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The elementary shortest path problem with resource constraints (ESPPRC) is an NP-hard problem that often
arises in the context of column generation for vehicle routing problems. We propose an exact solution

method that relies on implicit enumeration with a novel bounding scheme that dramatically narrows the search
space. We embedded our algorithm within a column generation to solve the linear relaxation (root node) of the
vehicle routing problem with time windows (VRPTW) and found that the proposed algorithm performs well
when compared against state-of-the-art algorithms for the ESPPRC on the well-known Solomon’s test bed for
the VRPTW.
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1. Introduction
The elementary shortest path problem with resource
constraints (ESPPRC) (Feillet et al. 2004, Irnich and
Desaulniers 2005) arises as the backbone of branch-
and-price procedures for several variants of the vehi-
cle routing problem (VRP). One of the most widely
known VRP variants closely tied to the ESPPRC
is the vehicle routing problem with time windows
(VRPTW) (Toth and Vigo 2002). The VRPTW con-
sists of finding a set of routes of minimal total cost
such that each customer in N = 8v11 0 0 0 1 vi1 0 0 0 1 vn9 is
served (exactly once) within its time window 6ai1 bi7.
The vehicles in the VRPTW begin and end their routes
at the depot and are part of an unlimited homoge-
neous capacitated fleet. Under a column generation
framework, it is common practice to use a set cov-
ering formulation, where ì is the set of all feasible
routes for the VRPTW and �ik is a binary indicator
that takes the value of 1 if route k ∈ ì visits cus-
tomer vi ∈ N and takes the value of 0 otherwise. Let
ck denote the cost of route k ∈ì and let xk be a binary
variable that takes the value of 1 if route k ∈ì is used
and 0 otherwise. The VRPTW can be formulated as
follows:

minimize
∑

k∈ì

ckxk (1)

subject to
∑

k∈ì

�ikxk ≥ 1 ∀vi ∈N1 (2)

xk ∈ 80119 ∀k ∈ì0 (3)

The objective function (1) minimizes the total cost,
the set covering constraints (2) ensure that each cus-
tomer is visited by a route, and constraints (3) ensure
that the decision variables are binary. Under a column
generation scheme (Desrosiers and Lübbecke 2005), a
restricted master problem solves the linear relaxation
of the model considering a small subset of its vari-
ables. The ESPPRC arises as the subproblem of find-
ing feasible routes (columns) with negative reduced
cost that are iteratively added to the restricted master
problem.

For the ESPPRC subproblem, consider a directed
graph G = 4N ∪ 8vs1ve91A5, where vs and ve repre-
sent the depot and A = 84vi1vj5 � vi ∈ N ∪ 8vs91vj ∈

N ∪ 8ve91vi 6= vj9 denotes the set of arcs. Each node
vi ∈N represents a customer with demand qi, service
time si, and a dual multiplier �i, associated with the
corresponding set covering constraint (2) in the mas-
ter problem. Each arc 4vi1vj5 ∈ A has a distance dij ,
a time tij that includes the service time si of node vi,
and a reduced cost contribution rij = dij − �i. We
assume that the arc time and distance satisfy the tri-
angle inequality, thus the set of arcs can be reduced
using the time windows (Desrochers, Desrosiers, and
Solomon 1992). Note that a path from start node
vs ∈N to end node ve ∈ N corresponds to a column
(variable) in the restricted master problem, represent-
ing route k ∈ì with reduced cost rk =

∑

4vi1vj 5∈k
rij . The

ESPPRC consists of finding an elementary path P (i.e.,
ordered sequence of nonrepeating nodes) from start
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node vs ∈ N to end node ve ∈ N that minimizes the
reduced cost subject to a vehicle capacity constraint
and the time-window constraints over the nodes. The
capacity constraint establishes an upper limit Q to the
sum of the demands qi collected by a vehicle along
the path. Time-window constraints are given by inter-
vals 6ai1 bi7 that restrict the beginning of the service
for the customer located at node vi ∈ N. If a vehicle
traversing the path visits node vi ∈N before the early
time window ai, it must wait until ai to begin ser-
vice; but, it cannot serve node vi ∈N if it arrives after
time bi.

Accelerating the solution of the ESPPRC subprob-
lem is a critical aspect for improving the perfor-
mance of column generation-based algorithms in sev-
eral routing applications such as the VRPTW. Hence,
this paper expands the body of knowledge on the
ESPPRC by presenting a new exact method for the
ESPPRC that extends the ideas proposed by Lozano
and Medaglia (2013) for the constrained shortest
path problem (Joksch 1966) using a novel bounding
scheme. We embedded our algorithm into a column
generation procedure for the VRPTW that performed
remarkably well when solving the linear relaxation of
the problem at the root node. When compared against
the state-of-the-art algorithm by Baldacci, Mingozzi,
and Roberti (2011a), our algorithm is on average faster
in 20 of the 29 instances of the ESPPRC; and our col-
umn generation finds tighter bounds in less compu-
tational time for 38 of the 48 reported instances from
the Solomon’s test bed for the VRPTW.

