
Solving the Orienteering Problem with Time Windows
via the Pulse Framework

Daniel Duque, Leonardo Lozano, Andrés L. Medaglia n

Centro para la Optimización y Probabilidad Aplicada (COPA), Departamento de Ingeniería Industrial, Universidad de los Andes,
Cr 1E No. 19A-10, ML711 Bogotá, Colombia

a r t i c l e i n f o

Available online 28 September 2014

Keywords:
Routing
Shortest path problems with side
constraints
Traveling salesman problem with profits
Vehicle routing problem with time
windows

a b s t r a c t

The Orienteering Problem with Time Windows (OPTW) is the problem of finding a path that maximizes
the profit available at the nodes in a time-constrained network. The OPTW has multiple applications in
transportation, telecommunications, and scheduling. First, we extend an exact method for shortest path
problems with side constraints into a general-purpose framework for hard shortest path variants. Then,
using this framework, we develop a new method for the OPTW that incorporates problem-specific
knowledge. Our method outperforms the state-of-the-art algorithm on instances derived from bench-
mark datasets from the literature achieving speedups of up to 266 times and is able to find optimal
solutions to large-scale problems with up to 562 nodes in short computational times.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Orienteering Problem with Time Windows (OPTW) is defined
over a directed graph G¼ ðN ;AÞ, where N ¼ fv1;…; vng is the set of
nodes, A¼ fði; jÞjviAN ; vjAN ; ia jg is the set of arcs, and vs and ve
denote the start and end nodes, respectively. Each node viAN has a
score si, a service time ei, and a time window when the service can
take place ½ai; bi�. However, it is possible to visit a node before ai and
wait to begin the service at time ai. For all arcs ði; jÞAA, let there be a
nonnegative weight ti;j that refers to the travel time from node viAN
to node vjAN that includes the service time ei of node vi and satisfies
the triangle inequality. The OPTW is the problem of finding a path P (i.
e., an ordered set of nodes) from vs to ve that collects the maximum
amount of score subject to a maximum travel time T and satisfies the
time window at every node viAP. Henceforth, we use functions sð�Þ
and tð�Þ to represent the score and the time of any given path P. We
denote by Pi;j ¼ fvi;…; vðkÞ;…; vjg a path that starts at node viAN and
ends at node vjAN where vðkÞ represents the node at the k-th
position of the sequence.

The OPTW naturally arises in a wide range of transportation and
logistics applications. While planning a trip, a tourist might want to
visit a list of places (e.g., cultural venues), but it is not possible to visit
them all due to time limitations [28]. Similar to the tourist trip design,
there are military applications that require planning tactical aerial or
naval reconnaissance operations. In this context, an artifact is routed

through several locations with the goal of maximizing the overall
surveillance [21,32,36,25]. Similar concepts have been applied in the
field of vehicle routing, where a set of tasks performed by technicians
need to be planned within a daily schedule [29,30]. Tricoire et al. [31]
considered the problem where sales people have to visit a set of
customers (within a time interval), but visiting them all is not possible
within a fixed time horizon (e.g., a workday). In a production
environment, Ílhan et al. [17] presented a supplier visiting problem
where a manufacturer decides which suppliers to audit in order to
maximize monetary claims associated with inventory leftovers.

Both exact and heuristic solution strategies have been developed
for the Orienteering Problem (OP). Among the exact approaches,
Fischetti et al. [12] and Gendreau et al. [14] used valid inequalities in
a branch-and-cut procedure to solve instances with up to 500 nodes. In
contrast to the exact methods, there are plenty of heuristics available
in the literature. Golden et al. [16] proposed a heuristic based on a
sampling method. Ramesh and Brown [22], and Chao et al. [6] used
insertion heuristics (e.g., cheapest insertion) aided by 2-Opt and 3-Opt
procedures. Gendreau et al. [15] proposed a tabu search that inserts
and removes sets of nodes iteratively. More recently, Schilde et al. [26]
developed a metaheuristic for the biobjective OP that outperforms
several heuristics for the single-objective OP.

