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Abstract
In this variant of the robust shortest path problem, the cost of traversing an arc is

given by a discrete set of scenarios. The problem is then to find a (robust) path

that takes into account the information arising from the multiple cost realizations

of the possible scenarios. To account for a robust path, we adopt the bw-robustness

criterion, which ameliorates the dramatic role played by worst-case approaches.

Under this criterion, the parameter b represents a desirable upper bound for the

cost that the decision maker wants for most of the scenarios; while parameter w
strictly bounds the cost and represents a value that the decision maker is not willing

to exceed in any scenario. To solve the problem, we extend the pulse algorithm, a

general-purpose solution strategy that has been used on shortest path problems with

side constraints. The proposed algorithm compares favorably against an integer pro-

gramming approach both in terms of speed and scalability on networks with up to

39 377 nodes and 192 094 arcs.
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1 INTRODUCTION

The robust shortest path (RSP) problem is a generalization of the well-known shortest path problem that takes into account

the uncertainty on the parameters. Particularly, the cost of traversing an arc is no longer a fixed value, because it might not be

determined accurately in practical applications. Given this source of uncertainty, it is convenient to look for a robust solution that

accounts for the inherent variation of the cost of a path. There is no agreement among the concept of a robust path because there

are several ways to model the parameters’ uncertainty and to address their variability. Roy [22] presents different definitions of

robustness and discusses how these variants can be used in the wide area of operations research. Kasperski and Zieliński [11]

review recent results on robust discrete optimization.

Despite of the modeling approach or the robustness criterion, the RSP is known to be NP-hard [1, 8, 19, 25]. Murthy and

Her [18] proposed one of the first approaches to solve the RSP. To model uncertainty, they adopt a scenario approach in which

the cost of traversing an arc is given by a discrete set of scenarios. Using this characterization, they used dynamic programming

(DP) to solve the min-max shortest path problem—also known as the absolute robust shortest path (ARSP) problem—with a

label correcting algorithm that looks for a path that minimizes the maximum path cost among the scenarios. Yu and Yang [25]

studied the ARSP and the robust deviation shortest path problem (RDSP). In their work on the RDSP, they look for a path that

minimizes the maximum deviation between the cost of the path in a particular scenario and the cost of the shortest path of the

corresponding scenario. Montemanni and Gambardella [15] studied the RDSP, but they characterize the uncertainty over the

costs with interval data. Under this approach, the cost of each arc belongs to a non-negative interval of continuous values. To

solve the problem they proposed a ranking algorithm [15] followed by a sequel work where they used Benders’ decomposition

[16]. The work by Montemanni and Gambardella [15, 16] is based on the min-max and min-max regret view of robustness for
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combinatorial optimization problems which is thoroughly reviewed by Aissi et al. [1]. Gabrel et al. [8] reviewed both modeling

approaches (scenario approach and interval data) and adapted the bw-robustness criterion in the context of RSP (bw-RSP). It

is noteworthy to mention that the bw-robustness criterion was proposed earlier by Roy [22] in the wide context of operations

research and decision making. Under this criterion, the objective is to find a path with a cost that never exceeds an upper

bound (w) while complying with a desirable (not necessarily strict) cost bound (b) for most of the scenarios. They proposed

a mathematical formulation for each modeling approach and solved it with CPLEX. Pascoal and Resende [19] proposed three

algorithms for the RDSP, namely, a labeling, a ranking, and a hybrid algorithm (mixing both labeling and ranking). As an

alternative way to account for a robust solution, there are also bicriteria approaches that deal with the uncertain parameters.

Hasuike [10] uses fuzzy goals to find a path that minimizes the (mean) cost of a path and maximizes the range of a confidence

interval for the cost. The confidence interval is modeled with the mean and variance of the path, regardless of the underlying

probability distribution. Recently, Goerigk et al. [9] introduced two methods based on the concept of ranking robustness, an

approach based on a preference ranking of solutions. In solution ranking, every solution is assigned a degree of preference

in every scenario; whereas in objective ranking, solutions are ranked according to their objective value. They applied these

concepts to the shortest path problem on a real-world street network in the context of evacuation planning. Chassein et al. [4]

used the idea of data-driven robust optimization to find paths that optimize the worst-case performance over a wide range of

uncertainty sets containing arc cost scenarios. They present a case study with real traffic data from the city of Chicago (United

States).

In this work, we adopt the bw-robustness criterion adapted by Gabrel et al. [8] from Roy [22], by using a discrete set of

scenarios to model uncertain parameters (i.e., costs). To solve the bw-RSP, we extended a general-purpose framework for hard

shortest path problems [7]. The algorithm behind the framework was initially developed to handle (exactly) the constrained

shortest path problem [13], yet later extended to address other shortest path variants and applications [3, 6, 7, 12, 21]. To test the

algorithm, we conducted several experiments on networks with up to 39 377 nodes and 192 094 arcs, while considering up to

10 000 scenarios for each network. We performed a scalability experiment in which the algorithm compares favorably against

the integer-programming approach used by Gabrel et al. [8], providing ways to use the bw-robustness criterion in large-scale

instances under a data-driven robust optimization framework.

The rest of the article is organized as follows. Section 2 formally describes the RSP problem. Section 3 describes the

algorithm that solves (exactly) the RSP problem and shows in detail its core components. Section 4 presents the computa-

tional experiments against the state-of-the-art benchmark while addressing scalability. Finally, Section 5 concludes and outlines

future work.

