W

max
x∈X4w5

min
∑

4i1 j5∈A

4cij + dijxij5yij (10)

s.t.
∑

8j � 4i1 j5∈A9

yij −
∑

8j � 4j1 i5∈A9

yji

=











11 for i = s

01 for i ∈N\8s1 t9

−11 for i = t

(11)

yij ≥ 01 ∀ 4i1 j5 ∈A1 (12)

where in the objective function (10), the original cost
of any arc is increased by dij when the arc is attacked
(i.e., xij = 1). Constraints (11) define the shortest path
flow conservation constraints, and (12) restrict the y-
variables to be nonnegative.

3.2. Solution Approach
The implementation of the backward sampling frame-
work for the SPIPF requires a sampling scheme, an
algorithm for solving two-level shortest path interdic-
tion problems restricted over a sample of s-t paths,
and a method to solve third-stage shortest path prob-
lems. The latter is simply accomplished via Dijkstra’s
algorithm (Dijkstra 1959). We discuss the first two
components of our approach in the following sections.

3.2.1. Sampling Scheme. We adapt the pulse algo-
rithm (Lozano and Medaglia 2013) for the constrained
shortest path problem to sample s-t paths from G. The
pulse algorithm conducts a recursive implicit enu-
meration of the solution space, supported by prun-
ing strategies that efficiently discard a vast number
of suboptimal solutions. The algorithm conducts a
depth-first search beginning at s. When a partial path
is pruned or the search reaches node t, the algorithm
backtracks and continues the search through unex-
plored regions of the solution space.

We implemented two pruning strategies: bound
and arc-usage pruning. The bound pruning strategy
(Lozano and Medaglia 2013) discards any path whose
cost exceeds the current upper bound z̄. To do so, we
first obtain the minimum cost needed to reach node t
from any node i, denoted by cit . Then, we prune any
partial path from node s to node i with cost csi, such
that csi + cit > z̄.

In the arc-usage pruning strategy, we define an
upper limit ū on the number of paths in Ŷ that can use
any arc 4i1 j5. Let uij be the number of paths in Ŷ that
use arc 4i1 j5. When the search reaches node t, we add
an s-t path to Ŷ and increase uij by one, for each arc
4i1 j5 traversed in the path. Once uij = ū, we eliminate
arc 4i1 j5, forcing the pulse algorithm to explore paths

that do not traverse arc 4i1 j5. This strategy yields a
diverse sample of s-t paths, which is desirable in our
backward sampling framework.

Finally, we stop the sampling procedure once a
maximum sample size limit �Ŷ�max is reached or once
a time limit is exceeded.

3.2.2. Solving the Restricted Problem. We formu-
late the restricted problem Q4ŵ1 Ŷ5 as a MIP. Let Pk

be the set of arcs corresponding to the kth path in
sample Ŷ, and let c4Pk5 denote its cost. We formulate
Q4ŵ1 Ŷ5 as follows:

max z (13)

s.t. z≤ c4Pk5+
∑

4i1 j5∈Pk

dijxij1 ∀Pk
∈ Ŷ1 (14)

x ∈X4ŵ50 (15)

The objective function (13) maximizes z, which is con-
strained by (14) to be no more than the least cost path
in Ŷ, after considering delays caused by arc inter-
diction. Finally, constraints (15) ensure that we only
consider feasible attacks in X4ŵ5.

Observe that if our algorithm generates an attack
x̂ ∈ X4ŵ5 having a perceived damage greater than z̄,
then z̄ cannot be improved in the current iteration.
In this case, our algorithm does not utilize the pre-
cise perceived damage value (beyond establishing
that it exceeds z̄). It is thus not necessary to opti-
mize model (13)–(15) if we have proven that its objec-
tive exceeds z̄, and so we add the objective target
constraint z ≤ z̄ + �, for a small constant � > 0, to
model (13)–(15). This ensures that any attack x̂ ∈X4ŵ5
with perceived damage strictly greater than z̄ is suffi-
cient to allow the overall algorithm to continue, even
though x̂ may not optimize Q4ŵ1 Ŷ5.

Furthermore, because the x-variables are binary-
valued and dij ≥ 0, ∀ 4i1 j5 ∈ A, the addition of the
objective target constraint allows us to revise (14) as
follows, where 4¡5+ = max801 ¡9:

z ≤ c4Pk5+
∑

4i1 j5∈Pk

min8dij1 4z̄+ �− c4Pk55+9xij1

∀Pk
∈ Ŷ0 (16)

Constraints (16) are at least as tight as (14). (Note
that (16) corresponding to some Pk may persist in
our interdiction model for a few iterations after z̄ +

� ≤ c4Pk5. We therefore require the coefficients of the
x-variables to be nonnegative to ensure the validity
of (16).)

4. Capacitated Lot Sizing Interdiction
Problem with Fortification

The capacitated lot sizing problem (CLSP) is a well-
known NP-hard problem (Bitran and Yanasse 1982,

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
132 INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS

Florian et al. 1980) in which a facility manufactures
a single product to satisfy a known demand over a
finite planning horizon subject to production capac-
ity constraints. Among the many CLSP studies in the
literature, we note the seminal MIP formulation of
Karmarkar et al. (1987), later extended by Eppen and
Martin (1987) with a variable redefinition technique,
and the branch-and-cut framework by Belvaux and
Wolsey (2000). For a comprehensive CLSP literature
review see surveys by Karimi et al. (2003) and Brahimi
et al. (2006).

In the CLSIPF production, capacity at any time
period could be lost (e.g., due to machine failures).
The system operator can ensure that capacity is pro-
tected against loss for some time periods (e.g., by per-
forming preventive maintenance). In this context, an
“attack” is not necessarily due to a malicious adver-
sary, but represents some bounded worst-case sce-
nario on capacity loss.