The remainder of this paper is organized as fol-
lows. Section 2 presents a literature review for the
ESPPRC. Section 3 outlines the algorithm’s intuition.
Section 4 describes in detail the proposed pruning
strategies. Section 5 presents the computational exper-
iments. Finally, §6 concludes the paper and outlines
future extensions.

2. Literature Review
Since the ESPPRC is NP-hard in the strong sense
(Dror 1994), the seminal work by Desrochers,
Desrosiers, and Solomon (1992) solved a relaxed ver-
sion that allows cycles with a dynamic program-
ming (DP) approach; however, such relaxation leads
to weak lower bounds and large branch-and-bound
trees (Irnich and Villeneuve 2006). Feillet et al. (2004)
proposed the first exact approach for the ESPPRC, a
labeling algorithm that extends the one proposed by
Desrochers, Desrosiers, and Solomon (1992). The algo-
rithm includes a customer resource that indicates if a
given customer can be visited or not by extending the
current partial path. After embedding their algorithm
in a column generation procedure, Feillet et al. (2004)

showed that using the ESPPRC improves the lower
bounds obtained at each node of the branch-and-
price tree. Rousseau et al. (2004) solved the VRPTW
using a branch-and-price approach that handled the
ESPPRC subproblem with constraint programming
(CP). Although the CP component proved to be flex-
ible, their approach was somewhat slow in com-
parison with traditional branch-and-price strategies.
Following a very similar procedure to the one pro-
posed by Feillet et al. (2004), Chabrier (2006) embed-
ded the ESPPRC into a branch-and-price scheme for
the VRPTW and found optimal solutions to 17 pre-
viously open instances of the Solomon’s test bed.
Later, Feillet, Gendreau, and Rousseau (2007) pro-
posed additional refinements to reduce the comput-
ing time of the branch-and-price procedure with the
ESPPRC subproblem scheme. More recently, Righini
and Salani (2008) proposed a bidirectional labeling
algorithm for the ESPPRC that relies on a state-
space relaxation. This algorithm considerably out-
performs the DP algorithms by Feillet et al. (2004)
and Chabrier (2006). A very similar DP algorithm
was proposed by Boland, Dethridge, and Dumitrescu
(2006) achieving remarkably good performance on
randomly generated instances. Lately, Jepsen et al.
(2008) and Petersen, Pisinger, and Spoorendonk (2008)
introduced subset-row inequalities that significantly
improved the lower bounds obtained at each node of
the branch-and-price tree, but increased the complex-
ity of the pricing problem. Desaulniers, Lessard, and
Hadjar (2008) used these inequalities and combined
the exact algorithm by Righini and Salani (2008) with
a tabu search for the subproblem; they obtained opti-
mal solutions for five open instances (at that time) of
the Solomon test bed. Aside from branch-and-price
methods, Baldacci et al. (2010) proposed a dual ascent
procedure, that combined with a column-and-cut gen-
eration algorithm, outperformed all exact methods
published so far and provided optimal solutions
to several open VRP instances. Baldacci, Mingozzi,
and Roberti (2011a) extended the exact algorithm of
Righini and Salani (2008) by including bounding func-
tions based on state-space relaxation. They introduced
the concept of ng-route relaxation that is used to
calculate completion bounds for partial paths, thus
accelerating the DP algorithm by means of label fath-
oming. For a comprehensive review on resource con-
strained shortest paths we refer the reader to the sur-
vey presented by Di Puglia Pugliese and Guerriero
(2013) and for recent advances in algorithms for the
VRPTW we refer the reader to Baldacci, Mingozzi,
and Roberti (2012).
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3. Pulse Algorithm: Overview
and Intuition

We name our algorithm after the simple intuition
that lies behind. To explain this intuition we appeal
to the analogy of a pulse propagating through the
graph. Formally, pulse propagation refers to the recur-
sive exploration of partial paths that are extended
until they reach the end node or are discarded by a
pruning strategy. For the ESPPRC, the pulse algorithm
comprises two stages: (1) a bounding stage that finds
lower bounds on the cost given an amount of resource
consumed, and (2) a recursive exploration stage that
finds an optimal solution based on an implicit enu-
meration of the solution space. The exploration is trig-
gered by sending a pulse from the start node vs ∈ N.
The pulse tries to propagate throughout the outgo-
ing arcs of each visited node, storing at each node
the partial path P, the cumulative reduced cost r4P5,
the cumulative capacity consumption q4P5, and the
cumulative time consumption t4P5. At each node dif-
ferent pruning strategies try to stop the pulse propa-
gation, aggressively pruning the search space. Every
pulse that reaches the final node ve ∈ N contains all
of the information of a feasible path P from vs to ve.
Algorithm 1 presents an overview of the pulse algo-
rithm. Lines 1 to 4 set the initial values for the par-
tial path P, the cumulative reduced cost r4P5, and
the cumulative resources consumption q4P5 and t4P5.
Line 5 runs the bounding procedure that finds lower
bounds for every node in N (see §4.2). Finally, line
6 invokes the recursive procedure pulse starting the
propagation from node vs ∈ N and line 7 returns an
optimal path P∗ found in the recursion.

