
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

On an exact method for the constrained shortest path problem

Leonardo Lozano, Andrés L. Medaglia n

Centro para la Optimización y Probabilidad Aplicada (COPA), Departamento de Ingenierı́a Industrial, Universidad de los Andes, Cr 1E No. 19A-10, ML711, Bogotá, Colombia

a r t i c l e i n f o

Available online 16 July 2012

Keywords:

Constrained shortest path

Shortest path problem

Column generation

a b s t r a c t

The constrained shortest path (CSP) is a well known NP-Hard problem. Besides from its straightforward

application as a network problem, the CSP is also used as a building block under column-generation

solution methods for crew scheduling and crew rostering problems. We propose an exact solution

method for the CSP capable of handling large-scale networks in a reasonable amount of time. We

compared our approach with three different state-of-the-art algorithms for the CSP and found optimal

solutions on networks with up to 40,000 nodes and 800,000 arcs. We extended the algorithm to

effectively solve the auxiliary problems of a multi-activity shift scheduling problem and a bus rapid

transit route design problem tackled with column generation. We obtained significant speedups against

alternative column generation schemes that solve the auxiliary problem with state-of-the-art

commercial (linear) optimizers. We also present a first parallel version of our algorithm that shows

promising results.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a directed graph G¼ ðN ,AÞ, where N ¼ fv1, . . . ,
vi, . . . ,vng represents the set of nodes and
A¼ ði,jÞ9viAN ,

�
vjAN ,ia j

�
the set of arcs. For each arc ði,jÞAA

the nonnegative weights, cij and tij, represent the cost and
resource consumption incurred by traversing the arc. The con-
strained shortest path (CSP) problem consists of finding a path P
from a start node vsAN to an end node veAN that minimizes the
total cost, subject to not exceeding a maximum resource con-
sumption T. The CSP is known to be NP-Hard even for the case of
one resource [16].

Aside from its straightforward application (i.e., shortest path
subject to a time limit), the CSP and its variants naturally arise as
auxiliary problems in column generation schemes for air cargo
planning and routing [11], flight planning [18], crew pairing
[23,25], tail assignment problem in aircraft scheduling [20],
day-to-day crew operation [32], and crew rostering problems
[15], among others.

Some variants of the CSP include non-additive objective
functions [27], probability functions defined over the network
[2], forbidden paths [33], and replenishment arcs [30].

Solution strategies for the CSP can be classified into one of two
main categories: Dynamic Programming (DP) and Lagrangian
relaxation. Methods based on DP are also known as label-setting

or label-correcting algorithms. Perhaps the most distinctive
feature of these algorithms is that they can be extremely fast
for reasonably sized networks; however, they might fail to scale
well for very large networks due to the ‘‘curse of dimensionality’’
of DP, more specifically, the number of labels that need to be
stored can be huge and, consequently, impossible to manage. One
of the first algorithms in this category is the one proposed by
Joksch [22], lately extended by Dumitrescu and Boland [13] by
including preprocessing techniques. More recently, Zhu and
Wilhelm [34,35] developed a three-stage approach specialized
for column generation subproblems that transforms the CSP into
a shortest path problem and solves it using a labeling method.

The second major solution approach for the CSP is based on the
use of Lagrangian relaxation to solve the integer programming
formulation of the problem. The efficiency of this approach relies
on the effectiveness of the underlying unconstrained shortest
path algorithms. Handler and Zang [21] solved the CSP by using a
k-th shortest path algorithm; that is, they identify k paths, sort
them by length, and evaluate them successively until they find
the first path that satisfies the (side) constraint. The same authors
also proposed a Lagrangian relaxation approach that can be seen
as a generalization of the k-shortest path algorithm for the CSP,
that is, a method that searches in a direction that (linearly)
combines the information of the original objective and the (side)
constraint. Santos et al. [29] extended this idea by refining the
search direction based on the relative tightness of the (side)
constraint. More recently, Carlyle et al. [5] used Lagrangian
relaxation combined with enumeration of near-shortest paths.

This research aims to expand the body of knowledge of the
CSP. Specifically, it proposes an exact algorithm that consistently

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cor.2012.07.008

n Corresponding author. Tel.: þ57 1 3394949x2880; fax: þ57 1 3324321.

E-mail address: amedagli@uniandes.edu.co (A.L. Medaglia).

URL: http://wwwprof.uniandes.edu.co/~amedagli (A.L. Medaglia).

Computers & Operations Research 40 (2013) 378–384

Author's personal copy

outperforms three state-of-the-art algorithms, namely, those by
Santos et al. [29], Zhu and Wilhelm [35], and Dumitrescu and
Boland [13], over a vast set of instances from the literature. In
addition and most importantly, the proposed approach provides a
flexible solution framework that can be easily parallelized and
extended to include multiple side constraints and negative costs.

This paper is organized as follows. Section 2 presents a broad
overview of the proposed pulse algorithm, focusing on its intui-
tion. Section 3 provides detailed description of the algorithm’s
components. Section 4 presents our computational experience
with the proposed algorithm against the state-of-the-art algo-
rithms for the CSP. Section 5 illustrates our experience while
embedding the algorithm within column generation schemes.
Finally, Section 6 concludes the paper and outlines future
extensions.