4.1. Problem Statement
Formally, we define the CLSIPF as the problem of
finding a subset of time periods to fortify to minimize
the total cost resulting from a worst-case attack that
disables production capacity on some of the unpro-
tected time periods. Let T= 811 0 0 0 1 �T�9 be the set of
time periods in the planning horizon. For each time
period t ∈T, let dt be the demand, Ct be the produc-
tion capacity, and let ct , ft , ht , and qt be the produc-
tion, setup, holding, and shortage cost, respectively.
All parameters are assumed to be nonnegative.

Let w ∈ W be the fortification decision vari-
ables and x ∈ X4w5 be the attack decision variables,
where W ≡ 8w2 eᵀw ≤ Q1w ∈ 80119�T�9 establishes the
defender’s budget and ensures that the fortification
variables are binary, and X4w5 ≡ 8x2 eᵀx ≤ B1xt ≤ 1 −

wt ∀ t ∈ T1x ∈ 80119�T�9 ensures that a maximum of B
unprotected time periods are attacked, and forces the
attacker variables to be binary. Finally, let y, v, I, and
s be the third-stage decision variables modeling pro-
duction, setup, inventory, and shortage, respectively.
The CLSIPF can be formally stated as

min
w∈W

max
x∈X4w5

min
∑

t∈T

ctyt + ftvt +htIt + qtst (17)

s.t. It = It−1 + yt + st − dt1 ∀ t ∈T1 (18)

yt ≤Ctvt1 ∀ t ∈T1 (19)

vt ≤ 1 − xt1 ∀ t ∈T1 (20)

yt1 It1 st ≥ 01 ∀ t ∈T1 (21)

vt ∈ 801191 ∀ t ∈T0 (22)

The objective function (17) minimizes the total cost
after interdiction. Constraints (18) are inventory con-
straints, constraints (19) enforce production capac-
ity limits, and constraints (20) forbid production on

interdicted time periods. Constraints (21) and (22)
place bounds and binary restrictions on the decision
variables.

4.2. Solution Approach
In the following subsections we discuss the three com-
ponents required for solving the CLSIPF: a sampling
scheme, an approach for solving two-level CLSP inter-
diction problems restricted over a sample of third-
stage solutions, and a method to solve third-stage
CLSP problems.

4.2.1. Sampling Scheme. Let S denote a produc-
tion plan (third-stage recourse solution) that specifies
values for y, v, I, and s. To obtain a sample of pro-
duction plans, we propose a simple random search
that iteratively generates a random attack plan xr ,
and solves a MIP to compute the optimal recourse
response given xr . In particular, xr interdicts K time
periods randomly selected among 801 0 0 0 1 �T�9. We
then solve the following MIP given xr :

min
4y1v1I1s5∈Y4xr 5

∑

t∈T

6ctyt + ftvt +htIt + qtst71 (23)

where Y4xr 5 is the third-stage feasible region defined
by inserting xr in constraints (18)–(22).

Let production plan S∗ = 8y∗1v∗1 I∗1 s∗9 be an opti-
mal solution to the MIP given an attack plan xr , and
let c4S∗5 denote its cost. If c4S∗5 ≤ z̄, then we add
S∗ to the sample, and otherwise we discard S∗. We
repeat this procedure for a prescribed number of iter-
ations (regardless of how many production plans are
added to the sample). Note that integer parameter K
could be different from the attacker’s budget B, and
can take any value between 601 �T�7. Large values of K
result in a sample with more conservative production
plans, which only produce during a few time periods,
and are thus more difficult to interdict.

The repeated solution of MIPs in the sampling
phase of this algorithm may ultimately be too compu-
tationally intensive to justify its use. We will demon-
strate in our computational section that the solution
of MIPs in this phase is justified. However, an alter-
native to this scheme would simply generate heuristic
recourse solutions in response to randomly sampled
attacks. The tradeoff thus involves the quality of sam-
pled solutions (where higher quality samples tend to
speed overall convergence) versus the time required
to generate them.

4.2.2. Solving the Restricted Problem. As done
in the SPIPF, we formulate the restricted problem
Q4ŵ1 Ŷ5 as a MIP. Let Sk = 8yk1vk1 Ik1 sk9 denote pro-
duction plan k in Ŷ and T4Sk5 ≡ 8t ∈ T � yk

t > 09 be
the set of time periods in which plan Sk produces a

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS 133

positive amount of items. We formulate Q4ŵ1 Ŷ5 anal-
ogously to (13)–(15):

max z (24)

s.t. z≤ c4Sk5+
∑

t∈T4Sk5

Mk
t xt1 ∀Sk

∈ Ŷ1 (25)

x ∈X4ŵ50 (26)

We use a suitably large cost Mk
t to penalize attacked

production plans. To determine this cost, we decom-
pose yk into values aktt1 0 0 0 1 a

k
t�T�

1 ∀ t ∈ T, where aktj
denotes the amount produced at period t that satis-
fies demand at period j , for j ≥ t. One possible way of
adjusting a solution if an attack occurs at period t is to
simply retain the previous solution, but with yk

t = 0.
As a result, there will be a savings of ft + cty

k
t due to

eliminated fixed and variable costs, plus any holding
costs that were incurred due to production in period t.
However, without adjusting production at any other
period, we would incur additional shortage costs of
qja

k
tj for each j ≥ t. Accordingly, we define the cost

penalty for any production plan Sk at time period t as

Mk
t =

(

∑

j∈T2 j≥t

qja
k
tj

)

− ft − cty
k
t −

(

∑

j∈T2 j>t

j−1
∑

l=t

hla
k
tj

)

0 (27)

Proposition 6 shows that (25) remains valid when Mk
t

is defined as in (27).

Proposition 6. Consider any x ∈X and let S∗ ∈Y4x5
be its corresponding optimal recourse response. For any
production plan Sk, we have that c4Sk5+

∑

t∈T4Sk5M
k
t xt ≥

c4S∗5, where the M-values are defined in (27).