Algorithm 1 (Pulse algorithm)

Input: G, directed graph; vs , start node; ve, end node;
ã, bound step size; [ t1 t̄], bounding time
limits.

Output: P∗, optimal path.
1: P← 8 9
2: r4P5← 0
3: q4P5← 0
4: t4P5← 0
5: bound4G1ã1 6 t1 t̄75 F see §402
6: pulse4vs1 r4P51 q4P51 t4P51P5 F see Algorithm 2
7: return P∗

Algorithm 2 shows the recursive procedure pulse,
where â+4vi5= 8vj ∈N∪ 8ve9 � 4vi1vj5 ∈A9 is the set of
head nodes of the outgoing arcs from node vi. Lines 1
to 3 use the pruning strategies, namely infeasibility,
bounds, and rollback, in order to prune the incom-
ing pulse. The infeasibility pruning strategy ensures
the elementarity of the paths. If the pulse is not
pruned, line 4 adds the current node to the partial
path being explored and line 5 updates the vehicle

capacity. Lines 6 to 10 propagate the pulse by invok-
ing the pulse procedure over all nodes vj ∈ â+4vi5.
Every time the pulse procedure is invoked on the
final node ve, the information for the best-known path
P∗ is updated (if needed), the pulse stops its propaga-
tion, and the algorithm backtracks to propagate other
pulses recursively.

Algorithm 2 (Pulse procedure)

Input: vi, current node; r4P5, path reduced cost;
q4P5, path load; t4P5, path time; P,
current path.

Output: void
1: if isFeasible4vi1 q4P51 t4P55= true then

F see §4.1
2: if checkBounds4vi1 t4P51 r4P55= false then

F see §4.2
3: if rollback4vi1 t4P51 r4P51P5= false then

F see §4.3
4: P′ ←P∪ 8vi9
5: q4P′5← q4P5+ qi
6: for vj ∈ â+4vi5 do
7: r4P′5← r4P5+ rij
8: t4P′5← max8aj1 t4P5+ tij9
9: pulse 4vj1 r4P

′51 q4P′51 t4P′51P′5
10: end for
11: end if
12: end if
13: end if

From this overview of the proposed algorithm we
would like to emphasize the following main differ-
ences between the pulse algorithm and traditional
DP algorithms:

• Dominance rules. The pulse algorithm does not
rely on dominance rules that compare partial paths
(represented by labels). Although this lack of domi-
nance rules may lead to a significant increase in the
number of explored paths, it is also true that the pulse
does not have to handle an often long list of ordered
labels.

• Depth-first versus breadth-first search. As the pulse
algorithm is recursive, it explores the graph in a
depth-first search manner, whereas most labeling
algorithms follow a lexicographic breadth-first search.
Accordingly, one would expect the pulse algorithm
to find feasible solutions faster than DP algorithms.
The pulse algorithm can also be seen as a branch and
bound, where each node corresponds to an elemen-
tary partial path.

• Pruning strategies. Although infeasibility pruning
is identical for partial paths/labels in pulse/labeling
algorithms, the pulse algorithm heavily relies on addi-
tional pruning strategies that are not always included
in labeling algorithms.
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• Bidirectional search. Because of its recursive
nature, the pulse algorithm cannot apply bidirectional
search techniques that are rather useful for labeling
algorithms (Righini and Salani 2008).

It is worth highlighting that every time that a pulse
is pruned, a whole entire region of the solution space
is discarded and not just a single solution. Thus,
the algorithm’s performance is strongly linked to the
strength of the pruning strategies and their ability to
prune pulses at early stages of the exploration.

4. Pruning Strategies
We use three pruning strategies for the ESPPRC: the
first one uses structural constraints (i.e., time-window,
capacity, and cycle constraints) to prune infeasible
solutions; the second one uses primal (i.e., best solu-
tion found) and lower bounds to prune suboptimal
solutions; and the third one uses a look-back mecha-
nism to discard suboptimal partial paths.

4.1. Infeasibility Pruning
Whenever a partial path reaches a node vi ∈ N, the
algorithm checks if visiting the node creates a cycle,
exceeds the capacity constraint, or violates the time
windows. If any of these events happen, the par-
tial path can be safely pruned because it is infea-
sible. Discarding infeasible partial paths is a com-
mon practice used in labeling algorithms (Desrochers,
Desrosiers, and Solomon 1992, Boland, Dethridge, and
Dumitrescu 2006).