2 PROBLEM STATEMENT

Under a scenario approach, the RSP problem is defined over a directed graph  = ( ,,), where  = {v1,… , vn} is the set

of nodes,  = {(i, j)|vi ∈  , vj ∈  , i ≠ j} is the set of arcs, and  = {1,… , r} is the set of scenarios. For each arc (i, j) ∈ ,

the non-negative weight ck
ij is the cost in scenario k ∈  of traversing arc (i, j) ∈ . The RSP is the problem of finding a path

 from the start node vs ∈  to the end node ve ∈  , that achieves a given robustness criterion. Henceforth, we use function

ck() to represent the cost of path  in scenario k ∈  , and c() = (c1(),… , cr()) is the vector comprised of the costs of

all scenarios. We denote by ij = {vi,… , v(p),… , vj} a partial path that starts at node vi ∈  , ends at node vj ∈  , and v(p)

represents the node at the p-th position of the sequence.

In this work, we adopted the bw-robustness criterion introduced by Roy [22] and applied by Gabrel et al. [8] to shortest path

applications. The idea behind this criterion is to take into account information revealed a priori by the decision maker or fed by

a data-driven framework. Under bw-robustness, the parameter b represents a desirable upper bound for the cost that the decision

maker wants for most of the scenarios; while parameter w strictly bounds the cost and represents a value that the decision maker

is not willing to exceed in any scenario (so it holds that b < w). Gabrel et al. [8] proposed the following 0-1 integer program

(IP) formulation for the bw-RSP:

max
∑
k∈

yk (1)

subject to, ∑
(i,j)∈

ck
ijxij ≤ w(1 − yk) + byk ∀k ∈  , (2)

∑
{j|(i,j)∈}

xij −
∑

{j|(j,i)∈}
xji =

⎧⎪⎨⎪⎩
1, i = s
0, i ∈  ⧵ {s, e}
−1, i = e

, (3)
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xij ∈ {0, 1} ∀(i, j) ∈ , (4)

yk ∈ {0, 1} ∀k ∈  , (5)

where yk is a binary variable that takes the value of 1 if the cost of the path is less than or equal to b in scenario k ∈  and takes

the value of 0, otherwise; and xij is the arc flow through arc (i, j) ∈ . The objective function (1) aims to maximize the number

of scenarios in which the cost of the robust path is below the target threshold b. Constraints (2) use variables yk to bound the

cost of the path for each scenario. Constraints (3) are the flow balance equations. Finally, constraints (4) and (5) state the binary

nature of the decision variables.

3 SOLUTION METHOD

To solve this problem we extended the pulse framework for hard shortest path problems presented in Duque et al. [7]. The

underlying algorithm in the framework follows a depth-first search recursive exploration of the graph [13]. To avoid a complete

enumeration of all paths in the graph, the algorithm uses pruning strategies to discard partial solutions (i.e., partial paths) that

would not lead to a feasible or an improved solution at early stages of the execution. This pulse propagating idea was initially

motivated by the constrained shortest path (CSP) problem [13], but it has been successfully extended to other hard shortest path

variants [3, 6, 7, 12, 21]. In this section, we present an overview of the algorithm and the pruning strategies that we extended

and developed to solve the RSP problem.

3.1 An overview of the pulse algorithm
The input of the pulse algorithm for the RSP are the graph , a start node vs, an end node ve, and the robustness parame-

ters b and w; and its output is a bw-robust path, if such a path exists. Algorithm 1 presents a pseudocode of the procedure.

The initialization procedure involves several executions (one per scenario) of a one-to-all single-objective shortest

path algorithm (see Section 3.2.1) and the pulse function invokes the recursive exploration accelerated by the pruning

strategies.

Algorithm 1 Pulse algorithm.

Require: , directed graph; vs, start node; ve, end node; b, robustness target value; w, robustness upper bound.

Ensure: ∗, a bw-robust path.

1:  ← {vs}
2: c() ← 0
3: initialization()

⊳ see Section 3.2.1
4: pulse(vs, , c())
5: return ∗

Given that the algorithm is based on the idea of a complete enumeration, an optimal solution is always found. By a pulse
we refer to a partial path si that holds the information related to the cumulative cost ck(si) for each scenario k ∈  . Due

to its recursive nature, the algorithm explores the network looking for feasible paths from the start node vs to the end node ve
following a depth-first search exploration. Every time a complete feasible solution is found, the primal bound (denoted by y
and globally stored) is updated and the algorithm backtracks to explore other paths. Similarly, every time that a partial solu-

tion is pruned, the algorithm backtracks to the previous node in the partial path and continues the exploration. Aside from

its simple intuition, the efficiency of the algorithm lies on its pruning strategies that allows us to perform an implicit enu-

meration by discarding suboptimal and infeasible solutions in advance. In particular, for the bw-RSP we propose two new

pruning strategies based on the bw-robustness criterion and extend the dominance pruning strategy from the pulse frame-

work. Algorithm 2 presents the pulse recursive function which receives as input parameters the node being visited vi, the

partial path si, and the cumulative cost of si in all scenarios c(si). Lines 1-3 of Algorithm 2 apply all the pruning strate-

gies to the incoming pulse (see Section 3.2); if the pulse is not pruned (i.e., all Boolean function checks return false), line

4 stores (if applicable) the information of the partial path (see Section 3.2.3) and in lines 5-8, the pulse propagates over all

nodes vj ∈Γ+(vi), where Γ+(vi) is the set of head nodes for the outgoing arcs from vi, adding cij to the cumulative costs, where

cij = (c1
ij,… , cr

ij).
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Algorithm 2 Pulse function.