Proof. Let S′

k be a modification of Sk in which
all the production from interdicted time periods is
canceled, as previously described. Because production
is zero in solution S′

k at time periods interdicted by
x, then S′

k ∈ Y4x5, which implies that c4S′

k5 ≥ c4S∗5.
Noting that c4S′

k5 = c4Sk5 +
∑

t∈T4Sk5M
k
t xt , this com-

pletes the proof. �
We use the objective target strategy introduced for

the SPIPF in Section 3.2.2. Following the same logic
in that section, we add the constraint z ≤ z̄ + � to
model (24)–(26), which allows us to tighten (25) as
follows:

z ≤ c4Sk5+
∑

t∈T4Sk5

min8Mk
t 1 4z̄+ �− c4Sk55+9xt1

∀Sk
∈ Ŷ0 (28)

Remark 3. Recall that in our sampling strategy, we
create recourse solutions that are optimal with respect
to some attack vector x. Hence, in those solutions, the
Mk

t -parameters in (27) must not be negative, or else
the recourse solution could be improved by simply

eliminating production in period t. If exact optimiza-
tion is not used to create recourse solutions in Ŷ, then
it is possible for some value of Mk

t to be negative.
Constraint (28) remains valid in this case, but could be
tightened by simply replacing the sampled solution
with one in which yt is modified to equal 0 whenever
Mk

t < 0.

4.2.3. Obtaining the Real Damage for an Attack.
Calculating the real damage of an attack x̂ requires
solving a CLSP in which the production capacity for
time periods attacked by x̂ is set to zero. One simple
approach solves the classical MIP model for the CLSP
given attack plan x̂ stated in (23). Because the back-
ward sampling framework does not require a specific
solution method for the third-stage problem, we could
employ any of the well-established methods for solv-
ing the CLSP, including the standard dynamic pro-
gramming approach in which inventory at time t is
used as state variable.

5. Computational Experiments
This section presents computational results on the
SPIPF and the CLSIPF. We assess the performance of
our algorithm on the SPIPF using randomly gener-
ated grid networks in Section 5.1 and on large-scale
real road networks in Section 5.2. In Section 5.3 we
analyze the effect of the defender’s (attacker’s) bud-
get and the parameter � on the performance of the
algorithm for the SPIPF. In Section 5.4 we evaluate our
algorithm on randomly generated CLSIPF instances.

We coded our algorithm in Java, using Eclipse
SDK version 4.4.1, and executed the experiments on
a machine having an Intel Core i7–3537U CPU (two
cores) running at 2.00 GHz with 2 GB RAM allo-
cated to the Java Virtual Machine memory heap on
Windows 8. We impose a time limit of four hours
(14,400 s) and solve all mathematical optimization
problems using Gurobi 5.6. All instances and source
code used in this section are available in the online
supplement (available as supplemental material at
https://doi.org/10.1287/ijoc.2016.0721).

5.1. Solving the SPIPF Over Directed Grid
Networks

We generate directed grid networks with the same
topology used by Israeli and Wood (2002) and Cap-
panera and Scaparra (2011). These networks have a
source node s, a sink node t, and m × n nodes ar-
ranged in a grid of m rows and n columns. There
exists an arc from s to every node in the first column
and an arc from every node in the last column to t.
Also, arcs exist from each node in grid row r and
column c to (existing) nodes in positions 4r + 11 c5,
4r −11 c5, 4r1 c+15, 4r +11 c+15, and 4r −11 c+15 pro-
vided that these are not vertical arcs in the first or last
columns.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

https://doi.org/10.1287/ijoc.2016.0721


Lozano and Smith: Backward Sampling Framework
134 INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS

We build networks with sizes ranging from 10 × 10
to 60 × 60. For each network size we explore different
(cost, delay) configurations in which arc costs (delays)
are random integers uniformly distributed between
611 c7 (611d7), where c 4d5 denotes the maximum cost
(delay). As done by Cappanera and Scaparra (2011),
we explore the following 4c1d5 configurations: 410155,
4101105, 4101205, 41001505, 410011005, and 410012005.
For a fixed network size and 4c1d5 configuration,
we generate ten instances with different random arc
attributes for a total of 360 = 6 × 6 × 10 different
instances. We solve each instance six times with dif-
ferent Q values in 831415179 and B values in 8314159,
for a total of 21160 = 360×6 experiments. After tuning
the algorithm parameters, we set the maximum sam-
ple size to 100, the sampling time limit �Ŷ�max to one
second, the arc-usage upper limit to 20, threshold � to
001, and � to 1 (see (16)).

Tables 2 and 3 show the computational results for
medium- and large-sized grid networks, respectively.
The first five columns show grid size, number of
nodes and arcs, and the defender’s and attacker’s
budget (Q and B), respectively. For each of the six
4c1d5 configurations, the tables depict the average
CPU time obtained over ten runs (Avg) and the
largest CPU time obtained over those runs (Max).