To check for cycles, we use an indicator function
that identifies the nodes already visited. Using this
function, the algorithm checks in constant time if
node vi has already been visited by the path or not.
Similarly, if q4P5 > Q the vehicle’s capacity has been
exceeded by the demand of the customers visited
along the partial path P, thus the partial path is infea-
sible and pruned. Regarding the time windows, if
t4P5 > bi, we prune the partial path P because the
node vi is visited after the latest time; but, if t4P5 < ai,
then the vehicle must wait until time ai to start service
at node vi and t4P5← ai.

4.2. Bounds Pruning
Several authors have used bounding functions to
fathom suboptimal partial paths. Baldacci, Mingozzi,
and Roberti (2011a) propose the use of an ng-route
relaxation that ignores the vehicle capacity constraints
and imposes the elementarity condition only to a sub-
set of nodes. Baldacci, Mingozzi, and Roberti (2011b)
introduces additional bounding functions based on
different relaxations.

Following the same spirit of bounding functions,
we use a primal bound r̄ that is constantly updated
with the value of the best solution found at any time
of the exploration and propose a bounding scheme

that finds conditional lower bounds r4vi1 t4P55 for
every node vi ∈N and for discrete values of resource
consumption t4P5. These bounds store the minimum
reduced cost that can be achieved by any partial path
P that reaches node vi ∈ N with a given amount of
consumed resource t4P5.

The proposed bounding scheme works as follows.
Let t̄ be the upper time window at the depot and
let ã be a nonnegative time step. We start by solving
an ESPPRC for every node vi ∈ N given a time con-
sumption of t4P5 = t̄ − ã. Given that there are only
ã units of time available, the resulting problems (one
for each node) are overly constrained with few fea-
sible solutions, so the pulse procedure can quickly
sort through them solving the problems to optimal-
ity. Every optimal solution found is a lower bound
on the minimum reduced cost that can be achieved
by any partial path that reaches node vi given a
time consumption t4P5 ≥ t̄ − ã. After finding these
bounds, we then solve an ESPPRC for every node
vi ∈ N given a time consumption of t4P5 = t̄ − 2ã.
Although the resulting problems are now less con-
strained, note that we already have computed lower
bounds on the cost for paths with time consump-
tion between 6t̄−ã1 t̄7. By using the information com-
puted previously, we continue in a backward mode
repeating the same procedure until reaching a given
time limit t. This procedure will result in a lower
bound matrix denoted by B= 6r4vi1 �57 that contains
the lower bounds calculated for every node and every
discrete time step between t and t̄. Note that as the
resource available increases, the problems solved in
the bounding scheme become less constrained and
more difficult to solve, but also the amount of known
bounds increases, augmenting the chances to prune
partial paths with the bounds pruning strategy. Algo-
rithm 3 shows the pseudo-code of the bounding
scheme. Line 1 initializes the time consumption � .
Line 2 begins the bounding scheme and checks for
the stopping condition. Line 3 updates the time con-
sumption, subtracting the time step ã at each itera-
tion. Lines 4 to 9 solve an ESPPRC for every node
given the time consumption using the pulse proce-
dure. Lines 10 to 14 store the optimal value found
for every node at position 4vi1 �5 of the lower bound
matrix B, if a particular problem is infeasible (i.e.,
P∗ = 8 9) the lower bound is set to positive infinity.
Note that these lower bounds solely focus on the time
resource consumption and consider a (relaxed) initial
capacity consumption of zero for the partial path P
that reaches node vi ∈N.
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Algorithm 3 (Bounding scheme)

Input: G, directed graph; ã, step size; [ t1 t̄],
bounding time limits.

Output: B= 6r4vi1 �57, lower bound matrix.
1: � ← t̄
2: while � > t do
3: � ← � −ã
4: for vi ∈N do
5: P← 8 9
6: r4P5← 0
7: q4P5← 0
8: t4P5← �
9: pulse4vi1 r4P51 q4P51 t4P51P5

10: if P∗ = 8 9 then
11: r4vi1 �5← �

12: else
13: r4vi1 �5← r4P∗5
14: end if
15: end for
16: end while
17: return B

Note that under this bounding scheme, to calculate
a lower bound for a given partial path P that visits a
node vi ∈N, the function checkBounds must use from
the bound matrix B the lower closest value to t4P5
available. For example, consider a problem with t̄ =

100 and a time step defined as ã 2= 10. If a partial
path arrives at a given node vi ∈ N with 85 units of
time consumed, then the corresponding lower bound
will be the one found for node vi and 80 units of time
consumed. Note that the best reduced cost that can
be achieved from a partial path with 80 units of time
consumed will be a lower bound for the best reduced
cost that can be achieved from a partial path with
85 units of time consumed. The function checkBounds
will prune a partial path if r4P5+ r4vi1 t4P55≥ r̄ .