Despite the vast number of approaches available for the OP, few
researchers have dealt with the OPTW. Righini and Salani [24]
extended a bidirectional dynamic programming (DP) algorithm initially
developed for the Elementary Shortest Path Problem with Resource
Constraints (ESPPRC) [23]. They used a technique named Decremental
State Space Relaxation (DSSR) in which the DP algorithm takes
advantage of a state space reduction. This state space reduction arises
as a relaxation of the elementarity condition over a subset of nodes,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2014.08.019
0305-0548/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ57 1 3394949x2880.
E-mail address: amedagli@uniandes.edu.co (A.L. Medaglia).
URL: http://wwwprof.uniandes.edu.co/�amedagli (A.L. Medaglia).

Computers & Operations Research 54 (2015) 168–176

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2014.08.019
http://dx.doi.org/10.1016/j.cor.2014.08.019
http://dx.doi.org/10.1016/j.cor.2014.08.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.08.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.08.019&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2014.08.019&domain=pdf
mailto:amedagli@uniandes.edu.co
http://wwwprof.uniandes.edu.co/~amedagli
http://wwwprof.uniandes.edu.co/~amedagli
http://dx.doi.org/10.1016/j.cor.2014.08.019
http://dx.doi.org/10.1016/j.cor.2014.08.019

which in turn reduces the dimension of the state vector and the state
space. For the OPTW, they applied the state space relaxation over the
state variables related to the node visits and, in exchange, the total
number of visited nodes is considered as a state variable. Montemanni
and Gambardella [20] solved the OPTW using an ant colony (AC)
heuristic and improved the best known solutions for some instances
from the literature. Additionally, they tackled the Team Orienteering
Problem with Time Windows (TOPTW), which seeks a set of routes
instead of a single one. Gambardella et al. [13] presented an enhanced
AC heuristic that uses a local search procedure. A similar heuristic
based on AC with local search was proposed by Verbeeck et al. [35].
Vansteenwegen et al. [34] also solved the TOPTW, but using an iterated
local search approach, while Tricoire et al. [31] solved a multi-period
OPTW with a variable neighborhood search heuristic. More recently,
Archetti et al. [1] proposed a branch-and-price procedure to tackle a
close variant of the TOPTW known as the Capacitated Team Orienteering
Problem (CTOP) which instead of the time windows considers a
constraint related to the vehicles capacity. The subproblem emerging
from the column generation procedure is solved using a DP algorithm
with the acceleration strategies proposed by Righini and Salani [24]
and the 2-cycle elimination procedure presented by Desrochers et al.
[8]. This branch-and-price method has been extended for other
variants of routing problems with profits by Archetti et al. [2,3]. For a
detailed review of the OP and its variants (including the OPTW), we
refer the reader to the survey presented by Vansteenwegen et al. [33].

In this paper, we extend the pulse algorithm for shortest paths with
side constraints [19,18] and present it as a general-purpose pulse
framework for hard shortest path problems. This framework is based
on the idea of performing an implicit enumeration of the entire
solution space supported by pruning strategies that efficiently discard
a vast number of suboptimal and infeasible solutions. The framework
relies on core components that can be easily extended for different
hard shortest path variants and problem-specific (modular) components
that are based on particular characteristics of the problem at hand.

The main contributions of this work are the following:

� introduces the pulse framework as a general-purpose frame-
work for hard shortest path problems that appear as subpro-
blems of hard routing problems;

� extends the pulse framework to build a top-performer algo-
rithm for the OPTW;

� presents a soft dominance pruning strategy that exploits dom-
inance relations between solutions in a novel label-free fashion;

� develops a detour pruning strategy that incorporates problem
specific conditions (namely time windows) and extends it into
a preprocessing technique that reduces the size of the network
(i.e., arc deletion);

� presents a parallel version of the algorithm that takes advan-
tage of multi-core architectures; and

� assesses the strength of the new pruning strategies, the effects of
the parallelization, and the performance of the proposed algorithm
against the state-of-the-art algorithm by Righini and Salani [24].

The remainder of this paper is organized as follows. Section 2
presents an overview of the pulse framework. Section 3 shows the
application of the pulse framework and the pruning strategies for the
OPTW. Section 4 describes the parallelization process. Section 5
presents the computational experiments. Finally, Section 6 concludes
the paper and outlines future work.