Table 2 shows that on average, our algorithm finds
optimal solutions for the 10 × 10 and 20 × 20 net-
works in just a few seconds, and requires less than
one minute to solve the 30×30 networks, which have
more than 4,000 arcs. The maximum execution times
are close to the average times; even in the worst case

Table 2 Computational Time in CPU Seconds for Solving the SPIPF Over Medium-Sized Grid Networks

Cost-delay configuration 4c1 d5

410155 4101105 4101205 41001505 410011005 410012005

Instance Nodes Arcs Q B Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

10 × 10 102 416 3 3 001 003 001 002 001 002 001 002 001 003 001 002
4 3 001 001 001 002 001 002 001 002 001 002 002 002
3 4 001 002 002 005 002 005 003 005 003 007 003 007
5 4 002 003 003 005 003 006 003 004 004 007 004 008
4 5 003 004 005 101 008 202 006 105 100 209 101 208
7 5 007 100 009 106 100 203 008 102 103 209 103 109

20 × 20 402 11826 3 3 003 009 005 109 006 303 007 200 007 103 008 200
4 3 004 102 006 202 008 403 009 203 008 106 009 200
3 4 006 105 101 302 101 501 202 501 204 509 204 800
5 4 100 207 202 1008 202 1208 201 404 209 601 209 901
4 5 108 506 402 1802 401 1608 605 1601 803 2204 907 3304
7 5 306 1008 507 1301 607 2803 703 1303 908 2103 1205 3608

30 × 30 902 41236 3 3 008 101 102 306 109 703 108 705 200 309 203 600
4 3 009 102 104 307 200 609 203 1102 206 601 204 507
3 4 106 206 308 1409 600 2506 404 1500 505 1303 603 1505
5 4 207 401 601 2704 801 3604 602 2105 1000 3100 1002 3609
4 5 502 1108 1509 7702 2302 9408 1509 6002 2402 6101 2701 7302
7 5 1107 2207 2607 10802 3001 13107 2109 6207 3508 10101 3607 9102

(30 × 30 grids with Q = 7, B = 5, and 4c1d5= 4101205),
the algorithm terminates in just over two minutes.

Table 3 shows that, on average, the algorithm ter-
minates in less than six minutes for the 40 × 40 net-
works, in less than nine minutes for the 50 × 50 net-
works, and in less than 29 minutes for the 60 × 60
networks, for any combination of c, d, Q, and B exam-
ined. The maximum execution times are larger rela-
tive to the average CPU times on these instances, and
some of them require roughly four hours of computa-
tional time over the 60×60 networks. This behavior is
expected, considering that these networks have more
than 3,000 nodes and 17,000 arcs. Table 3 suggests that
the instances become more difficult as d grows larger
relative to c and when the cost (delay) values increase
(implying that 4c1d5 = 410012005 are typically the
most challenging instances). Finally, an increase in the
attacker’s budget tends to have a greater impact on the
computation time than an increase in the defender’s
budget. We further study this idea in Section 5.3.

We compare our approach (Sampling) to the current
state-of-the-art algorithm by Cappanera and Scaparra
(2011) over medium-sized instances, who graciously
provided their code for the purposes of this com-
parison. They present two versions of their implicit
enumeration algorithm, which are based on a short-
est path formulation (SPI) and on a k-shortest-paths
formulation (KSPI). The former performs better when
the set of s-t paths whose cost is less than or equal
to the objective value obtained at the root node of
the enumeration tree is large, and the latter performs
better when this set is small. For our test instances,
SPI strengthened with the variable fixing rules and

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS 135

Table 3 Computational Time in CPU Seconds for Solving the SPIPF Over Large-Sized Grid Networks

Cost-delay configuration 4c1 d5

410155 4101105 4101205 41001505 410011005 410012005

Instance Nodes Arcs Q B Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

40 × 40 1,602 71646 3 3 300 706 603 2605 808 4803 403 607 708 2606 608 2102
4 3 305 801 705 3502 906 5104 502 802 903 3706 709 2607
3 4 309 802 2405 14505 4507 32107 1207 2406 1806 5802 1603 3901
5 4 608 1209 3402 19606 5400 37606 1600 3104 2803 12702 2404 9108
4 5 908 2300 21206 1178603 19400 1110303 3900 9408 7506 21707 6400 18508
7 5 2304 6107 21104 1140006 33002 2115300 5609 10102 18104 1115500 11100 49708

50 × 50 2,502 121056 3 3 607 1607 1002 1805 1506 4300 1903 4506 3803 14107 4706 13001
4 3 706 1702 1109 2507 1602 4304 2001 4509 3801 13206 4706 13409
3 4 1005 5001 3008 12603 3507 19002 2800 6108 11406 71704 8007 16600
5 4 1302 5908 3304 12208 4303 23101 4405 11604 24407 1197900 11702 44400
4 5 2402 14703 12106 58807 11205 78700 16103 97300 19701 71506 31707 1104909
7 5 4400 20801 21008 1135507 14201 84701 34408 1170207 52707 3161409 37501 1138500

60 × 60 3,602 171466 3 3 1303 2302 2403 5309 3808 6407 2905 4606 6006 23006 8203 23608
4 3 1402 2201 3208 12208 5005 14608 3204 4704 6408 25904 8607 27308
3 4 1700 3202 6405 27204 7908 29109 3406 5205 10702 33908 14907 51206
5 4 2400 6502 11908 72300 12505 66306 5500 12200 14200 46000 20208 91008
4 5 3506 6705 22305 1126304 23603 1107004 15509 57808 1147900 8110309 1158703 11105204
7 5 8102 27309 34600 1147703 49108 3138205 31701 1105606 1157509 8107902 1173304 11117709

acceleration strategies proposed by Cappanera and
Scaparra (2011) outperforms KSPI.

Table 4 shows the results for this comparison. Here,
the “Avg” column depicts the average CPU time in
seconds, computed only among the instances solved
within the time limit. As before, “Max” refers to max-
imum CPU seconds out of the 60 instances solved
for the row, and “No. solved” gives the number of
instances solved within the four-hour time limit.

Table 4 shows that our algorithm compares favor-
ably to SPI, consistently reducing computational time
by more than two orders of magnitude both in terms
of average and maximum execution times, for any
combination of 4Q1B5 examined. Moreover, our sam-
pling algorithm solves all instances within the time
limit while SPI solves 56 instances when 4Q1B5 =

44155 on the 20 × 20 networks, 45 instances when
4Q1B5 = 45145 on the 30 × 30 networks, and 26
instances when 4Q1B5= 44155.