4.3. Rollback Pruning
One of the main drawbacks of depth-first search is
that poor decisions made at early stages of the explo-
ration can lead to the exploration of unpromising
regions of the search space. It might take a while for
the algorithm to backtrack and correct that poor initial
choice. Aiming to avoid this behavior, this pruning
strategy looks for some reassurance of the last choice
made, or if necessary, it rolls back the change. Con-
sider a partial path Psi from vs to vi that is extended
to node vk and then reaches node vj . Once the partial
path Psj =Psi ∪8vk9∪8vj9 reaches node vj , the rollback
pruning strategy reevaluates the last choice made, i.e,
visiting node vk before node vj . Let P′

sj = Psi ∪ 8vj9
be an alternative partial path to node vj that does
not visit node vk. According to Feillet et al. (2004),
if P′

sj ⊆ Psj , q4P′
sj5 ≤ q4Psj5, r4P′

sj5 ≤ r4Psj5, t4P′
sj5 ≤

t4Psj5, and at least one of the four previous condi-
tions holds strictly (e.g., P′

sj ⊂Psj or r4P′
sj5 < r4Psj5) it

�s �i

�k

�j

�sj �sj
�

Figure 1 Graphical Representation of Paths Psj and P′

sj Used in the
Rollback Pruning Strategy

is said that path Psj is dominated by path P′
sj . Note

that by construction, the alternative path P′
sj always

satisfies P′
sj ⊂ Psj and q4P′

sj5 ≤ q4Psj5, so the rollback
pruning strategy only needs to check if r4P′

sj5≤ r4Psj5
and t4P′

sj5≤ t4Psj5 to prune path Psj . This check does
not require any kind of storage (e.g., labels), but just
simple arithmetic calculations for r4P′

sj5 and t4P′
sj5.

Figure 1 presents a graphical representation of paths
Psj and P′

sj .

5. Computational Experiments
To assess the performance of the pulse algorithm,
we embedded it inside a column generation scheme
that solves the linear relaxation (root node) of the
VRPTW as done by Feillet et al. (2004). First, we com-
pared the pulse algorithm against the labeling state-
of-the-art algorithm (GENR) by Baldacci, Mingozzi,
and Roberti (2011a). Second, we compared the lower
bounds obtained by our column generation scheme
against Desaulniers, Lessard, and Hadjar (2008) and
Baldacci, Mingozzi, and Roberti (2011a) in terms of
the quality of the bounds and the time required
to compute them. Finally, we conducted additional
experiments to assess the performance of the pro-
posed pruning strategies within the pulse algorithm.

In our column generation implementation, we used
a conventional set covering formulation. To speed
up the first iterations of the column generation–
when there are plenty of promising columns–we
followed a common practice that relies on heuris-
tics (Desaulniers, Lessard, and Hadjar 2008, Chabrier
2006, Feillet, Gendreau, and Rousseau 2007). We
coded a tabu search (TS) (Glover and Laguna 1997,
Gendreau and Potvin 2010) along the lines of the one
proposed by Desaulniers, Lessard, and Hadjar (2008).
To diversify the search, Desaulniers, Lessard, and
Hadjar (2008) start their TS from different initial solu-
tions associated with the basic variables of the cur-
rent restricted master problem. In addition, we exe-
cute Rmax restarts from solutions randomly selected
from the column pool, not necessarily those linked to
the basic variables. Our TS starts with an initial solu-
tion and during a limited number of iterations Imax it
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Table 1 Comparing the Pulse Algorithm Inside a Column Generation Scheme Against Baldacci, Mingozzi, and Roberti (2011a) on the Solomon
100-Series Benchmark Problems

Baldacci, Mingozzi, and Roberti (2011a) Column generation with pulse and TS

Instance Time (s) LB3 Time (s) Scaled time (s) Lower bound Bound improvement (%)

r101.100 600 1163004 106 203 1163102 0005
r102.100 700 1146602 205 305 1146606 0003
r103.100 600 1120302 309 505 1120608 0030
r104.100 1200 95507 700 908 95609 0012
r105.100 600 1134500 209 401 1134601 0008
r106.100 700 1122507 406 605 1122609 0010
r107.100 700 1105203 505 706 1105303 0009
r108.100 1000 91300 704 1004 91305 0005
r109.100 900 1113305 402 509 1113403 0007
r110.100 900 1105409 600 804 1105506 0006
r111.100 1000 1103309 506 709 1103407 0008
r112.100 1100 92602 705 1005 92607 0006
rc101.100 500 1158101 109 206 1158401 0019
rc102.100 800 1140505 303 406 1140603 0005
rc103.100 800 1122405 405 603 1122505 0008
rc104.100 3500 1110004 606 903 1110108 0013
rc105.100 700 1147107 303 406 1147109 0002
rc106.100 800 1131805 304 407 1131808 0002
rc107.100 800 1118207 401 507 1118304 0006
rc108.100 1100 1107300 409 609 1107304 0004
c101.100 n/a n/a 103 108 82703 n/a
c102.100 800 82703 203 302 82703 0000
c103.100 1100 82603 600 804 82603 0000
c104.100 3100 82207 3008 4302 82209 0002
c105.100 800 82703 105 201 82703 0000
c106.100 1000 82703 108 205 82703 0000
c107.100 800 82703 200 208 82703 0000
c108.100 800 82703 205 305 82703 0000
c109.100 1000 82703 401 507 82703 0000

explores neighborhoods based on insertion and dele-
tion operators.