Require: vi, current node; si, current path, c(si), cumulative costs for all scenarios.

Ensure: void
1: if ¬check_w_Robustness(vi, c(si)) then ⊳ see Section 3.2.1

2: if ¬check_b_Robustness(vi,si, c(si)) then ⊳ see Section 3.2.2

3: if ¬checkLabels(vi, c(si)) then ⊳ see Section 3.2.3

4: store(c(si))
5: for vj ∈Γ+(vi) do
6:  ′

sj ← si ∪ {vj}
7: c( ′

sj) ← c(si) + cij
8: pulse(vj,

′
sj, c( ′

sj))
9: end for
10: end if
11: end if
12: end if
13: return void

Algorithm 3 presents the pulse function when it is invoked over the end node. Once a pulse reaches the end node, a new

solution has been found, so the algorithm verifies if the new solution is better than the current lower bound y and updates the

current optimal solution ∗ accordingly. Note that 1k
e
() is an indicator function that takes the value of 1 if the cost of the path

 (ending at node ve) is less than or equal to b in scenario k ∈  and takes the value of 0, otherwise. In Section 3.2.2 we extend

this indicator function for partial solutions, that is, partial paths ending at any node vi.

Algorithm 3 Pulse function at the end node.

Require: ve, current node;  , current path; c(), cumulative costs for all scenarios.

Ensure: void
1: if

∑
k∈1k

e
() > y then

2: y ←
∑

k∈1k
e
()

3: ∗ ← 

4: end if
5: return void

3.2 Pruning strategies for the bw-robust criterion
3.2.1 Pruning by w-robustness
Parameter w is related with the feasibility of any path in the graph. The set of constraints (2) states that the cost of the path

is either below the target b (if yk takes the value of 1) or the bound w (if yk takes the value of 0). However, since b < w, the

cost of a path is bounded by w in every scenario. Based on the parameter w, we can prune a partial path si if ck(si) > w
for any scenario k ∈  , because the path will not reach the end node under the allowable cost bound. Moreover, we can

prune this path earlier by incorporating lower bounds on the cost for every scenario. To do so, we calculate the minimum

cost it takes from any node vi to reach the end node ve for each scenario. These lower bounds are denoted by ck(vi) and are

computed by running a one-to-all shortest path algorithm per scenario from the end node to all nodes on a reversed graph (i.e.,

′ = ( ,′,)|′ = {(j, i)|(i, j) ∈ }, c′kji = ck
ij, v′s = ve). Once we compute these lower bounds, we can safely prune a partial

path si if ck(si) + ck(vi) > w for any scenario, because completing this path with the best possible outcome is infeasible.

Algorithm 4 shows the w-robustness verification.

Algorithm 4 Pruning by w-robustness: check_w_Robustness(vi, c(si)).

Require: vi, current node; c(si), cumulative costs for all scenarios.

Ensure: boolean
1: prune ←false
2: for k ∈  and ¬prune do
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3: if ck(si) + ck(vi) > w then
4: prune ←true
5: end if
6: end for
7: return prune

This idea is an extension of the infeasibility pruning strategy presented by Lozano and Medaglia [13] for the CSP. Other

authors have proposed similar preprocessing procedures in the context of DP to solve other shortest path variants [5, 14, 17, 23,

24].

3.2.2 Pruning by b-robustness
Under the bw-robustness criterion, the objective is to maximize the number of scenarios in which the cost of the path is less

than or equal to b. For this reason, the algorithm keeps track of the best solution encountered so far and computes lower and

upper bounds on the objective function to determine whether a partial path is suboptimal or not. These bounds always relate to

the number of scenarios for which the cost target b is met.

Let y be a lower bound for the objective function (1), where 0 ≤ y ≤ ||. Also, let 1k
i
(si) be an indicator function that

takes the value of 1 if si ∈ k
i and 0, otherwise; where k

i is the set of all partial paths to vi such that si satisfies that

ck(si) + ck(vi) ≤ b in scenario k ∈  . With this indicator function, we can calculate an upper bound y(si) for any partial path

si as:

y(si) =
∑
k∈

1k
i
(si), (6)

where,

1k
i
(si) =

{
1, if si ∈ k

i

0, if si ∉ k
i
, (7)

k
i = {si|ck(si) + ck(vi) ≤ b}. (8)

Since we are looking for a path that maximizes (1), we can prune any partial path if y(si) < y because completing si
with the best possible path to the end in every scenario will not improve the lower bound, that is, the number of scenarios not

exceeding the cost of b. Additionally, if we find a path such that y = ||, there is no need to keep exploring the network because

there is proof that the algorithm has found an optimal solution because y is bounded by ||. Algorithm 5 shows b-robustness

verification.

Algorithm 5 Pruning by b-robustness: check_b_Robustness(vi,si, c(si)).

Require: vi, current node; si, partial path; c(si), cumulative costs for all scenarios.