Table 4 Comparing the Backward Sampling Algorithm to the State-of-the-Art Algorithm for SPIPF

Sampling SPI

Instance Nodes Arcs Q B Avg Max No. solved Avg Max No. solved

10 × 10 102 416 3 3 001 003 60 109 406 60
5 4 003 008 60 3009 16208 60
4 5 007 209 60 6705 28402 60

20 × 20 402 11826 3 3 006 303 60 2607 30501 60
5 4 202 1208 60 1112804 7172304 60
4 5 508 3304 60 2149502 >14,400 56

30 × 30 902 41236 3 3 107 705 60 76609 12172808 60
5 4 702 3609 60 4185703 >14,400 45
4 5 1806 9408 60 4125608 >14,400 26

5.2. Solving the SPIPF Over Real Road Networks
We use the road networks from Washington (DC),
Rhode Island (RI), and New Jersey (NJ) presented
by Raith and Ehrgott (2009). These networks range
from 9,559 nodes and 39,377 arcs to 330,386 nodes
and 1,202,458 arcs. For each road network, Raith
and Ehrgott (2009) define nine randomly selected s-t
pairs. We define cij as the arc distance and set dij =

1010001 ∀ 4i1 j5 ∈ A. For each network and s-t pair we
explore six budget configurations for a total of 162 =

3 × 9 × 6 experiments. We use the same algorithm
parameters as in the directed grid networks. Table 5
shows the results for these experiments.

Table 5 shows that the algorithm solves all DC
instances to optimality within the time limit. The
average CPU time for these instances is less than nine
minutes and the worst execution time is well under
one hour. On the RI network, the algorithm solves all
instances with B ≤ 4 and solves all but one instance

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
136 INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS

Table 5 Computational Time in CPU Seconds for Solving
the SPIPF Over Road Networks

Instance Nodes Arcs Q B Avg Max No. solved

DC 91559 391377 3 3 4508 12409 9
4 3 5006 12701 9
3 4 9202 40209 9
5 4 10300 37408 9
4 5 49208 2182905 9
7 5 45001 1190604 9

RI 531658 1921084 3 3 28405 75600 9
4 3 29506 81703 9
3 4 80007 4192501 9
5 4 94602 5197409 9
4 5 56001 >14,400 8
7 5 75400 >14,400 8

NJ 3301386 112021458 3 3 6174308 10155109 9
4 3 6134508 >14,400 8
3 4 6152608 >14,400 8
5 4 6196403 >14,400 8
4 5 7135406 >14,400 8
7 5 8145206 >14,400 8

each when 4Q1B5 = 44155 and 47155. Average CPU
times are less than 15 minutes among the instances
solved to optimality within the time limit, for any
choice of 4Q1B5. On the NJ network, the algorithm
solves all instances with Q = B = 3 and solves all but
one instance in each set corresponding to the other
4Q1B5 combinations. Average times are roughly two
hours among the instances solved to optimality.

5.3. Sensitivity Analysis for SPIPF
We conduct additional experiments to measure the
effect of increasing the defender’s (attacker’s) budget
on the execution time. For this purpose, we use a sub-
set of 10 30×30 grid networks with 4c1d5= 410012005
and solve instances that result from fixing an inter-
mediate value of Q = 4 4B = 45 and increasing B 4Q5.
The results of this experiment are shown in Tables 6
and 7.

Table 6 shows that increasing B for a fixed value
of Q has a dramatic impact on the computational
time. Increasing B from 5 to 7 produces an increase of

Table 6 Measuring the Effect of Increasing B on CPU Time Over a
Subset of 30 × 30 Grid Networks

Q B Avg Max No. solved

4 2 101 209 10
4 3 206 600 10
4 4 702 2004 10
4 5 2703 7304 10
4 6 6207 16906 10
4 7 24104 70408 10
4 8 1120805 4187801 10
4 9 4190108 >14,400 9
4 10 4175008 >14,400 2

Table 7 Measuring the Effect of Increasing Q on CPU Time Over a
Subset of 30 × 30 Grid Networks

Q B Avg Max No. solved

2 4 502 1301 10
4 4 608 1805 10
6 4 1001 2900 10
8 4 1508 5604 10
10 4 1604 4802 10
12 4 1707 4404 10
14 4 2403 7307 10
16 4 2600 5305 10
18 4 3008 5702 10
20 4 3608 5503 10

roughly one order of magnitude in the average exe-
cution time, and while the algorithm is able to solve
all ten instances having B = 8, it is only able to solve
two instances having B = 10. On the contrary, Table 7
shows that increasing Q for a fixed value of B has a
less pronounced impact on the computational time.
Even for Q = 20, the algorithm finds optimal solutions
to all instances in less than one minute. This behavior
may be explained by noting that increasing B directly
affects the difficulty of the restricted MIP problems,
which are solved in every iteration, while increas-
ing Q affects only the fortification problem.

We also conduct an experiment that measures the
effect of the parameter � on the performance of the
algorithm. For this purpose, we select a set of difficult
instances, i.e., those requiring roughly one to three
hours of computational time when � = 0 (listed in the
first column of Table 8). For each �-value considered
we report the number of defense plans evaluated (No.
of ŵ evaluated), the number of defense plans added
to the waiting list L (No. of ŵ interrupted), the num-
ber of restricted interdiction problems solved (No. of
Q4ŵ1 Ŷ5 solved), the total time spent solving fortifi-
cation problems (timeF ), the total time spent solving
restricted interdiction problems (timeI ), and the total
execution time.

Table 8 shows the results for this experiment, where
the “Metric” column shows the performance metrics
evaluated, and the last five columns show the results
for �-values ranging from 0 (i.e., not using the waiting
list) to 002. First, observe that the time spent solving
fortification problems is negligible compared to the
time spent solving restricted interdiction problems,
which is the most time-consuming task in the algo-
rithm. It is thus vital to use � to limit the number
of restricted interdiction problems that the algorithm
must solve.