2. The pulse algorithm: intuition and overview

The idea behind the pulse algorithm is very simple, almost
naive, yet very powerful. The algorithm is based on the idea of
propagating pulses through a network from a start node vsAN to
an end node veAN . As a pulse traverses the network from node to
node, it builds a partial path P including the nodes already
visited, the cumulative objective function cðPÞ and the cumulative
resource consumption tðPÞ. Each pulse that reaches the final node
ve contains all the information for a feasible path P from vs to ve.
If nothing prevents the pulses from propagating, the algorithm
completely enumerates all possible paths from vs to ve, ensuring
that the optimal path Pn is always found. At the core of the
algorithm lies the ability to (effectively and aggressively) prune
pulses (i.e., prevent their propagation), without jeopardizing the
optimal path. This idea is shared with other algorithms like
branch and bound, where an implicit enumeration is performed
with relative efficiency. Similarly, the strength of the pulse
algorithm depends on the pruning strategies; in our case for the
CSP, pruning by dominance, bounds, and infeasibility.

Algorithm 1 presents the pseudocode of the pulse algorithm.
Lines 1 through 3 initialize the partial path P, the initial objective
function c0, and the initial resource consumption t0. Line 4 runs a
one-to-all shortest path algorithm to find the minimum resource
consumption for every node (see Section 3.2). Line 5 invokes the
recursive function pulse starting the propagation from node vs.
Line 6 returns the optimal path Pn found in the recursion.

Algorithm 1. Pulse algorithm.

Input: G, vs, ve, T

Output: Optimal path Pn

1:P’fg
2: c0’0
3: t0’0
4:initializationðG,TÞ fsee Section 3:3g
5:pulseðvs,c0,t0,PÞ
6: return Pn

Algorithm 2 shows the body of the recursive function pulse,
where N ðvkÞ ¼ viAN 9ðk,iÞAA

��
is the set of head nodes of the

outgoing arcs from node vk. Each time the function pulse is
invoked on the final node ve, the information for the best path
known is stored globally and the pulse is no longer propagated.
Lines 1 through 3 use the different pruning strategies in order to
prune the incoming pulse. If the pulse is not pruned, line 4 adds
the current node to the partial path and lines 5 through 9 propa-
gate the pulse by recursively invoking the function pulse on all
nodes viAN ðvkÞ.

Algorithm 2. Pulse function.

Input: vk, c, t, P
Output: void
1: if checkDominanceðvk,c,tÞ ¼ false then fsee Section 3:1g
2: if checkFeasibilityðvk,tÞ ¼ true then fsee Section 3:2g
3: if checkBoundsðvk,cÞ ¼ false then fsee Section 3:3g
4: P0’P [fvkg

5: for viAN ðvkÞ do
6: c0’cþcki

7: t0’tþtki

8: pulseðvi,c
0,t0,P0Þ

9: end for
10: end if
11: end if
12: end if

Note that the way the pulse algorithm explores the graph
follows a depth-first search (DFS) exploration scheme truncated
by the pruning strategies. An illustrative animation of the algo-
rithm is available at http://hdl.handle.net/1992/1144.

3. Pruning strategies

The pulse algorithm heavily depends on the strength of its
pruning strategies. This section outlines the different strategies
implemented for the CSP. It is noteworthy that given that all
weights defined over the arcs are nonnegative, the optimal
path must be an elementary path that contains no cycles.
Whenever the function pulse is invoked on a node vk, the
algorithm verifies if visiting node vk creates a cycle in the partial
path P associated with the pulse. This verification is performed in
constant time using a binary vector that keeps a record of the
nodes already visited. Paths containing cycles are not considered
in the search.

3.1. Pruning by dominance

Dominance relationships can be defined over partial paths as
done in DP-based algorithms that extend Bellman-Ford’s cf. [24].
Let P1 and P2 be two partial paths to a given node vk. If
cðP1Þ4cðP2Þ and tðP1Þ4tðP2Þ then P1 is said to be strongly
dominated by P2. If cðP1Þ4cðP2Þ and tðP1ÞZtðP2Þ or
cðP1ÞZcðP2Þ and tðP1Þ4tðP2Þ then P1 is said to be (weakly)
dominated by P2. If cðP1Þ ¼ cðP2Þ, tðP1Þ ¼ tðP2Þ, and P1aP2 then
P1 and P2 are alternative paths to node vk.

Given these relations, we use labels to check for strong
dominance, (weak) dominance, or the existence of alternative
paths. For each node vkAN we define a limited memory

LðvkÞ ¼ ðckl,tklÞ9l¼ 1, . . . ,Q
��

where ckl and tkl are the cost and
resource consumption labels, respectively; and Q denotes the
total number of labels (i.e., memory size). At first glance, it seems
reasonable to store all the values for cðPÞ and tðPÞ corresponding
to the paths that have passed through a given node vk, so that it is
possible to prune any incoming pulse in case it is dominated.
However, this exhaustive approach would require huge amounts
of memory to store the values for all partial paths in large
networks, ultimately, forcing the method to fail in terms of
scalability. In contrast, by choosing a limited memory of Q labels
(per node), it is possible that some dominated paths may
inefficiently pass through node vk, but still the optimal solution
is never pruned (just dominated paths).

In contrast to a classical DP approach, it is noteworthy that
these labels are not constantly expanding, nor the optimality

L. Lozano, A.L. Medaglia / Computers & Operations Research 40 (2013) 378–384 379

Author's personal copy

depends on storing them all. We evaluated the impact of different
storage rules and values of Q on the computational performance
of the pulse algorithm. We tried the following storage rules: (1) to
randomly replace a pair of labels each time a new nondominated
path is found (random rule); (2) to always keep the labels with the
lowest cost and resource consumption (elitist rule); and (3) to use
a distance metric to rank the labels and keep always a diversified
(heterogeneous) label set (diversified rule). For the latter rule, we
have borrowed the crowding distance from NSGA-II [9], where it
is used as a parameter-less approach to preserve a diversified
population in the approximate Pareto frontier. We defer until
Section 4 the discussion regarding the computational efficiency of
these rules. In summary, these labels prune dominated partial
paths, yet they consume a reasonable (and limited) amount of
memory.