Ensure: boolean
1: prune ← false
2: y(si) ←

∑
k∈1k

i
(si)

3: if y(si) < y then
4: prune ← true
5: end if
6: return prune

3.2.3 Pruning by labels
We use a set of labels to prove dominance relations over partial paths. For each node vi, we store a fixed number of labels Q,

each of them related to a partial solution that has already visited node vi. Labels at node vi are tuples that store the cost for each

scenario of partial paths, and are denoted by (vi) = {(c1
il,… , cr

il)|l = 1,… ,Q}, where ck
il is the cumulative cost of a partial

path to node vi in scenario k ∈  stored in the l-th label. We test dominance over a partial path si using the cumulative costs

for each scenario ck(si), that is, for an incoming partial path si, the algorithm checks if it is dominated (or not) by any label in

(vi). A partial path si is dominated (or at best is an alternative path) if a label (c1
il,… , cr

il) ∈ (vi) satisfies that ck
il ≤ ck(si)
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for all k ∈  . When a partial path is not pruned by any of the strategies, the algorithm stores the partial path as a label in an

empty slot of (vi) following a nondecreasing order according to the cost of the first scenario. If there are no empty slots, it

overwrites any (randomly selected) label. Algorithm 6 shows the dominance verification. Theorem 3.1 supports the correctness

of the pruning strategy.

Algorithm 6 Pruning by dominance: checkLabels(vi, c(si)).

Require: vi, current node; c(si), cumulative costs for all scenarios.

Ensure: boolean
1: prune ← false
2: for (c1

il,… , cr
il) ∈ (vi) do

3: if (c1
il,… , cr

il) ≤ c(si) then
4: prune ← true
5: end if
6: end for
7: return prune

Theorem 3.1. Let si be a partial path from node vs to node vi. If there exists a partial path  ′
si from node vs to node vi

such that for all scenario k ∈  , ck( ′
si) ≤ ck(si), then si can be pruned.

Proof. Let  = si ∪ ie and  ′ =  ′
si ∪ ie be two complete paths sharing the same ending path ie from node vi

to node ve. For all k ∈  , ck() = ck(si) + ck(ie) and ck( ′) = ck( ′
si) + ck(ie). Given that ck( ′

si) ≤ ck(si) for all

k ∈  , then ck( ′) ≤ ck() for all k ∈  . From Equation (6), the objective function value for both paths can be computed

as y( ′) and y(). Since ck( ′) ≤ ck() for all k ∈  , it is always true that y( ′) ≥ y() for any common ending path

ie, which means that si can be safely pruned. ▪

4 COMPUTATIONAL EXPERIMENTS

We tested our algorithm over six networks derived from the ones proposed by Beasley and Christofides [2] for the resource

constrained shortest path problem and two networks derived from the biobjective shortest path problem [20]. The first six

networks range from 100 to 500 nodes and from 990 to 4868 arcs, while the last two networks have up to 53 658 nodes and

192 094 arcs. For the smaller networks, we set the number of scenarios to 10, 100, 1000, and 10 000; whereas for the larger

networks, the number of scenarios takes the values of 10, 50, 100, 200, 500, and 1000. Although a larger number of scenarios

might represent better the uncertainty of the costs, we set the maximum number of scenarios to 1000 in the larger networks

to balance the computational requirements of storing the costs for all arcs. The arc costs were randomly generated following a

Gamma distribution Γ(𝛼ij,𝜃ij); the shape parameter 𝛼ij was randomly drawn from the set 𝛼ij ∈ {1,2,3}; and the scale parameter

was set by 𝜃ij = 𝛼ij/𝜇ij, where 𝜇ij is the nominal value of the arc generated by 𝜇ij∼U(1000, 3000). For each combination of

network and number of scenarios, we run six different setups varying the value of the parameters w and b in a similar fashion to

Gabrel et al. [8]. The purpose of this sensitivity analysis is to stress the algorithm under different tightness levels for constraint

(2) of the bw-RSP. The values for w and b were computed as follows:

w =
⎧⎪⎨⎪⎩

zworst

0.5zworst + 0.5zworst
EV

zworst
EV

,

b =

{
zbest + 0.5(w − zbest)
zbest + 0.8(w − zbest)

,

where zworst is the cost of the ARSP (i.e., zworst = min maxk∈
∑

(i,j)∈ck
ijxij), and is the tightest value that w can take. On the other

hand, zworst
EV is the cost of the worst scenario of the shortest path using the nominal values 𝜇ij which is a loose bound for w. To set

values for parameter b, we used a fixed value of w and zbest, which is the least cost of the shortest path among all scenarios. Note

that b has to be bounded by w, and even if w takes a very tight value, different values of b might lead to different (sometimes

alternative) solutions. To obtain zworst we executed a modified version of the algorithm that accounts for this robustness criterion.

We coded our algorithm in Java and compiled it using Eclipse SDK version 4.2.2. The computational experiments for

Sections 4.1, 4.2, 4.3.1, and 4.3.3 were performed on a computer with an Intel Xeon E5-2695 @2.4Ghz (10 cores); and for
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TABLE 1 Computational results for the instances derived from Beasley and Christofides [2]