We coded our algorithm in Java, using Eclipse SDK
version 40300, and executed the experiments on a
laptop computer with an Intel Core i7-3537U CPU
(2 cores) running at 2 GHz with 512 MB of RAM allo-
cated to the memory heap size of the Java Virtual
Machine on Windows 8. It is worth highlighting that
we implemented a multithread version of the pulse
algorithm following the ideas outlined in Lozano and
Medaglia (2013), where a fixed number of threads are
triggered at node vs exploring different outgoing arcs
of vs in parallel. The code for the pulse algorithm
is publicly available on request. To solve the master
problem we used Gurobi 5.0.1 as the linear optimizer.

We tested our approach on the well-known
Solomon’s benchmark problems for the VRPTW.
These problems are organized in three categories:
the r-instances where customers are randomly dis-
tributed; the c-instances where customers are located
in clusters, and the rc-instances where some cus-
tomers are randomly located and others are clustered.
All problems have 100 customers and are divided into
two series depending on the tightness of the time
windows.

5.1. Embedding the Pulse Algorithm in a Column
Generation Scheme for the VRPTW

The approaches by Desaulniers, Lessard, and Hadjar
(2008) and Baldacci, Mingozzi, and Roberti (2011a)
both use the ESPPRC as a subproblem. Whereas
Desaulniers, Lessard, and Hadjar (2008) relied on a
standard column generation method based on sim-
plex; Baldacci, Mingozzi, and Roberti (2011a) pro-
posed a dual ascent heuristic to solve the master
problem. Desaulniers, Lessard, and Hadjar (2008) exe-
cuted their experiments on a Linux PC with a Dual
Core AMD Opteron processor running at 206 GHz
and Baldacci, Mingozzi, and Roberti (2011a) used an
IBM Intel Xeon X7350 server running at 2093 GHz
with 16 GB of RAM. Aside from the operating system
and programming language differences, according to
the LINPACK benchmark (Dongarra 2013), our lap-
top computer is approximately 104 times faster than
the computer used by Baldacci, Mingozzi, and Roberti
(2011a) and about 208 times faster than the one used
by Desaulniers, Lessard, and Hadjar (2008).

We conducted a few preliminary runs to fine-
tune the parameters of the pulse algorithm. After
these runs, we fixed ã = 10 and stopped the bound-
ing scheme with t = 002t̄. For the TS heuristic, we
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Table 2 Comparing the Pulse Algorithm Inside a Column Generation Scheme Against Baldacci, Mingozzi, and Roberti (2011a) on the Solomon
200-Series Benchmark Problems

Baldacci, Mingozzi, and Roberti (2011a) Column generation with pulse and TS

Instance Time (s) LB3 Time (s) Scaled time (s) Lower bound Bound improvement (%)

r201.100 1700 1114003 903 1300 1114003 0000
r202.100 2200 1102102 1800 2502 1102202 0010
r203.100 16500 86508 7204 10104 86609 0013
r204.100 19400 72402 13302 18604 72409 0010
r205.100 3100 93800 2503 3504 93809 0010
r206.100 7600 86603 4407 6206 86609 0007
r207.100 36800 78909 12705 17806 79007 0010
r208.100 2140500 69003 26603 37209 69200 0024
r209.100 5900 84006 4203 5902 84104 0010
r210.100 5700 88802 3404 4802 88904 0014
r211.100 21900 73401 7608 10706 73407 0008
rc201.100 1200 1125504 602 806 1125509 0004
rc202.100 1300 1108602 701 909 1108801 0017
rc203.100 2200 91905 3407 4805 92205 0033
rc204.100 45500 77804 32207 45107 77907 0017
rc205.100 1400 1114508 707 1008 1114706 0016
rc206.100 1600 1103707 1902 2609 1103806 0009
rc207.100 6200 94508 4208 5909 94703 0016
rc208.100 16800 76508 44109 61806 76607 0012
c201.100 n/a n/a 204 304 58901 n/a
c202.100 n/a n/a 16507 23109 58901 n/a
c203.100 n/a n/a 17306 24300 58807 n/a
c204.100 18200 58801 32303 45206 58801 0000
c205.100 n/a n/a 408 607 58604 n/a
c206.100 n/a n/a 406 605 58600 n/a
c207.100 n/a n/a 802 1104 58508 n/a
c208.100 n/a n/a 708 1009 58508 n/a

fixed Imax = 30, Rmax = 200, and saved the best 51000
columns generated at each call of the TS heuristic.