Table 8 shows that there is not a single �-value that
achieves the best performance over all the instances.
However, small positive values for � (i.e., � = 0005 and
� = 001) produce significant computational improve-
ments over other values of � on average. As expected,

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS 137

Table 8 Profiling the Algorithm on a Subset of Hard Instances

Instance 4c1 d5 Metric � = 0 � = 0005 � = 001 � = 0015 � = 002

No. of ŵ evaluated 59 91 95 93 112
No. of ŵ interrupted 0 77 78 73 87
No. of Q4ŵ1 Ŷ5 solved 11745 11505 11383 11376 11532

40 × 40-0 4101205 TimeF (s) 201 302 302 300 307
TimeI (s) 4125608 3149303 2108302 2177307 2179001
Total time (s) 4132009 3155705 2114605 2183707 2184903

No. of ŵ evaluated 68 107 122 76 120
No. of ŵ interrupted 0 87 97 57 99
No. of Q4ŵ1 Ŷ5 solved 21218 21257 11910 21083 21045

60 × 60-5 4101205 TimeF (s) 607 903 906 601 902
TimeI (s) 3147407 3176908 2194206 2192300 3114409
Total time (s) 3153100 3182801 2199905 2197900 3120409
No. of ŵ evaluated 81 120 142 148 160
No. of ŵ interrupted 0 101 123 127 134
No. of Q4ŵ1 Ŷ5 solved 11270 11190 11226 11201 11239

60 × 60-1 410011005 TimeF (s) 807 1107 1205 1303 1503
TimeI (s) 6197702 5113005 8107605 7151305 6169304
Total time (s) 7107400 5122904 8116209 7159505 6177306

No. of ŵ evaluated 55 122 128 135 96
No. of ŵ interrupted 0 93 99 111 82
No. of Q4ŵ1 Ŷ5 solved 31043 21176 21110 21296 21394

60 × 60-6 410012005 TimeF (s) 502 1005 1104 1200 707
TimeI (s) 10190203 3184602 4130306 5100705 4197301
Total time (s) 10198907 3193101 4138802 5110901 5106806

the number of defense plans evaluated (and inter-
rupted) increases for larger values of �. However,
the number of restricted interdiction problems solved
over this subset of difficult instances is always smaller
when using the waiting list (� > 0) than when we set
� = 0.

5.4. Solving the CLSIPF
We generate random instances for the CLSIPF having
�T� ∈ 8101201301409. For each choice of �T� we gener-
ate ten instances in which dt , Ct , ct , ft , and qt are ran-
dom integers uniformly distributed between 61012107,
615012007, 651107, 6441647, and 62ct13ct7, respectively,
and ht is randomly selected in the interval 600310057.
These intervals were defined based on the parameter
structure of a classical instance introduced by Peter-
son and Silver (1979). For each instance we consider
all possible choices of Q ∈ 83159 and B ∈ 8213149, for
a total of 240 = 4 × 10 × 6 experiments. After tuning
the algorithm parameters, we set the integer parame-
ter K used to control the sampling scheme to 2B, the
number of iterations for the sampling procedure to
50, threshold � to 001, and � to 1 (see (28)). Because
each iteration of our sampling scheme in Section 4.2.1
generates at most one sample, the initial sample size
will be between 0 and 50.

We compare our approach, in which we directly
solve the third-stage problem (MIP) to an alternative
solution method in which the third-stage CLSP prob-
lem is transformed into a shortest path (SP) problem

using a standard dynamic programming approach.
Table 9 shows the results for these experiments. Here,
the “Algorithm” column indicates the approach used.
As before, the “Avg” column shows the average CPU
time in seconds, computed only among the instances
solved within the time limit; “Max” refers to maxi-
mum CPU time over ten runs; and “No. sol” gives
the number of instances solved within the four-hour
time limit.

Table 9 shows that SP solves all instances hav-
ing �T� ≤ 20, 38 of 60 instances having �T� = 30, and
20 of 60 instances having �T� = 40, within the time
limit. However, the sampling method that directly
uses the MIP recourse problem solves all but one
instance having �T� ≤ 30, and 49 of 60 instances hav-
ing �T� = 40, within the time limit. Solving instances
having �T� ≤ 20 requires on average less than two
minutes, and even the worst execution times are less
than five minutes. For instances having �T� = 30, MIP
requires on average less than one hour of CPU time;
however, one instance cannot be solved to optimality
within four hours when 4Q1B5 = 43145. For instances
having �T� = 40, MIP performs well when B ≤ 3, solv-
ing all instances in less than 20 minutes. However,
when B = 4 it fails to solve 11 instances (five when
Q = 3 and six when Q = 5) within the time limit.
These results show that MIP outperforms SP over
all instance sizes and 4Q1B5 configurations, reduc-
ing computational time by about two orders of mag-
nitude. Also, as observed in the SPIPF, an increase

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Lozano and Smith: Backward Sampling Framework
138 INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS

Table 9 Computational Time in CPU Seconds for Solving the CLSIPF Over Randomly Generated Problem Instances

�T� = 10 �T� = 20 �T� = 30 �T� = 40

Algorithm Q B Avg Max No. sol Avg Max No. sol Avg Max No. sol Avg Max No. sol

SP 3 2 9707 37607 10 1118000 2150706 10 1182702 3192901 10 4146404 6158707 10
5 2 11105 39201 10 1118608 2146701 10 1190704 4107703 10 4163505 6156006 10
3 3 8509 20209 10 1197805 3136106 10 9161003 14105106 9 — — 0
5 3 13105 45908 10 1199707 3144006 10 10107003 14123703 9 — — 0
3 4 11000 19708 10 5117007 8152908 10 — — 0 — — 0
5 4 17605 49904 10 5128402 8123806 10 — — 0 — — 0

MIP 3 2 108 308 10 507 809 10 1707 3308 10 4607 6900 10
5 2 104 206 10 603 1103 10 1903 3007 10 5304 7000 10
3 3 208 509 10 2604 7208 10 15303 60303 10 70204 1166707 10
5 3 202 404 10 2907 7607 10 16903 56101 10 99406 2103209 10
3 4 209 408 10 11503 26506 10 1171101 >14,400 9 4193304 >14,400 5
5 4 202 304 10 10906 17703 10 2162202 12118200 10 10108600 >14,400 4

in the attacker’s budget has a dramatic impact on
the computational time. For example, when �T� = 30,
increasing B by one results in about a tenfold increase
in the average CPU time. On the contrary, increas-
ing Q tends to have a minor effect on the computa-
tional time.