3.2. Pruning by infeasibility

The idea of this strategy is to prune pulses at an early stage, as
soon as it is known that the traveling pulse will not be able to
reach the final node meeting the (side) constraint. To do so, it is
necessary to calculate the minimum resource consumption from
any node vk to the final node ve. To obtain this information
we reverse the original network (i.e., change the direction of
all arcs) creating a new directed graph G0 ¼ ðN ,A0Þ where
A0 ¼ ðj,iÞ9ði,jÞAA

��
and the weights are set to c0ji ¼ cij and t0ji ¼ tij

for ðj,iÞAA0. The new start node is the original end node v0s ¼ ve.
Next, we run a one-to-all shortest path algorithm to find the
minimum resource consumption from the initial node to all other
nodes in graph G0. This is equivalent to find the minimum
resource consumption tðvkÞ from any node vk to the final node
ve in the original network. Then, we set the maximum resource
consumption tðvkÞ for a partial path up to any given node vk to
tðvkÞ ¼ T�tðvkÞ. That is, if for a partial path P to node vk it is
known that tðPÞ4tðvkÞ, then partial path P is infeasible because
tðPÞþtðvkÞ4T . The procedure to find all the tðvkÞ values is done
as part of the initialization of the algorithm.

This pruning strategy shares the same spirit of similar algo-
rithms that have been used to reduce the size of the original
network, but it does it in a much simpler way. In contrast to the
preprocessing phases of the algorithms by Dumitrescu and Boland
[13] and Zhu and Wilhelm [35], where they use iterative proce-
dures that calculate forward and backward shortest paths for all
nodes and modify the original graph by deleting nodes and arcs,
we only use a backward one-to-all shortest path algorithm for
obtaining the lower bounds on the resource consumption. Gro-
micho et al. [19] also propose a similar idea to restrict the state
space in a DP context by using a feasibility check before extending
the labels, but without the look-ahead component of our lower
bounds.

The strength of this pruning strategy relies on the fact that it
prunes infeasible partial paths at early stages of the exploration.
For problems where the resource constraint is very tight, the
algorithm takes advantage of this (early) aggressive pruning to
explore the network fast, yet ensuring that the optimal solution is
never pruned (only infeasible paths).

3.3. Pruning by bounds

This pruning strategy is inspired on the power of primal and
dual bounds in branch and bound. These bounds store the best
objective function found (primal bound) and the most optimistic
information made available at the unexplored nodes (dual
bound).

Every time a pulse reaches the last node ve, a feasible path is
generated and the primal bound c may be updated with the best

known objective function value. Given that all costs are nonnega-
tive, if a partial path P exceeds the primal bound, that is cðPÞZc ,
this path can be safely pruned because another path with a lower
(or equal) total cost has already been found. Furthermore, we
derived a bound on the minimum cost cðvkÞ from any node vk to
the final node ve, following a similar procedure to the one used for
tðvkÞ. Again, it is necessary to reverse the network and use a one-
to-all shortest path algorithm to minimize the cost from the first
node v0s ¼ ve in the reversed network to any other node vk; this is
equivalent to find the minimum cost cðvkÞ from any node vk to ve

in the original network. As this shortest path algorithm does not
take into account the resource consumption, the values cðvkÞ are a
dual bound on the real minimum cost subject to the resource
constraint. Given a partial path P to node vk, if cðPÞþcðvkÞZc ,
then path P can be safely pruned because the algorithm has
already found a complete feasible path that is better (or equal)
than any complete path that includes the partial path P. The
procedure to find all the dual bounds cðvkÞ is done as part of the
initialization of the algorithm. The use of the dual bound strength-
ens the algorithm at the expense of a single run of a one-to-all
shortest path algorithm. It is worth mentioning, that similar
bounds have been used by An-based shortest path algorithms [26].

4. Computational experiments for the CSP

In this section we compare the pulse algorithm against the
algorithms by Santos et al. [29], Zhu and Wilhelm [35], and
Dumitrescu and Boland [13] on a wide range of benchmark
problems from the literature. The proposed algorithm was imple-
mented in Java, compiled using Eclipse SDK version 3.4.2, and the
experiments executed on a computer with an Intel Mobile Core
2 Duo @ 2.4 GHz CPU P8600 with 512 MB of RAM allocated to the
memory heap size of the Java Virtual Machine on Windows XP
Professional. The shortest path problems were solved using our
Dijkstra’s double buckets implementation adapted from Cher-
kassky et al. [6].

Regarding the pruning by dominance strategy, a mixture
between the random and elitist storage rules (with three labels)
was proven to be both fast and effective. At each node we keep a
first nondominated label that is overwritten every time that a
partial path exhibits a lower cost than the one stored, a second
nondominated label that is overwritten every time that a partial
path exhibits a lower resource consumption than the one stored,
and a third nondominated label that is replaced randomly.