IP Pulse

Network Nodes Arcs Scenarios Solved Avg. time (s) Max. time (s) Solved Avg. time (s) Max. time (s) Speedup

rcsp5 100 990 10 6/6 0.099 0.125 6/6 0.005 0.005 19

100 6/6 0.666 0.687 6/6 0.042 0.042 16

1000 6/6 11.484 11.576 6/6 0.178 0.178 65

10 000 6/6 246.843 258.838 6/6 2.080 2.081 119

rcsp7 100 999 10 6/6 0.197 0.374 6/6 0.005 0.005 42

100 6/6 2.707 8.783 6/6 0.021 0.023 126

1000 4/6 237.542 >600 6/6 0.183 0.191 >1298

10 000 3/6 482.828 >600 6/6 1.894 1.959 >255

rcsp13 200 2080 10 6/6 0.255 0.297 6/6 0.003 0.003 97

100 6/6 6.045 6.818 6/6 0.018 0.018 336

1000 6/6 151.257 253.782 6/6 0.189 0.190 800

10 000 0/6 600.000 >600 6/6 1.864 1.870 >322

rcsp15 200 1960 10 6/6 0.858 1.248 6/6 0.002 0.002 366

100 6/6 12.878 35.693 6/6 0.021 0.027 613

1000 3/6 402.022 >600 6/6 0.199 0.237 >2017

10 000 0/6 600.000 >600 6/6 2.097 2.185 >286

rcsp21 500 4847 10 6/6 2.714 4.789 6/6 0.003 0.003 898

100 6/6 19.999 32.479 6/6 0.029 0.030 689

1000 4/6 450.240 >600 6/6 0.264 0.273 >1708

10 000 0/6 600.000 >600 6/6 3.453 3.660 >174

rcsp23 500 4868 10 6/6 1.485 1.544 6/6 0.003 0.003 469

100 4/6 242.439 >600 6/6 0.035 0.044 >6958

1000 2/6 495.769 >600 6/6 0.305 0.391 >1627

10 000 0/6 600.000 >600 6/6 3.582 4.405 >168

104/144 144/144

Abbreviation: IP, integer program.

Section 4.3.2, we used an Intel Xeon E5-2673 v4 @2.3Ghz (8 virtual processors). In both machines, we allocated 32GB of RAM

to the memory heap of the Java virtual machine. The initialization procedure is executed in parallel cores since all one-to-all

single objective shortest path problems are independent from each other.

4.1 Performance and scalability against an IP-based approach
This experiment seeks to compare our algorithm against the IP formulation proposed by Gabrel et al. [8], which is to the best

of our knowledge, the only method available that solves the bw-RSP. In this experiment we used the six networks derived from

Beasley and Christofides [2], and fixed the number of scenarios and values for b and w as described above, for a grand total of

144 instances. We implemented the IP-based approach for the bw-RSP proposed by Gabrel et al. [8] in Gurobi 6.0.2 using the

Java interface and allocated 32GB of RAM. For both approaches, we set a time limit of 600 seconds to solve the problem.

Table 1 compares our algorithm against the IP approach. Columns 1-4 present the name of the network, the number of

nodes, the number of arcs, and the number of scenarios. Columns 5-7 present the performance metrics for the IP; where column

5 shows the number of instances solved to optimality out of the six setups, column 6 shows the average computational time, and

column 7 exhibits the maximum computational time among the six setups. Columns 8-10 present the same metrics for the pulse

algorithm. Finally, column 11 shows the speedup measured as the ratio of the average time of the IP approach to the average

time of the pulse algorithm.

The proposed pulse-based approach solved all instances faster than the IP approach. Note that the IP solves only 104 out of

144 instances (72%) within the time limit, yet taking longer computational times. The speedups of the average central processing

unit (CPU) times range from 16 to 6958 times faster, depending on the network and number of scenarios. As expected, regardless

of the network size, the computational time required to solve the problem increases as the number of scenarios grows for both

approaches. Nevertheless, the pulse-based algorithm scales better in CPU time than the IP when it comes to the network size

and the number of scenarios.
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FIGURE 1 Computational results for the road network of Washington D.C. (DC instances) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Computational results for the road network of Rhode Island (RI instances) [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Scalability of the pulse-based approach on larger networks
The second set of experiments aims to stretch the limits of the pulse-based algorithm on two large-scale networks derived

from the ones proposed by Raith and Ehrgott [20]. The first network corresponds to the real road network of Washington D.C.

(henceforth labeled DC) which is comprised of 9559 nodes and 39 377 arcs. The second network corresponds to Rhode Island

(henceforth labeled RI) which is comprised of 53 658 nodes and 192 084 arcs. The number of scenarios that we tested were|| ∈ {10, 50,100, 200,500, 1000}, and additional to the six setups that vary parameters b and w, we generated 30 random

origin-destination (OD) pairs for a total of 2160 instances.

Figures 1 and 2 show the computational results for all DC and RI instances. In the y-axis, the computational time is shown

in logarithmic scale, while the x-axis shows the number of scenarios. The boxplots show the minimum, maximum, median, and

quartiles of the computational time; and the red line indicates the overall average.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 Sensitivity analysis of parameters b and w on the RI instances with 1000 scenarios. Tightness parameters presented from tight (left) to loose

(right) values

For the DC instances, the average computational times range from 0.03 to 4.10 seconds depending on the number of sce-

narios; while the hardest instances with 1000 scenarios were solved by the pulse algorithm in less than 50 seconds. It is worth

noting that instances with 100 scenarios where solved within 1 second, and for the bulk of cases the solution obtained with

a larger number of scenarios did not change. This is the case for DC instances, where just 100 scenarios are enough to cap-

ture the cost uncertainty. For the RI instances, average times range from 0.19 to 69.32 seconds, while the hardest instance

was solved in less than 2000 seconds. For both networks it is expected that the computational time grows due to the num-

ber of shortest path problems to be solved in the initialization procedure and the complexity of the problem as it scales

in size.