6. Conclusions
We propose a novel framework for solving interdic-
tion and fortification problems having binary variables
in the first two stages, which allows the third-stage
problem to take any form. Previous methods for solv-
ing these problems convert the second-stage (inter-
diction) problem to a bilinear programming problem
using the strong dual of the third-stage problem. How-
ever, when a (polynomial-size) strong dual formula-
tion cannot be found, this reformulation approach is
not appropriate. Even when dualization of the third-
stage problem is practical, the resulting bilinear inter-
diction program is usually converted to a large linear
mixed-integer program that often exhibits a weak lin-
ear programming relaxation and requires a substantial
amount of time to solve.

Our approach obviates both of these difficulties by
iteratively sampling feasible solutions to the third-
stage problem, and finitely converges to an optimal
solution. Computationally, we demonstrate that the
approach significantly outperforms prior approaches
to solving shortest-path interdiction and fortification
problems, and is also capable of solving the CLSIPF
(in which the third-stage problem is NP-hard) within
reasonable computational times.

Future research will examine how this framework
can be adapted in the context of more difficult
recourse problems. The shortest-path and lot-sizing
problems demonstrate how a direct application of the
framework can be used to effectively solve very dif-
ficult problems, but a focused study (e.g., on inter-
diction and fortification for the traveling salesman

problem) might yield new insights on how specific
problem structures can be exploited within this frame-
work. Also, while three-stage problems in the lit-
erature almost exclusively contain only binary vari-
ables in the first two stages, an interesting challenge
would be to investigate how this approach can accom-
modate fractional rather than binary attack and/or
fortification actions. Finally, we note that the more
general class of bilevel optimization problems (in
which the leader and follower do not play a zero-sum
game) is also notoriously difficult to optimize, par-
ticularly when the follower’s problem is nonconvex.
Future research may investigate how the foregoing
framework could be applied to handle these types of
problems.

Supplemental Material
Supplemental material to this paper is available at https://
doi.org/10.1287/ijoc.2016.0721.

Acknowledgments
The authors thank Dr. Paola Scaparra at University of Kent
(UK) and Dr. Paola Cappanera at University of Florence
(Italy) for their generosity in sharing their code for solv-
ing the SPIPF. The authors thank the referees and edi-
torial staff for their insightful comments, which led to
an improved version of this paper. Dr. Smith gratefully
acknowledges the support of the Defense Threat Reduction
Agency [Grant HDTRA-10-01-0050], the Air Force Office of
Scientific Research [Grant FA9550-12-1-0353], and the Office
of Naval Research [Grant N000141310036].

References
Bard JF, Moore JT (1992) An algorithm for the discrete bilevel pro-

gramming problem. Naval Res. Logist. 39(3):419–435.
Bayrak H, Bailey MD (2008) Shortest path network interdiction

with asymmetric information. Networks 52(3):133–140.
Belvaux G, Wolsey LA (2000) bc–prod: A specialized branch-and-

cut system for lot-sizing problems. Management Sci. 46(5):
724–738.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

https://doi.org/10.1287/ijoc.2016.0721
https://doi.org/10.1287/ijoc.2016.0721


Lozano and Smith: Backward Sampling Framework
INFORMS Journal on Computing 29(1), pp. 123–139, © 2016 INFORMS 139

Benders JF (1962) Partitioning procedures for solving mixed vari-
ables programming problems. Numerische Mathematik 4(1):
238–252.

Bitran GR, Yanasse HH (1982) Computational complexity of the
capacitated lot size problem. Management Sci. 28(10):1174–1186.

Brahimi N, Dauzere-Peres S, Najid NM, Nordli A (2006) Single item
lot sizing problems. Eur. J. Oper. Res. 168(1):1–16.

Brown G, Carlyle M, Salmerón J, Wood K (2006) Defending critical
infrastructure. Interfaces 36(6):530–544.

Brown G, Carlyle M, Diehl D, Kline J, Wood K (2005a) A two-
sided optimization for theater ballistic missile defense. Oper.
Res. 53(5):745–763.

Brown GG, Carlyle WM, Salmerón J, Wood RK (2005b) Analyz-
ing the vulnerability of critical infrastructure to attack and
planning defenses. Greenberg HJ, Smith JC, eds. Tutorials in
Operations Research: Emerging Theory, Methods, and Applications
(INFORMS, Hanover, MD), 102–123.

Brown GG, Carlyle WM, Harney RC, Skroch EM, Wood RK
(2009) Interdicting a nuclear-weapons project. Oper. Res. 57(4):
866–877.

Cappanera P, Scaparra MP (2011) Optimal allocation of protective
resources in shortest-path networks. Transportation Sci. 45(1):
64–80.

Carøe CC, Tind J (1998) L-shaped decomposition of two-stage
stochastic programs with integer recourse. Math. Programming
83(1):451–464.

Church RL, Scaparra MP (2007) The r-interdiction median problem
with fortification. Geographical Anal. 39(2):129–146.