Tables 1 and 2 compare the pulse algorithm against
Baldacci, Mingozzi, and Roberti (2011a). They defined
four different bounding procedures based on differ-
ent relaxations of the routes. The bound obtained with
the ESPPRC as a subproblem is called LB3 and is
the one that we compare against. Column 1 shows
the name of the instance; columns 2 and 3 show the
total computing time in seconds and the bound LB3

reported by Baldacci, Mingozzi, and Roberti (2011a);
columns 4 and 5 present the total computing time for
our approach and the scaled time in seconds (in bold
if it is better than the benchmark); column 6 shows the
lower bound obtained using our approach; and col-
umn 7 presents the bound improvement in percent-
age (in bold if our bound is tighter than the bench-
mark). Values not reported by Baldacci, Mingozzi,
and Roberti (2011a) are shown in the tables as n/a.

For the Solomon 100-series our approach was faster
than Baldacci, Mingozzi, and Roberti (2011a) in 25 of
the 28 reported instances. The lower bounds are
tighter in the r-instances and the rc-instances (20
instances) and are the same for the c-instances (eight

instances). Besides, about 90% of the instances were
solved in less than 10 seconds.

For the harder instances in the Solomon 200-series
our approach was faster than Baldacci, Mingozzi, and
Roberti (2011a) in 13 of the 20 reported instances.
Once again, our bounds are tighter for the r-instances
(in 10 of 11 instances) and the rc-instances (in eight of
eight instances) and are the same for the c-instances
(one reported instance). Given the fast performance
of the pulse algorithm, our approach was able to find
tighter bounds than LB3 in less computation time.
Roughly 70% of these harder problems were solved
within one minute.

Desaulniers, Lessard, and Hadjar (2008) selected a
subset of 12 instances that are among the most diffi-
cult ones. They reported the time to solve the linear
relaxation at the root node and the bound obtained.
Table 3 shows the comparison of our approach against
Desaulniers, Lessard, and Hadjar (2008).

On the subset of hard Solomon instances, our
approach was faster than Desaulniers, Lessard, and
Hadjar (2008) in 10 of the 12 instances. The lower
bounds obtained are exactly the same, because both
approaches rely on an ESPPRC subproblem under a
traditional simplex-based column generation scheme.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

15
7.

25
3.

50
.5

0]
 o

n 
07

 A
pr

il 
20

16
, a

t 1
0:

20
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Lozano, Duque, and Medaglia: An Exact Algorithm for the ESPPRC
Transportation Science 50(1), pp. 348–357, © 2016 INFORMS 355

Table 3 Comparing the Pulse Algorithm Inside a Column Generation Scheme Against Desaulniers, Lessard, and Hadjar (2008) on a Subset of Hard
Solomon Benchmark Problems

Desaulniers, Lessard, and Hadjar (2008) Column generation with pulse and TS

Instance Time (s) Lower bound Time (s) Scaled time (s) Lower bound

rc104.100 36 1110108 606 1806 1110108
rc108.100 26 1107304 409 1307 1107304
r108.100 26 91305 704 2008 91305
r112.100 30 92607 705 2100 92607
rc203.100 95 92205 3407 9701 92205
rc206.100 68 1103806 1902 5308 1103806
rc207.100 148 94703 4208 11909 94703
r203.100 172 86609 7204 20208 86609
r205.100 97 93809 2503 7008 93809
r206.100 210 86609 4407 12502 86609
r209.100 181 84104 4203 11804 84104
r210.100 269 88904 3404 9603 88904

5.2. Measuring the Performance of the
Pulse Algorithm on the ESPPRC

We compared the average time it took the pulse
algorithm to solve the ESPPRC subproblems inside
the column generation scheme, against the average
time used by GENR to solve the ESPPRC subprob-
lems inside the H 3 bounding procedure by Baldacci,
Mingozzi, and Roberti (2011a). Table 4 shows the
results of this experiment. Column 1 presents the
name of the instance; column 2 shows the GENR aver-
age time in seconds and column 3 shows the pulse
average time in seconds (in bold if it is better than
the benchmark); and finally, columns 4 and 5 present
the best and worst running times for the pulse algo-
rithm. It is important to note that we did not code the
GENR algorithm, but Baldacci, Mingozzi, and Roberti
(2011a) generously shared their results with us.

It is worth highlighting that both algorithms solved
most of the instances within fractions of a second. In
20 of 29 instances, the pulse algorithm was faster than
GENR; and they tied in seven. The best/worst run-
ning times for the pulse algorithm are very close to
the average, indicating the robustness of the proposed
algorithm.

5.3. Assessing the Performance of the
Pruning Strategies

We performed an additional experiment to assess the
contribution of the proposed pruning strategies inside
the pulse algorithm embedded into the column gener-
ation scheme. Table 5 shows the results of this exper-
iment over the set of difficult instances defined by
Desaulniers, Lessard, and Hadjar (2008). Column 1
presents the name of the instance. Column 2 shows
the average total time in seconds for solving a sin-
gle ESPPRC subproblem. Columns 3 and 4 present
the average time spent inside the bounding step and
in the pulse function execution. Column 5 shows the
average number of paths that reached the end node.