4.3 Introspective assessment of the pulse algorithm
We conducted three analyses to better assess the performance of the pulse algorithm. First, we conducted a sensitivity analysis on

the values of the parameters b and w to identify whether the values of these parameters affect the performance of the algorithm.

Second, we conducted a sensitivity analysis on the number of labels per node to measure the impact on the performance and

the variability due to the nondeterministic behavior caused by the random overwriting of labels when the slots are full. Third,

we conducted an analysis on the relative effectiveness of the pruning strategies. For these analyses we used the 30 instances of

the RI network with 1000 scenarios, as these problems are the hardest ones.
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TABLE 2 Pulse variability of the CPU time measured by the coefficient of variation CV for 𝛾 = 1

Tightness parameter combination (w, b)

OD pair (w1, b1) (w1, b2) (w2, b1) (w2, b2) (w3, b1) (w3, b2) Average

1 0.0694 0.0364 0.0227 0.1042 0.0457 0.0905 0.0615

2 0.0286 0.0234 0.0136 0.0170 0.0133 0.0101 0.0177

3 0.0480 0.0737 0.0304 0.0678 0.0268 0.0751 0.0536

4 0.2017 0.0469 0.0168 0.0363 0.0329 0.0461 0.0635

5 0.0099 0.0323 0.0183 0.0216 0.0272 0.0178 0.0212

6 0.0269 0.0169 0.0217 0.0139 0.0531 0.0152 0.0246

7 0.0379 0.2549 0.0445 0.0557 0.0425 0.0550 0.0818

8 0.0180 0.0177 0.0066 0.0116 0.0088 0.0134 0.0127

9 0.0280 0.0049 0.0051 0.0112 0.0136 0.0104 0.0122

10 0.0153 0.0077 0.0089 0.0068 0.0095 0.0053 0.0089

11 0.0381 0.0308 0.0378 0.0239 0.0211 0.0276 0.0299

12 0.0484 0.0371 0.0340 0.0262 0.0299 0.0333 0.0348

13 0.0578 0.0563 0.0453 0.0643 0.0303 0.0546 0.0514

14 0.0999 0.0343 0.0547 0.0546 0.0458 0.0519 0.0569

15 0.0231 0.0215 0.0259 0.0140 0.0335 0.0174 0.0226

16 0.0414 0.0415 0.0329 0.0208 0.0663 0.0247 0.0379

17 0.0739 0.1254 0.0461 0.0338 0.0598 0.0503 0.0649

18 0.0505 0.0547 0.0281 0.0696 0.0590 0.0470 0.0515

19 0.0589 0.0360 0.0589 0.0494 0.0561 0.0482 0.0513

20 0.0719 0.0308 0.0603 0.0525 0.0443 0.0610 0.0535

21 0.0313 0.0247 0.0359 0.0331 0.0499 0.0280 0.0338

22 0.0591 0.0719 0.0470 0.0183 0.0342 0.0404 0.0452

23 0.0770 0.0684 0.2455 0.0452 0.0403 0.0915 0.0947

24 0.0233 0.0129 0.0268 0.0270 0.0169 0.0234 0.0217

25 0.0516 0.0560 0.0802 0.0720 0.0443 0.0319 0.0560

26 0.0483 0.0220 0.0539 0.0314 0.0532 0.0189 0.0380

27 0.0167 0.0232 0.0289 0.0651 0.0499 0.0257 0.0349

28 0.0523 0.0556 0.0658 0.0458 0.0558 0.0492 0.0541

29 0.0387 0.0349 0.0471 0.0264 0.0511 0.0353 0.0389

30 0.0809 0.0627 0.0475 0.0635 0.1421 0.0570 0.0756

Average 0.0509 0.0472 0.0430 0.0394 0.0419 0.0385 0.0435

4.3.1 Sensitivity on b and w
Figure 3 presents the computational time of the pulse algorithm without counting the initialization procedure. Each boxplot

is associated to a particular configuration of the value of b and w, where b1 = zbest + 0.5(w− zbest), b2 = zbest + 0.8(w− zbest),

w1 = zworst, w2 = 0.5zworst + 0.5zworst
EV , and w3 = zworst

EV .

Among the three values of w and the two values of b, the average time and standard deviation (SD) varies widely, however,

the median values are more alike. For the six setups, the median time falls within 0.1 and 1 second, and 75% of the instances

are solved in less than 10 seconds. It is worth noting, that as the b parameter becomes loose for a given w, the instances tend to

become slightly harder. Summarizing, the values of the parameters do affect the computational time, but for the large part of

the instances the computational time behavior is very similar.

4.3.2 Sensitivity on the number of labels Q
For this experiment, we parameterized the number of labels per node Q = 𝛾 ⋅ ||, where  is the set of scenarios and

𝛾 ∈ {0.5,1,1.5}. The base value for 𝛾 is 1, as this factor provides a number of labels with a stable behavior across all instances.

We conducted 10 independent replications for each of the 30 OD pairs of the RI instances, with the six parameter tightness

combinations described in Section 4.3.1 (namely, b ∈ {b1,b2} and w ∈ {w1,w2,w3}), and the three values of 𝛾 .