2. An overview of the pulse framework

Given a network, the pulse algorithm sends a pulse from the start
node vs to the end node ve. This pulse recursively traverses the
network carrying the information of the explored partial path P, i.e.,

attributes of the path such as its cumulative resource consumption
and its cumulative objective function. Every time a pulse reaches the
end node ve a feasible solution is obtained and the pulse recursively
backtracks to continue its propagation through the rest of the nodes. If
the pulse is let free, this recursive propagation leads to a complete
enumeration of all possible paths from vs to ve, which guarantees that
the optimal solution is always found. However, the algorithm avoids
complete enumeration by stopping the exploration of any partial path
whenever there is enough evidence that shows that the partial path
will not lead to a feasible or an improved solution (i.e., a new primal
bound). To do so, several pruning strategies determine as early as
possible when a partial path should be discarded. This look-ahead
mechanism prunes aggressively vast regions of the solution space,
turning the complete enumeration into an implicit enumeration.

The pulse algorithm can be seen as a general framework that is
extended to solve a wide range of shortest path problems that are
often used as components to solve hard routing problems. Differ-
ent pruning strategies can be devised to exploit specific knowl-
edge of the problem at hand. Fig. 1 shows the components of the
pulse framework and how they have been implemented or
extended for different shortest path problems.

The Constrained Shortest Path Problem (CSP) was the first problem
tackledwith the pulse algorithm [19]. For the CSP, Lozano andMedaglia
[19] proposed three pruning strategies: dominance, infeasibility, and
bounds. In Lozano et al. [18], infeasibility and bounds pruning strategies
were extended to the ESPPRC, with the addition of a dominance-based
problem-specific strategy called rollback. The key element in this work
was a bounding scheme that shares the same spirit of a state space
reduction in dynamic programming. By efficiently solving the ESPPRC,
the pulse algorithm was successfully used as an engine to solve
auxiliary problems under a column generation scheme for the Vehicle
Routing Problem with Time Windows (VRPTW). Duque et al. [10]
handled the Biobjective Shortest Path Problem (BSP), implementing the
dominance pruning strategy from the CSP and proposing two new
problem-specific pruning strategies: nadir point and efficient set. More
recently, Bolívar et al. [5] proposed three acceleration strategies for the
pulse algorithm applied to the Weight Constrained Shortest Path
Problem with Replenishment (WCSPP-R). For the OPTW we imple-
mented the core pruning strategies developed for the ESPPRC and
added two new problem-specific pruning strategies, namely soft
dominance and detour. The next section describes in detail how we
adapted the framework to tackle the OPTW.

3. Pulse framework for the OPTW

The intuition behind the pulse algorithm explained in Section 2
remains unchanged for the OPTW. For this problem, a pulse
traveling through the network carries out the information of the
cumulative time and the cumulative score of a partial path.
Algorithm 1 presents an overview of the pulse algorithm for the
OPTW. Lines 1–3 initialize P, sðPÞ, and tðPÞ. Line 4 calculates dual
bounds on the maximum score that can be achieved by any partial
solution. Line 5 invokes the recursive function pulse starting the
propagation from node vs. Line 6 returns the optimal path found
throughout the recursion.

Algorithm 1. Pulse algorithm for the OPTW.

Input: G, directed graph; vs, start node; ve, end node.
Output: Pn, optimal path.
1: P’fg
2: sðPÞ’0
3: tðPÞ’0
4: boundCalculation ðGÞ ▷see Section 3.1.2
5: pulse ðvs; sðPÞ; tðPÞ;P) ▷see Algorithm 2
6: return Pn

D. Duque et al. / Computers & Operations Research 54 (2015) 168–176 169

Algorithm 2 shows the recursive function pulse for the OPTW.
Lines 1–3 use the pruning strategies to evaluate the incoming pulse
to node vi. If the pulse is not pruned, lines 4 and 5 add the current
node to the partial path and update the cumulative score sðP 0Þ.
Lines 6–11 propagate the pulse by invoking the function pulse over
all nodes vjAΓþ ðviÞ, where Γþ ðviÞ ¼ fvjAN jði; jÞAAg is the set of
head nodes of the outgoing arcs from node vi. Additionally, line
7 uses a strategy that prunes outgoing pulses, provided it is possible
to detour before reaching node vj. Every time the function pulse is
invoked on the final node ve, the information of the best path
(incumbent) is updated and the pulse is no longer propagated.

The performance of the pulse algorithm depends on the capacity
to prune partial paths as early as possible. The following subsections
describe in detail the pruning strategies used for the OPTW.

3.1. Core pruning strategies

Core pruning strategies are independent of problem-specific know-
ledge and can be used in a wide range of routing problems. These
strategies can be seen as the core components of the pulse framework.