4.1. Experiments on large-scale instances (with one side constraint)

We used the exact same benchmark problems used by Santos
et al. [29]; a testbed that comprises 180 instances organized in
three groups. The first group contains the smaller instances with
9N 9¼ 10,000 and 9A9¼ 15,000, 25,000, 50,000, 100,000, 150,000,
and 200,000; the second group contains the middle-sized
instances with 9N 9¼ 20,000 and 9A9¼ 30,000, 50,000, 100,000,
200,000, 300,000, and 400,000; and the third group contains the
larger instances with 9N 9¼ 40,000 and 9A9¼ 60,000, 100,000,
200,000, 400,000, 600,000, and 800,000. For each 9N 9�9A9 com-
bination in each group, there are 10 different instances. Further-
more, Santos et al. [29] define the maximum resource
consumption T based on the tightness of the constraint denoted
by p and defined as follows:

p¼
T�tðPn

t Þ

tðPn

c Þ�tðPn

t Þ

where Pn

c and Pn

t are the paths that minimize cost and resource
consumption, respectively; and tðPÞ is the resource consumption

L. Lozano, A.L. Medaglia / Computers & Operations Research 40 (2013) 378–384380

Author's personal copy

for a given path P. Each one of the 180 instances was solved
setting p¼0.1, 0.2, 0.4, 0.6, and 0.8, thus leading to a total of 900
runs of the pulse algorithm. Note that pA ½0,1�; and low (high)
values of p mean that the resource consumption constraint is
tight (loose).

Table 1 compares the results of the pulse algorithm against the
Lagrangian relaxation algorithm (LRA) proposed by Santos et al.
[29] over different values for the tightness of the resource
constraint (namely, parameter p). The instances are organized
by rows in three categories (i.e., small, medium, and large-sized
instances) based on the number of nodes and arcs (columns 1 and
2). Columns 3–7 show, for the different values of p, the average
execution time (in seconds) for the pulse algorithm, the average
execution time as reported by Santos et al. [29], and the speedup
calculated as the ratio between the execution times. Finally, the
last row reports the geometric mean of the speedups. Note that
the geometric mean, opposed to the arithmetic mean, avoids
being overly optimistic with large ratios obtained on few instance
sizes (node-arc combination), thus it provides a fairer comparison
of speedups [3]. For the sake of fairness we scaled our computa-
tion times using the LINPACK benchmark [12]. According to this
benchmark, our computer is approximately 2.1 times faster than
the one used by Santos et al. [29], so all the reported times were
scaled by this factor.

The results presented in Table 1 show that the pulse algorithm
consistently outperforms LRA in every instance, regardless of the
constraint tightness. Speedups range from 16 to 60 while the
geometric mean shows that the pulse algorithm is consistently
roughly 40 times faster than LRA. In terms of absolute computing
time (not scaled), the pulse algorithm solved all the small net-
works in less than 0.1 s, the middle-sized networks in less than
0.15 s, and the large networks in less than 0.3 s. Profiling our
algorithm we found that most of the computational time for these
instances is spent at the initialization.

4.2. Experiments on small and mid-sized instances (with multiple

side constraints)

Zhu and Wilhelm [35] present two sets of instances adapted
from Beasley and Christofides [1] that range in size from 100
nodes and 959 arcs to 500 nodes and 4978 arcs. The problems in

the first set consider one resource constraint while those in the
second set consider 10 resource constraints. For each problem in
Beasley and Christofides [1], Zhu and Wilhelm [35] build 100
random instances with different arc costs, for a total of 600
instances per set. Zhu and Wilhelm [35] extended the label-setting
algorithm (LSA) of Dumitrescu and Boland [13] to handle multiple
resources and used it as benchmark algorithm for their own three-
stage approach (TSA). Given that TSA is intended for solving
multiple subproblems under a column generation scheme, Zhu
and Wilhelm [35] define a threshold as the number of instances
(i.e., subproblems) solved with the benchmark algorithm required
to match the total time spent by TSA, including its preprocessing
procedures. If under a column generation scheme, it happens that
the number of subproblems to be solved is larger than the
threshold, it means that it is worth using TSA over the benchmark
algorithm. Zhu and Wilhelm [35] define the threshold as follows:

tðTSA,�Þ ¼

t1
TSAþt2

TSA

t ��t
3
TSA

& ’
if t �4t

3
TSA

1 if t �rt
3
TSA

8>><
>>:

where t1
TSA and t2

TSA are the times it takes TSA to complete stages
1 and 2 of the preprocessing procedure at the beginning of the
column generation scheme; and t

3
TSA and t � are the average times it

takes a single run of the stage 3 of TSA and the benchmark
algorithm (�). Note that if the average time of the benchmark
algorithm (�) is less than the average time of stage 3 of TSA, it is
said that the benchmark algorithm outperforms TSA regardless of
the number of subproblems to be solved, thus the threshold
tðTSA,�Þ91.

Table 2 compares the pulse algorithm with LSA and TSA on the
exact same set of instances by Zhu and Wilhelm [35]. We
extended the pulse algorithm to handle multiple resources but
to keep the computational budget under control, we obtained
lower bounds with the one-to-all shortest path for the cost and
just one resource, while for the other resources the lower bounds
were set to zero. Columns 1–4 show the instance, number of
resource constraints, number of nodes, and number of arcs,
respectively. Columns 5 and 6 present the average execution
time to solve each subset of 100 instances for LSA and for the
pulse algorithm. Column 7 exhibits the speedup achieved with

Table 1
Computational results for the Santos et al. [29] instances.