First, we address the variability of the computational time due to the nondeterministic behavior caused by the random

overwriting of labels. We fixed 𝛾 in 1 (i.e., Q = 1000), and for a given combination of b and w, we calculate the coefficient

of variation CV(t) = 𝜎(t)
𝜇(t) , where 𝜎(t) and 𝜇(t) are the SD and mean of the CPU times t comprised of the 10 replications of

the parameters’ combination, respectively. Values of the coefficient of variation larger than 1 indicate a sample with a large

variability. We computed the average coefficient of variation for each OD pair by calculating the mean over the six tightness
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TABLE 3 Impact on the increment of the number of labels 𝛾 = 1.5 (Q = 1500) measured by the slowdown with respect to the base case

Tightness parameter combination (w, b)

OD pair (w1, b1) (w1, b2) (w2, b1) (w2, b2) (w3, b1) (w3, b2) Average

1 0.99 0.98 1.00 0.94 1.03 1.05 1.00

2 1.06 1.10 1.03 1.15 1.03 1.16 1.09

3 1.02 0.98 1.03 0.99 1.00 0.97 1.00

4 0.96 0.99 1.05 1.01 0.99 1.03 1.00

5 0.99 1.01 1.01 1.01 1.00 1.03 1.01

6 0.99 1.01 1.00 1.01 0.97 1.03 1.00

7 0.97 0.98 1.01 0.99 0.99 1.03 0.99

8 1.05 1.06 1.03 1.10 1.05 1.12 1.07

9 1.35 1.41 1.20 1.37 1.21 1.34 1.31

10 1.14 1.23 1.12 1.23 1.09 1.24 1.17

11 1.00 0.99 1.00 0.98 1.01 0.98 0.99

12 0.91 0.95 0.96 1.02 1.02 1.00 0.98

13 1.04 1.01 1.03 1.01 1.06 0.94 1.02

14 0.87 1.00 1.11 1.04 1.19 0.98 1.03

15 1.02 1.03 1.02 1.07 1.01 1.04 1.03

16 0.98 0.97 1.04 0.98 0.97 0.99 0.99

17 1.06 1.03 0.91 0.95 1.11 1.10 1.03

18 0.97 0.97 0.99 0.96 1.04 1.02 0.99

19 1.13 0.97 1.01 0.98 0.97 0.98 1.01

20 0.99 1.03 0.98 1.03 0.97 0.99 1.00

21 1.02 1.02 1.00 1.01 0.98 1.01 1.01

22 0.99 0.97 0.98 0.94 1.07 1.13 1.02

23 0.91 0.98 0.83 0.94 1.07 0.99 0.95

24 1.03 1.11 1.03 1.07 1.00 1.09 1.06

25 0.96 1.06 0.99 0.92 0.95 1.08 0.99

26 1.00 1.00 0.98 0.99 0.99 1.01 1.00

27 1.09 1.06 0.98 1.03 0.99 1.05 1.03

28 0.96 0.98 1.05 0.96 0.97 0.96 0.98

29 1.00 1.00 0.98 1.00 0.99 0.97 0.99

30 1.07 0.98 0.97 1.00 0.90 1.12 1.01

Average 1.02 1.03 1.01 1.02 1.02 1.05 1.02

combinations. Also, we computed for each tightness combination, the average coefficient of variation over all pairs. Table 2

shows the lack of variability in terms of the coefficient of variation for the pulse algorithm, with values of CV consistently less

than one for each parameter combination and across OD pairs; and with an overall average CV of 0.0435. It is worth mentioning

that in the experiment we only timed the pulse component to isolate the random effect from the deterministic initialization.

Second, we address the choice of the number of labels Q and its impact on the computational performance. Tables 3 and 4

show the impact on the computational time when increasing and decreasing the number of labels with respect to the base case

𝛾 = 1 (Q = 1000), respectively. The metric we use is the average speedup with respect to the base case, that is, the ratio between

the average computational times using the base case as the denominator. Values larger (smaller) than 1 denote a slowdown

(speedup) with respect to the base case. We computed the average speedup for each OD pair by calculating the mean over the six

tightness combinations. Also, we computed for each tightness combination, the average speedup over all pairs. Table 3 shows a

slight slowdown that ranges from 0% to 4% for the tightness combinations across all OD pairs; and an overall average slowdown

of 2%, which is the computational price for using more labels (Q = 1500) than the base case. On the other hand, Table 4 shows

a slight speedup from 0% to 3% for the tightness combinations across all OD pairs; and an overall average speedup of 3% by

using less labels (Q = 500) than the base case.

To gain more insight, we now focus our analysis on the effect of the choice of the number of labels and tightness parameters

on a hard instance (OD pair # 10) that took more than 10 seconds on average to solve (only four OD pairs out of 30 meet this

criterion) across the six combinations of b and w. Figure 4 shows that regardless of the tightness settings, as we use more labels

the CPU time degrades. Note that given a parameter setting (b, w, and Q), the CPU time has a relatively low variability. This

instance also confirms what we have observed before, that is, as the parameter b becomes loose given a value of w, the problem

becomes harder.
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TABLE 4 Impact on the decrement of the number of labels 𝛾 = 0.5 (Q = 500) measured by the speedup with respect to the base case

Tightness parameter combination (w, b)