3.1.1. Pruning by infeasibility
Every time the pulse function is invoked at node viAN , the

algorithm checks if visiting vi creates a cycle, exceeds the upper
time window bi, or violates the global time constraint T. If any of
these events happens, the pulse can be safely pruned because the
partial path Ps;i is already infeasible. Cycles are pruned using a
binary array that stores the information of visited nodes. If
tðPs;iÞ4bi, then the pulse is pruned because the cumulative time
of the path falls outside the time window for node viAN . For the
global time constraint, if tðPs;iÞþti;e4T , then the partial path is
pruned because it is not possible to reach the end node ve on time.

Finally, if vi is reached before ai, tðPs;iÞ is set to ai, meaning that it is
possible to wait until the node is able to serve the arriving entity
as early as the time window opens.

3.1.2. Pruning by bounds
We use a primal bound s to prune partial solutions that promise

no improvement. Every time a feasible solution is found, this primal
bound is updated to keep the best objective value at hand. A dual

Algorithm 2. Pulse function for the OPTW.

Input: vi, current node; sðPÞ, cumulative score; tðPÞ, cumulative time; P, partial path.
Output: void
1: if :checkInfeasibilityðvi; tðPÞÞ then ▷see Section 3.1.1
2: if :checkBoundsðvi; sðPÞ; tðPÞÞ then ▷see Section 3.1.2
3: if :checkSoftDominanceðvi; tðPÞ;PÞ then ▷see Section 3.2.1
4: P0’P [fvig
5: sðP0Þ’sðPÞþsi
6: for vjAΓþ ðviÞ do
7: if :checkDetourðvi; vj;P; tðPÞÞ then ▷see Section 3.2.2
8: tðP0Þ’tðPÞþti;j
9: pulseðvj; sðP 0Þ; tðP0Þ;P 0Þ
10: end if
11: end for
12: end if
13: end if
14: end if
15: return void

Bounds

Orienteering Problem with
Time Windows (OPTW)

Infeasibility Bounds

Implements

Extends

Constrained Shortest Path
Problem (CSP)

Elementary Shortest Path Problem with
Resource Constraints (ESPPRC)

Biobjective Shortest Path
Problem (BSP)

Infeasibility Bounds

Dominance Nadir Point Efficient Set

Rollback Infeasibility

Soft
Dominance

Detour Arc Deletion

Dominance

Weight Constrained Shortest Path
Problem with Replenishment (WCSPP-R)

Infeasibility Dominance

Path
Completion Pulse Queue Exploration

Order

Bounds

Problem-specific
pruning strategy Research article

Acceleration
strategy

Core pruning
strategy

Preprocessing
procedure

Fig. 1. Pruning strategies of the pulse framework applied to different routing problems.

D. Duque et al. / Computers & Operations Research 54 (2015) 168–176170

bound for a partial path Ps;i from vs to vi, sðPs;iÞ, refers to the
maximum extra score that can be collected by completing the path
in the best possible way. With this bound, if sðPs;iÞþsðPs;iÞrs, the
pulse can be pruned because completing partial path Ps;i would not
improve the best solution found so far. However, note that finding
sðPs;iÞ requires solving the OPTW starting at any node vi for every
possible partial path Ps;i. To avoid this difficulty, we extend the
bounding scheme presented in Lozano et al. [18], where the dual
bounds are conditioned to the node which the partial path Ps;i is
reaching (vi) and its cumulative time tðPs;iÞ. These conditional dual
bounds sðvi; tðPs;iÞÞ denote the maximum score that can be achieved
by a partial path Ps;i that is reaching node vi and has consumed
tðPs;iÞ units of time. Furthermore, time consumption is discretized in
steps of size Δ. For every discrete level of time, the pulse function is
invoked for all viAN to calculate sðvi; tðPs;iÞÞ. This conditional
bounding proceeds as follows. First, we start by calculating a bound
for every node vi with a time consumption tðPs;iÞ’T�Δ, i.e., an
overly constrained OPTW starting at vi that only has Δ time units
left. In a backward mode, we calculate bounds for every node with
less time consumption up to a threshold t , i.e., tðPs;iÞ’T�2Δ;…;

tðPs;iÞ’T�βΔ;…; tðPs;iÞ’t , where β is the number of steps of size
Δ in the bounding calculation. The optimal solution found at every
step is a dual bound on the maximum score for any partial path
that reaches node vi with a time consumption tðPs;iÞ within
½T�βΔ; T�ðβ�1ÞΔÞ for any discrete step β¼ 1;…; ⌈ðT�t Þ=Δ⌉.
When the bounding procedure finishes, the pulse function is
triggered at vs with tðPÞ’0. In this final pulse invocation, all the
bounds calculated from t to T are ready to be used for pruning. For
detailed information about this bounding scheme, the reader is
referred to Lozano et al. [18].