Nodes Arcs p¼0.1 p¼0.2 p¼0.4 p¼0.6 p¼0.8

Pulse LRA Speedup Pulse LRA Speedup Pulse LRA Speedup Pulse LRA Speedup Pulse LRA Speedup

10,000 15,000 0.01 0.60 60.00 0.01 0.60 60.00 0.01 0.60 60.00 0.01 0.60 60.00 0.01 0.60 60.00

10,000 25,000 0.02 0.70 35.00 0.02 0.70 35.00 0.02 0.70 35.00 0.02 0.70 35.00 0.02 0.70 35.00

10,000 50,000 0.02 1.10 55.00 0.02 1.10 55.00 0.02 1.10 55.00 0.02 1.10 55.00 0.02 1.10 55.00

10,000 100,000 0.04 1.80 45.00 0.05 1.80 36.00 0.04 1.80 45.00 0.05 1.80 36.00 0.04 1.80 45.00

10,000 150,000 0.07 2.50 35.71 0.06 2.50 41.67 0.07 2.50 35.71 0.07 2.60 37.14 0.06 2.80 46.67

10,000 200,000 0.07 2.70 38.57 0.14 2.70 19.29 0.16 2.70 16.88 0.10 2.80 28.00 0.08 2.80 35.00

20,000 30,000 0.02 1.20 60.00 0.02 1.20 60.00 0.02 1.20 60.00 0.02 1.20 60.00 0.02 1.20 60.00

20,000 50,000 0.03 1.50 50.00 0.03 1.50 50.00 0.03 1.50 50.00 0.03 1.50 50.00 0.03 1.50 50.00

20,000 100,000 0.06 2.30 38.33 0.06 2.30 38.33 0.06 2.30 38.33 0.06 2.30 38.33 0.06 2.40 40.00

20,000 200,000 0.11 3.70 33.64 0.09 3.70 41.11 0.09 3.70 41.11 0.09 3.80 42.22 0.12 3.90 32.50

20,000 300,000 0.17 4.80 28.24 0.14 4.80 34.29 0.15 4.90 32.67 0.15 4.90 32.67 0.19 5.00 26.32

20,000 400,000 0.17 5.90 34.71 0.22 5.90 26.82 0.28 5.90 21.07 0.23 6.00 26.09 0.18 6.20 34.44

40,000 60,000 0.05 2.40 48.00 0.05 2.40 48.00 0.05 2.40 48.00 0.05 2.40 48.00 0.05 2.40 48.00

40,000 100,000 0.08 3.00 37.50 0.08 3.00 37.50 0.08 3.00 37.50 0.08 3.10 38.75 0.08 3.10 38.75

40,000 200,000 0.12 4.90 40.83 0.12 4.90 40.83 0.12 4.90 40.83 0.12 5.00 41.67 0.12 5.10 42.50

40,000 400,000 0.21 7.70 36.67 0.22 7.70 35.00 0.26 7.80 30.00 0.22 8.00 36.36 0.21 8.30 39.52

40,000 600,000 0.29 10.70 36.90 0.34 10.70 31.47 0.31 10.90 35.16 0.31 11.20 36.13 0.31 11.70 37.74

40,000 800,000 0.39 13.00 33.33 0.47 13.10 27.87 0.52 13.40 25.77 0.55 13.80 25.09 0.43 14.40 33.49

Geometric mean 40.32 38.41 37.26 41.22 41.10

L. Lozano, A.L. Medaglia / Computers & Operations Research 40 (2013) 378–384 381

Author's personal copy

the pulse algorithm, that is, how many times faster is the pulse
over LSA. Columns 8 and 9 present the time used in preprocessing
and stage 3 for TSA. Column 10 shows the threshold that
compares the pulse algorithm with TSA, namely, the number of
runs (subproblems) that could be solved with the pulse, before it
starts to pay off to use TSA. Finally, column 11 shows the
threshold that compares LSA with TSA. Zhu and Wilhelm [35]
coded their algorithms in C/Cþþ and executed their experiments
on an Intel 3.2 GHz dual core CPU with 2 GB of RAM. Given that
their computer is better than ours, we assumed this handicap by
not scaling our times.

For the first set of instances (with one resource constraint),
Table 2 shows that the pulse algorithm consistently outperforms
LSA in all the experiments, with speedups ranging from 5.1 to 8.3.
The pulse algorithm dominated TSA in 4 out of 6 experiments
(denoted by the threshold of 1), meaning that regardless of the
number of subproblems solved, the total execution time of the
pulse algorithm will always be less than that of TSA. For those two
instances without proof of dominance by the pulse, the threshold
value gives the pulse a comfortable margin of at least 236
subproblems. In terms of absolute computing time, all the
experiments were solved under 0.0012 s in average. For the
second set of instances (with 10 resource constraints) the pulse
algorithm significantly outperforms LSA reaching speedups of up
to 900 times in the largest instances. It also compares favorably
with TSA, achieving threshold values of up to 17,700 and solving
all the experiments under 0.014 s. Over both sets of instances, the
threshold value obtained with the pulse is several orders of
magnitude larger than the one obtained with LSA.

4.3. Parallelizing the pulse algorithm

Given that the recursive pulse function explores one node at a
time until it reaches the end node, it is possible to call the
function over different nodes in parallel threads taking special
care on how to update the global information. We parallelized the
execution of the pulse algorithm by triggering at node vs different
threads that begin the exploration starting from the outgoing
arcs. Two different threads cannot execute the same functions
over the same node at the same time, if this happens, one thread
must wait for the other to finish. In order to test our approach, we
used the hardest instance (40,000 nodes and 800,000 arcs) from
Santos et al. [29] and derived 10 new instances by randomly
replacing the end node. Table 3 shows the execution time in
seconds required to solve the instances with 1, 2, 4, and 8 threads.
The last column shows the speedup calculated as the ratio
between the best multi-thread approach and the single-thread
approach. For this experiment we used a machine with two

processors Intel Xeon X5450 running at 3 GHz, 8 GB of RAM,
and a 64-bit Windows Vista Ultimate operating system.