Note that if the pruning strategies are strong, they
are likely to prune paths efficiently and few should
reach the end node. Finally, columns 6 to 8 present
the average number of paths pruned by each strategy.
The last line presents the geometric average for each
measure. Note that the geometric average is a fairer
comparison for the strategies since large/small values

Table 4 Comparing the Pulse Algorithm Against Baldacci, Mingozzi,
and Roberti (2011a) on ESPPRC Instances

GENR time (s) Pulse time (s)

Avg. Avg. Min. Max.

r101.100 < 001 0002 0001 0005
r102.100 001 0002 0001 0005
r103.100 001 0003 0001 0006
r104.100 003 0006 0005 0009
r105.100 < 001 0003 0001 0005
r106.100 001 0003 0001 0008
r107.100 001 0004 0003 0009
r108.100 003 0007 0004 0010
r109.100 001 0002 0001 0006
r110.100 001 0004 0003 0012
r111.100 001 0004 0003 0008
r112.100 002 0007 0006 0011
rc101.100 001 0002 0001 0005
rc102.100 002 0005 0002 0012
rc103.100 002 0005 0003 0010
rc104.100 004 0035 0031 0044
rc105.100 001 0002 0001 0005
rc106.100 002 0003 0001 0006
rc107.100 002 0007 0003 0014
rc108.100 002 0019 0016 0023
c101.100 < 001 0003 0001 0006
c102.100 < 001 0005 0003 0010
c103.100 002 0029 0019 0037
c104.100 005 1012 0067 1051
c105.100 < 001 0004 0001 0005
c106.100 < 001 0002 0001 0005
c107.100 < 001 0002 0001 0006
c108.100 002 0004 0001 0006
c109.100 003 0007 0004 0012
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Table 5 Assessing the Strength of the Pruning Strategies on a Subset of Hard Solomon Benchmark Problems

Paths pruned by (in thousands)

Instance Total time (s) Bound time (s) Pulse time (s) Complete paths (in thousands) Infeasibility Bounds Rollback

rc104.100 0035 0009 0026 249 101270 41830 17
rc108.100 0019 0008 0011 108 51165 11504 5
r108.100 0007 0004 0003 3 82 152 2
r112.100 0007 0006 0001 3 99 113 1
rc203.100 007 0068 0006 18 288 898 214
rc206.100 0014 0013 0001 1 8 39 13
rc207.100 0086 0084 0003 5 109 237 184
r203.100 2016 2011 0005 16 142 751 857
r205.100 0013 0012 0001 1 9 50 8
r206.100 0069 0066 0003 8 89 445 160
r209.100 0031 0029 0001 2 22 78 19
r210.100 0027 0026 0002 2 19 128 50
Geometric avg. 0030 0022 0003 6 114 273 25

on few instances do not have a great impact on the
measure as often happens with the arithmetic average
(Bixby 2002).

The geometric averages from Table 5 show that
most of the time is spent in the bounding stage of the
algorithm. However, the bounds pruning strategy is
also the strongest, followed by infeasibility and roll-
back pruning. Given the combinatorial hardness of
the problem, it is worth noting that just a few thou-
sand paths reach the end node, suggesting that the
pruning strategies are effectively pruning a vast num-
ber of solutions. Consequently, the instances where
large amounts of paths reach the end node are also
the ones that require more time to solve.

6. Conclusions and Future Work
Accelerating the solution of the ESPPRC is a crit-
ical aspect in current branch-and-price methodolo-
gies for multiple variants of the VRP. We present a
new exact algorithm for the ESPPRC that works well
when embedded inside a column generation scheme
that solves the linear relaxation (root node) of the
VRPTW. Comparing our approach against the algo-
rithms by Baldacci, Mingozzi, and Roberti (2011a)
and Desaulniers, Lessard, and Hadjar (2008) over the
Solomon’s benchmark problems, we found equal or
tighter bounds in less time for 38 of 48 instances and
for 10 of 12 instances, respectively. Moreover, in a
head-to-head comparison against the state-of-the-art
algorithm GENR by Baldacci, Mingozzi, and Roberti
(2011a), our algorithm solves the ESPPRC subprob-
lems faster on 20 of 29 instances. Nevertheless, both
GENR and the proposed pulse algorithm are able to
solve most of the problems in just a fraction of a
second. After assessing the strength of the proposed
pruning strategies, we found that the bounds strategy
is the main one responsible for the fast performance
of our algorithm.

Beyond the solution of the ESPPRC, the proposed
algorithm can be seen as a general framework that
can efficiently handle different shortest path prob-
lems. From this point of view, the framework could
be extended to include additional constraints to tackle
multiple variants of the VRP. The general idea is
that constraints are handled with additional pruning
strategies to effectively prune the solution space.

Future work includes embedding our approach
inside a branch-and-price algorithm for the VRPTW.
Work currently underway concentrates on extending
the pulse intuition to solve other complex VRP sub-
problems like those arising in the dial-a-ride prob-
lem, the orienteering problem with time windows,
and rich versions of the shortest path—like the one
with replenishment arcs.
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