OD pair (w1, b1) (w1, b2) (w2, b1) (w2, b2) (w3, b1) (w3, b2) Average

1 0.93 1.03 1.03 0.93 0.99 1.01 0.99

2 0.91 0.82 0.96 0.76 0.94 0.75 0.86

3 1.00 1.04 1.06 1.00 1.02 0.99 1.02

4 0.90 1.17 1.00 0.99 1.05 1.03 1.02

5 0.98 0.99 0.96 0.94 0.98 0.91 0.96

6 1.01 0.95 1.00 0.96 0.97 0.96 0.98

7 1.00 0.98 1.03 1.36 1.00 1.15 1.09

8 0.88 0.86 0.92 0.83 0.88 0.81 0.87

9 0.67 0.65 0.74 0.63 0.72 0.65 0.68

10 0.81 0.75 0.84 0.76 0.84 0.75 0.79

11 1.00 1.00 1.02 1.00 1.01 0.99 1.00

12 0.94 0.99 1.02 1.00 1.01 1.01 0.99

13 0.96 1.00 1.02 1.02 1.05 0.97 1.00

14 0.94 1.08 1.09 1.06 0.98 0.98 1.02

15 1.00 0.93 1.00 0.92 1.04 0.90 0.96

16 1.00 1.02 0.99 0.98 1.01 1.00 1.00

17 1.01 0.95 0.96 1.07 1.11 1.12 1.04

18 0.99 1.02 0.98 0.96 1.06 1.01 1.00

19 0.99 0.94 1.03 1.00 0.94 0.98 0.98

20 1.01 1.04 0.97 1.00 0.97 0.99 0.99

21 0.99 0.98 1.03 0.94 0.99 0.94 0.98

22 1.02 0.97 0.99 0.95 0.99 1.11 1.00

23 1.00 0.99 0.87 0.93 1.10 0.97 0.98

24 0.91 0.84 0.97 0.89 0.96 0.87 0.91

25 1.00 1.07 1.01 0.98 1.05 1.07 1.03

26 1.01 1.00 1.02 1.00 1.01 1.01 1.01

27 0.88 0.87 1.02 0.86 1.01 0.94 0.93

28 1.01 1.01 1.01 0.97 0.93 1.00 0.99

29 1.04 0.99 1.01 0.98 1.04 1.00 1.01

30 1.10 1.05 1.01 1.00 0.96 0.99 1.02

Average 0.96 0.96 0.99 0.96 0.99 0.96 0.97

In summary, the proposed algorithm shows a stable behavior in terms of a low variability of the computing time, regardless of

the effect introduced by the random label replacement. By using few labels, both the lexicographic insertion and the dominance

test are fast. On the other hand, a few number of labels might work well for most instances, but not for the hardest ones. This

might cause the recursion stack to grow beyond the allocated memory. Although using a larger number of labels might become

slow, it is often a safe trade-off for solving hard instances. Nevertheless, on large-scale networks a disproportionate number of

labels might also cause the algorithm to exceed the allocated memory. It is important to calibrate the behavior of the algorithm

with a set of instances with a topology close to the problem at hand.

4.3.3 Relative effectiveness of the pruning strategies
For the third experiment, Figure 5 presents how frequent the pruning strategies are used in this assessment. In general, the

b-robustness pruning strategy is the most used strategy. On average, the algorithm relies on this strategy to prune 63% of the

paths, followed by the w-robustness pruning strategy with 25%, and labels pruning strategy with almost 12%. Nonetheless, this

analysis measures the relative effectiveness of strategies since pruning a path at an early stage might be more effective than a

very frequent pruning strategy at a latter stage.

5 CONCLUSIONS

In this work we extended the pulse framework for the RSP problem where the uncertainty of the costs is addressed with a

scenario approach in which a finite set of scenarios determine different realizations for the cost of each arc. To account for
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(A) (B) (C)

FIGURE 4 Sensitivity on w, b, and Q for the hard OD-pair # 10: A, tight (w = w1); B, half-tight (w = w2); and C, loose (w = w3) [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 5 Relative effectiveness of the pruning strategies

a robust path, we used the bw-robustness criterion as shown by Gabrel et al. [8]. With this criterion the solution depends on

two parameters that take into account a target value b and an upper bound for the cost of a path w. To tackle this particular

variant, we extended the pulse framework and pruning strategies presented by [13]. We modeled the upper bound of the path

cost as multiple resource constraints in the algorithm, and prune suboptimal paths by calculating upper bounds for the objective

function at hand.

We compared the proposed pulse-based algorithm against the integer program presented in Gabrel et al. [8]. The pro-

posed algorithm outperformed the IP-based approach with speedups of up to 6000 and solved mid-size instances with 10 000

scenarios in less than 5 seconds. In terms of scalability, our algorithm was able to solve all instances (38.5% more than the

IP-based approach) within the time limit, especially under a large number of scenarios. On the large-scale networks, the pro-

posed algorithm solved instances with up to 1000 scenarios in at most 2000 seconds for the largest network, yet achieving

average times below 70 seconds.

We performed an assessment of the proposed algorithm to analyze the impact of the input parameters on the computational

time and to evaluate the relative effectiveness of the strategies used in the algorithm. Although there are variations in the

computational time among different values of the parameters, most of the hardest instances are solved under 10 seconds. In

general, tighter instances in terms of w and b tend to be slightly easier than loose instances. The number of labels Q requires

an a-priori calibration. Small values tend to work well for most instances, but might not work for the hardest ones. On the

other hand, larger values tend to make the algorithm slower, but it often presents a safe compromise. In terms of the relative

effectiveness of the pruning strategies, the bounds-based strategy was the most frequently used while the least used was the

label-based strategy.

Research currently underway focuses on adapting the algorithm to other robustness criteria. We are also dealing with shortest

path variants in which the uncertainty is not defined by a set of scenarios, but a probability distribution. For this stochastic

variant, key challenges arise in the convolution of random variables and the bounds for the pruning strategies.

http://wileyonlinelibrary.com
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