Table 3 shows that the parallel version of the pulse algorithm
is faster than the single-thread version for all the tested instances.
The speedups range from 1.12 to 1.98. These promising speedups
might be the result of obtaining tighter primal bounds earlier by
exploring different regions of the network at the same time in
different threads. However, further experimentation must be
made in order to fully exploit and understand the advantages
and tradeoffs while using the parallel version of the algorithm.

5. Embedding the pulse algorithm within column generation
schemes

Our experience has shown that an effective and practical use
of the pulse algorithm arises while solving auxiliary problems in
column generation procedures. Note, however, that it is often the
case that these auxiliary problems contain negative costs gener-
ated from the dual variables of the master problem. We success-
fully adapted the pulse algorithm to solve the auxiliary problems
for a Multi-Activity Shift Scheduling Problem (MASSP) and a Bus
Rapid Transit Route Design Problem (BRTRDP). The computational
experiments in this section were executed on a Dell Precision
7400 with 8 GB of RAM, two processors Intel Xeon X5450 running
at 3 GHz, on a 64-bit Windows Vista Ultimate operating system.

5.1. Multi-activity shift scheduling problem

The Shift Scheduling Problem (SSP) deals with the selection of
a set of shifts to satisfy a daily demand for staff requirements. The

Table 2
Computational results for the Zhu and Wilhelm [35] instances.

Instance Resources Nodes Arcs LSA (s) Pulse (s) Speedup TSA (s) sðTSA,PulseÞ sðTSA,LSAÞ

t1
TSAþt2

TSA t
3
TSA

rcsp3 1 100 959 0.005 0.00067 7.5 0.140 0.00016 274.5 30

rcsp4 1 100 959 0.005 0.00069 7.3 0.125 0.00016 236.5 25

rcsp11 1 200 1971 0.004 0.00073 5.5 0.625 0.00093 1 222

rcsp12 1 200 1971 0.006 0.00072 8.3 0.516 0.00094 1 100

rcsp19 1 500 4978 0.006 0.00112 5.3 1.094 0.00297 1 411

rcsp20 1 500 4978 0.006 0.00119 5.1 0.891 0.00187 1 203

rcsp7 10 100 999 0.198 0.00443 44.7 0.906 0.00000 204.6 5

rcsp8 10 100 999 0.085 0.00418 20.4 0.188 0.00016 46.8 2

rcsp15 10 200 1960 0.513 0.00654 78.5 1.594 0.00000 243.9 3

rcsp16 10 200 1960 0.192 0.00459 41.8 0.313 0.00000 68.2 2

rcsp23 10 500 4868 6.224 0.00670 928.9 99.658 0.00109 17,763.1 16

rcsp24 10 500 4868 2.975 0.01361 218.6 7.859 0.00000 577.4 3

Table 3
Comparing the execution time (s) for the single-thread and the multi-thread

versions of the pulse algorithm on instances with 40,000 nodes and 800,000 arcs.

Instance Threads Speedup

1 2 4 8

1 0.384 0.279 0.208 0.194 1.98

2 0.237 0.204 0.195 0.149 1.59

3 0.221 0.185 0.161 0.143 1.55

4 0.192 0.202 0.138 0.170 1.39

5 0.182 0.163 0.161 0.168 1.13

6 0.196 0.146 0.183 0.190 1.34

7 0.170 0.171 0.152 0.182 1.12

8 0.208 0.224 0.148 0.140 1.48

9 0.228 0.208 0.142 0.137 1.66

10 0.284 0.255 0.170 0.166 1.71

L. Lozano, A.L. Medaglia / Computers & Operations Research 40 (2013) 378–384382

Author's personal copy

Multi-Activity Shift Scheduling Problem (MASSP) is an extension
of the SSP where the staff may perform several work activities in
the same shift and the assignment of activities to a shift is
restricted by work rules [8,7,10]. Depending on the problem at
hand, these work rules include activity length, number of breaks,
shift starting time, shift length, and maximum number of activ-
ities per shift, among others. Typically, in the MASSP the schedule
spans over a multi-day planning horizon.

Under a column generation scheme for the MASSP we modeled
the auxiliary problem as a Shortest Path Problem with Resource
Constraints (SPPRC) with local time windows over each node and
global resource constraints [28]. This variant of the SPPRC is
defined over an acyclic graph with negative costs, several pro-
blem-specific side constraints, and up to 2000 nodes and 50,000
arcs. To solve the SPPRC, we modified the pulse algorithm as
follows: being the graph acyclic, we did not have to check for
cycles; the dominance pruning strategy cannot prune partial
paths that have not met the minimum requirements for all
resources; the infeasibility pruning strategy was extended to
prune using multiple resource constraints as in Section 4.2; and
the bounds pruning strategy still applies. Table 4 compares the
performance on three real-world MASSP instances solved using
traditional column generation, where the auxiliary problem is
solved using integer programming, against a pulse-embedded
column generation. The first column shows the instance name
where A, TIL and D are the prefixes for the number of activities,
the time interval length in minutes, and the planning horizon in
days. Columns 2 and 3 show the total computational time needed
using integer programming (IP) and the pulse algorithm for the
auxiliary problems. All the integer programs were solved using
Xpress-MP optimizer version 19.00.00.

Adapting the pulse algorithm to address this SPPRC (arising
from the MASSP) was a relatively easy task given that the search
logic of the algorithm remains unchanged and the multiple work
rules for the shifts made the infeasibility pruning strategy very
strong. The faster computational times allowed us to solve harder
and larger instances that were simply not tractable with one of
the best branch and bound implementations found in commercial
optimizers (i.e., Xpress-MP).