Church RL, Scaparra MP, Middleton RS (2004) Identifying critical
infrastructure: The median and covering facility interdiction
problems. Ann. Assoc. Amer. Geographers 94(3):491–502.

Codato G, Fischetti M (2006) Combinatorial Benders’ cuts for
mixed-integer linear programming. Oper. Res. 54(4):756–766.

Cormican KJ, Morton DP, Wood RK (1998) Stochastic network inter-
diction. Oper. Res. 46(2):184–197.

Dempe S (2002) Foundations of Bilevel Programming (Kluwer Aca-
demic Publishers, Boston).

Dijkstra EW (1959) A note on two problems in connexion with
graphs. Numerische Mathematik 1(1):269–271.

Eppen GD, Martin RK (1987) Solving multi-item capacitated lot-
sizing problems using variable redefinition. Oper. Res. 35(6):
832–848.

Florian M, Lenstra JK, Rinnooy Kan AHG (1980) Deterministic pro-
duction planning: Algorithms and complexity. Management Sci.
26(7):669–679.

Fulkerson DR, Harding GC (1977) Maximizing minimum source-
sink path subject to a budget constraint. Math. Programming
13(1):116–118.

Golden B (1978) A problem in network interdiction. Naval Res.
Logist. Quart. 25(4):711–713.

Held H, Woodruff DL (2005) Heuristics for multi-stage interdiction
of stochastic networks. J. Heuristics 11(6):483–500.

Held H, Hemmecke R, Woodruff DL (2005) A decomposition algo-
rithm applied to planning the interdiction of stochastic net-
works. Naval Res. Logist. 52(4):321–328.

Hooker JN, Ottosson G (2003) Logic-based Benders decomposition.
Math. Programming 96(1):33–60.

Israeli E, Wood RK (2002) Shortest-path network interdiction. Net-
works 40(2):97–111.

Karimi B, Fatemi Ghomi SMT, Wilson JM (2003) The capacitated
lot sizing problem: A review of models and algorithms. Omega
31(5):365–378.

Karmarkar US, Kekre S, Kekre S (1987) The dynamic lot-
sizing problem with startup and reservation costs. Oper. Res.
35(3):389–398.

Lim C, Smith JC (2007) Algorithms for discrete and continu-
ous multicommodity flow network interdiction problems. IIE
Trans. 39(1):15–26.

Lozano L, Medaglia AL (2013) On an exact method for the
constrained shortest path problem. Comput. Oper. Res. 40(1):
378–384.

Moore JT, Bard JF (1990) The mixed integer linear bilevel program-
ming problem. Oper. Res. 38(5):911–921.

Morton DP, Pan F, Saeger KJ (2007) Models for nuclear smuggling
interdiction. IIE Trans. 39(1):3–14.

Pan F, Charlton W, Morton DP (2003) Interdicting smuggled nuclear
material. Woodruff DL, ed. Network Interdiction and Stochas-
tic Integer Programming (Kluwer Academic Publishers, Boston),
1–20.

Peterson R, Silver EA (1979) Decision Systems for Inventory Manage-
ment and Production Planning (Wiley, New York).

Prince M, Smith JC, Geunes J (2013) A three-stage procurement
optimization problem under uncertainty. Naval Res. Logist.
60(1):395–412.

Raith A, Ehrgott M (2009) A comparison of solution strategies for
biobjective shortest path problems. Comput. Oper. Res. 36(4):
1299–1331.

Royset JO, Wood RK (2007) Solving the bi-objective maximum-
flow network-interdiction problem. INFORMS J. Comput. 19(2):
175–184.

Salmerón J, Wood K, Baldick R (2004) Analysis of electric grid
security under terrorist threat. IEEE Trans. Power Systems 19(2):
905–912.

Salmerón J, Wood K, Baldick R (2009) Worst-case interdiction anal-
ysis of large-scale electric power grids. IEEE Trans. Power Sys-
tems 24(1):96–104.

Scaparra MP, Church RL (2008a) A bilevel mixed-integer program
for critical infrastructure protection planning. Comput. Oper.
Res. 35(6):1905–1923.

Scaparra MP, Church RL (2008b) An exact solution approach for
the interdiction median problem with fortification. Eur. J. Oper.
Res. 189(1):76–92.

Sen S, Sherali HD (2006) Decomposition with branch-and-cut
approaches for two-stage stochastic mixed-integer program-
ming. Math. Programming 106(2):203–223.

Smith JC (2010) Basic interdiction models. Cochran J, ed. Wiley
Encyclopedia of Operations Research and Management Science
(Wiley, Hoboken, NJ), 323–330.

Smith JC, Lim C (2008) Algorithms for network interdiction and
fortification games. Migdalas A, Pardalos PM, Pitsoulis L,
Chinchuluun A, eds. Pareto Optimality, Game Theory and Equi-
libria, Nonconvex Optimization and Its Applications Series
(Springer, New York), 609–644.

Smith JC, Lim C, Sudargho F (2007) Survivable network design
under optimal and heuristic interdiction scenarios. J. Global
Optim. 38(2):181–199.

Tang Y, Richard J-PP, Smith JC (2016) A class of algorithms for
mixed-integer bilevel min–max optimization. J. Global Optim.
66(2):225–262.

Vicente L, Savard G, Judice J (1996) Discrete linear bilevel program-
ming problem. J. Optim. Theory Appl. 89(3):597–614.

Washburn R, Wood K (1995) Two-person zero-sum games for net-
work interdiction. Oper. Res. 43(2):243–251.

Wollmer R (1964) Removing arcs from a network. Oper. Res.
12(6):934–940.

Wood RK (1993) Deterministic network interdiction. Math. Comput.
Model. 17(2):1–18.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

13
7.

83
.2

50
] 

on
 0

9 
O

ct
ob

er
 2

01
7,

 a
t 1

3:
32

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