5.2. Bus rapid transit route design problem

The Bus Rapid Transit Route Design Problem (BRTRDP) is the
problem of finding a set of routes and frequencies that minimizes
the operational and the passenger costs (travel time) while
simultaneously satisfying the system’s technical constraints, such
as meeting the demands for trips, bus frequencies, and lane
capacities.

To solve the BRTRDP we used a decomposition approach
where new routes are added dynamically to a master problem
[14,17]. Similar to Section 5.1, an auxiliary problem searches a
network for suitable routes to be added to the master problem. In
contrast to the SPPRC (in the MASSP) this network contains
negative costs and possibly negative cost cycles. Given the
physical infrastructure, there is a constraint that forbids a route

to go backwards, meaning that buses stop in stations in a given
direction (between terminal stations). To address this auxiliary
problem, we modified the pulse algorithm as follows: the dom-
inance pruning strategy remains unchanged; the infeasibility
pruning strategy discards any path that visits a forbidden station;
and the bounds pruning strategy is no longer used because of the
negative cost cycles. Table 5 compares two column generation
schemes for the BRTRDP: one that solves the auxiliary problem as
an integer program using Xpress-MP optimizer version 19.00.00;
and a second one that uses the pulse algorithm. The first column
shows the instance name where S is the prefix for the number of
stations in the system. Columns 2 and 3 show the total computa-
tional time needed for both approaches.

The computational speedup is up to 379 times due to the pulse
and it is noteworthy that larger instances show the most
significant improvement. Although the bound pruning strategy
was not used, the remaining strategies were strong enough to
achieve these results. The faster computational times allowed us
to solve instances that the approach with integer programming
was simply unable to solve.

6. Conclusions and future work

We introduced an exact algorithm for the CSP that solves large
networks with up to 40,000 nodes and 800,000 in a reasonable
amount of time (under 0.3 s). The algorithm, based on the idea of
propagating pulses through a network, performs better than the
algorithm by Santos et al. [29] over a large testbed from the
literature, achieving speedups of up to 60 times. It also outper-
forms the label-setting algorithm by Dumitrescu and Boland [13]
reaching speedups of up to 900 times on the proposed instances
and compares favorably with the up-to-date approach by Zhu and
Wilhelm [35].

Additionally, this algorithm can be seen as a flexible frame-
work able to handle difficult constraints modeled as pruning
strategies. The idea of the algorithm is easy to understand and to
implement, and the pruning strategies can be used as modules
and adapted to problem specific conditions. Also, the only para-
meters to be defined by the user are the maximum number of
labels stored at each node (i.e., Q), and the label storage rule.

We show that the algorithm is easy to parallelize, and
illustrate this fact with a first parallel version of the algorithm
that exhibits promising results when compared with the single-
thread version of the algorithm on large-scale networks.

From a practical perspective, the pulse algorithm has been
successfully extended for solving auxiliary problems under a
column generation scheme arising in two different contexts: a
bus rapid transit route design problem and a multi-activity shift
scheduling problem. A very similar auxiliary problem arises in the
context of the integrated vehicle- and crew-scheduling problem
[31], where the pulse algorithm is likely to accelerate the column
generation process.

Table 4
Speeding up the solution of real-world MASSP instances with the pulse algorithm.

Instance Time (s)

IPa Pulse

A5-TIL30-D7 3549 17

A7-TIL30-D7 71,216 83

A16-TIL30-D7 848,402 629

a Xpress-MP optimizer version 19.00.00.

Table 5
Speeding up the solution of the BRTRDP with the

pulse algorithm.

Instance Time (s)

IPa Pulse

BRT-S8 9 2

BRT-S10 39 7

BRT-S15 2566 63

BRT-S19 140,369 370

a Xpress-MP optimizer version 19.00.00.

L. Lozano, A.L. Medaglia / Computers & Operations Research 40 (2013) 378–384 383

Author's personal copy

Work currently underway includes: extending the algorithm
to tackle the Elementary Shortest Path Problem with Resource
Constraints (ESPPRC), a problem that arises while solving the
Vehicle Routing Problem with Time Windows (VRPTW) under a
column-generation procedure; applying the algorithm to a real
medical task scheduling problem; extending its functionality to
tackle a subproblem in the public transport line planning problem
[4]; extending the pulse algorithm to the biobjective shortest path
problem; and exploring further the parallelization of the algo-
rithm to take full advantage of multiple core processors or
graphics processing units.

Acknowledgments

The authors would like to thank Professors Jo~ao Coutinho-
Rodrigues at Universidade de Coimbra (Portugal), Xiaoyan Zhu at
the University of Tennessee (U.S.A), and Wilbert E. Wilhelm at
Texas A&M University (U.S.A) for their generosity in sharing with
us their testbeds for the CSP. Professors Louis-Martin Rousseau at
École Polytechnique de Montréal and Juan G. Villegas at Uni-
versidad de Antioquia for their insightful comments. Last, but not
least, we want to thank Daniel Duque, our MS student at
Universidad de los Andes, who developed the double-bucket
shortest path implementation and coded an animation of the
pulse algorithm that facilitates its understanding.

References

[1] Beasley JE, Christofides N. An algorithm for the resource constrained shortest
path problem. Networks 1989;19:379–94.

[2] Bertsekas DP, Tsitsiklis JN. An analysis of stochastic shortest path problems.
Mathematics of Operations Research 1991;16(3):580–95.

[3] Bixby RE. Solving real-world linear programs: a decade and more of progress.
Operations Research 2002;50(1):3–15.

[4] Borndörfer R, Grötschel M, Pfetsch ME. A column-generation approach to line
planning in public transport. Transportation Science 2007;41(1):123–32.

[5] Carlyle WM, Royset JO, Wood RK. Lagrangian relaxation and enumeration for
solving constrained shortest-path problems. Networks 2008;52(4):256–70.

[6] Cherkassky BV, Goldbberg AV, Radzik T. Shortest path algorithms: theory and
experimental evaluation. Mathematical Programming 1996;73:129–74.

[7] Côté M-C, Gendron B, Quimper C-G, Rousseau L-M. Formal languages for
integer programming modeling of shift scheduling problems. Constraints
2009;16(1):54–76.

[8] Côté M-C, Gendron B, Rousseau L-M. Grammar-based integer programming
models for multi-activity shift scheduling. Management Science 2011;57(1):
1–13.

[9] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
2002;6(2):182–97.

[10] Demassey S, Pesant G, Rousseau L-M. A cost-regular based hybrid column
generation approach. Constraints 2006;11(4):315–33.

[11] Derigs U, Friederichs S, Schäfer S. A new approach for air cargo network
planning. Transportation Science 2009;43(3):370–80.

[12] Dongarra JJ. Performance of various computers using standard linear equa-
tions software. Technical report CS-89-85, University of Tennessee, USA;
2009.

[13] Dumitrescu I, Boland N. Improved preprocessing, labeling and scaling
algorithms for the weight-constrained shortest path problem. Networks
2003;42(3):135–53.

[14] Feillet D, Gendreau M, Medaglia AL, Walteros JL. A note on branch-and-cut-
and-price. Operations Research Letters 2010;38(5):346–53.

[15] Gamache M, Soumis F, Marquis M, Desrosiers J. A column generation
approach for large-scale aircrew rostering problems. Operations Research
1999;47(2):247–63.

[16] Garey MR, Johnson DS. Computers and intractability: a guide to the theory of
NP-completeness. New York: W.H. Freeman; 1979.

[17] González JE, Lozano L, Walteros JL, Feillet D, Medaglia AL. Solving the bus
rapid transit route design problem with general topologies via simultaneous
column and cut generation. Technical report COPA-2012-10, Universidad de
los Andes; 2012.

[18] Graves GW, McBride RD, Gershkoff I, Anderson D, Mahidhara D. Flight crew
scheduling. Management Science 1993;39(6):657–82.

[19] Gromicho J, van Hoorn JJ, Kok AL, Schutten JMJ. Restricted dynamic program-
ming: a flexible framework for solving realistic VRPs. Computers & Opera-
tions Research 2011. http://dx.doi.org/10.1016/j.cor.2011.07.002.

[20] Grönkvist M. Accelerating column generation for aircraft scheduling using
constraint propagation. Computers & Operations Research 2006;33:2918–34.

[21] Handler GY, Zang I. A dual algorithm for the constrained shortest path
problem. Networks 1980;10:293–310.

[22] Joksch H. The shortest route problem with constraints. Journal of Mathema-
tical Analysis and Applications 1966;14(1):191–7.

[23] Lavoie S, Minoux M, Odier E. A new approach for crew pairing problems by
column generation with an application to air transportation. European
Journal of Operational Research 1988;35:45–58.

[24] Lawler EL. Combinatorial optimization: networks and matroids. New York:
Dover Publications; 2001.

[25] Muter _I, Birbil S-_I, Bülbül K, S-ahin G, Yenigün H, Tas- D, et al. Solving a robust
airline crew pairing problem with column generation. Computers & Opera-
tions Research 2010. http://dx.doi.org/10.1016/j.cor.2010.11.005.

[26] Giacomo Nannicini, Daniel Delling, Dominik Schultes, Leo Liberti. Bidirec-
tional An search on time-dependent road networks. Networks 2012;59(2):
240–51.

[27] Reinhardt LB, Pisinger D. Multi-objective and multi-constrained non-additive
shortest path problems. Computers & Operations Research 2011;38:605–16.

[28] Restrepo MI, Lozano L, Medaglia AL. Constrained network-based column
generation for the multi-activity shift scheduling problem. International
Journal of Production Economics. http://dx.doi.org/10.1016/j.ijpe.2012.06.
030; 2012.

[29] Santos L, Coutinho-Rodrigues J, Current JR. An improved solution algorithm
for the constrained shortest path problem. Transportation Research Part B
2007;41:756–71.

[30] Smith OJ, Boland N, Waterer H. Solving shortest path problems with a weight
constraint and replenishment arcs. Computers & Operations Research
2012;39(5):964–84.

[31] Steinzen I, Gintner V, Suhl L, Kliewer N. A time-space network approach for
the integrated vehicle- and crew-scheduling problem with multiple depots.
Transportation Science 2010;44(3):367–82.

[32] Stojković M, Soumis F, Desrosiers J. The operational airline crew scheduling
problem. Transportation Science 1998;32(3):232–45.

[33] Villeneuve D, Desaulniers G. The shortest path problem with forbidden paths.
European Journal of Operational Research 2005;165:97–107.

[34] Zhu X, Wilhelm WE. Three-stage approaches for optimizing some variations
of the resource constrained shortest-path sub-problem in a column genera-
tion context. European Journal of Operational Research 2007;183:564–77.

[35] Zhu X, Wilhelm WE. A three-stage approach for the resource-constrained
shortest path as a sub-problem in column generation. Computers & Opera-
tions Research 2012;39:164–78.

L. Lozano, A.L. Medaglia / Computers & Operations Research 40 (2013) 378–384384