3.2. Problem-specific pruning strategies

The core pruning strategies provide a starting point to solve the
OPTW, however, to improve the pulse algorithm performance it is
critical to exploit particular properties of the problem at hand. For
the OPTW, we propose two new pruning strategies related to the
time windows and the independency between the score collection
and the sequence of nodes visited in a path of the OPTW.

3.2.1. Pruning by soft dominance
This pruning strategy receives its name from the dominance

tests used by DP algorithms in the context of vehicle routing
[11,23]. These dominance tests save paths to a given node vi using
labels that store the objective function and the usage of resources
(time consumption and visited nodes); and check for dominance
relations within labels stored at any given node vi (cf. [11]). Let
N ð�Þ be a function that represents the (unordered) set of nodes
for path Ps;i. In a DP setting, a label associated with path P1

s;i
dominates the label of path P2

s;i, if the former path: (1) has the
same or better score (i.e., sðP1

s;iÞZsðP2
s;iÞ); (2) consumes the same

or less resource (i.e., tðP1
s;iÞrtðP2

s;iÞ); (3) visits the same nodes
or a subset (i.e., N ðP1

s;iÞDN ðP2
s;i); and (4) at least one of the

three previous conditions holds strictly (i.e., sðP1
s;iÞ4sðP2

s;iÞ; tðP1
s;iÞ

otðP2
s;iÞ or N ðP1

s;iÞ �N ðP2
s;iÞ). The main drawback for using dom-

inance tests is the space required to store a huge amount of
labels holding the information of all nondominated paths that
have reached any given node. Since the number of states grows
exponentially with the size of the network, managing the set of
labels can result computationally unbearable leading to the well-
known curse of dimensionality in DP.

As an alternative to traditional dominance tests, we propose a label-
free strategy that prunes a partial path Ps;i if it finds an alternative
partial path P0

s;i with tðP0
s;iÞotðPs;iÞ and N ðP0

s;iÞ ¼ N ðPs;iÞ, hence,
sðP0

s;iÞ ¼ sðPs;iÞ. To find such P0
s;i, we swap nodes in Ps;i between the

last added node (the node visited before vi) and the other nodes in the
sequence except for vs. If any of these swaps in Ps;i turns out to be a
feasible partial path P0

s;i that consumes less time than Ps;i (i.e.,
tðP0

s;iÞotðPs;iÞ), then the path P 0
s;i dominates path Ps;i and the pulse

associated with Ps;i can be safely pruned. Fig. 2 shows an example of
all the swaps evaluated over a partial path from vs to vi that has visited
five intermediate nodes.

Notice that by exploring this (swap) neighborhood some domi-
nated paths (pulses) may go through node vi, but most importantly,
the optimal solution is never pruned and yet some dominated paths
are discarded. The pulse framework leaves open the possibility to
implement more complex neighborhood search procedures for P0

s;i,
but a simple one often offers a good compromise between the
strength of the pruning strategy and the computational effort. Since
we do not focus in finding the best routing for the nodes in N ðPs;iÞ,
finding P0

s;i becomes a soft dominance test over Ps;i. Nevertheless,
the novelty of this strategy relies on the fact that we test dominance
without using labels or any other kind of storage for all possible
routing sequences of N ðPs;iÞ. Finally, note that this pruning strategy
exploits a very specific OPTW condition where the collected score
(objective function) of a set N ðPs;iÞ is independent of its routing.

3.2.2. Pruning by detour
Consider a partial path Ps;i that is currently at node viAN and is

propagating through arc ðvi; vjÞAA. If the time to reach vjAN is
tðPs;iÞþti;jraj, the algorithm checks if there is a node vkAN such
that the detour Ps;i [fvkg [fvjg is feasible and the arrival time to
node vj is still less than aj. If visiting vk is feasible (i.e., tðPs;iÞþti;krbk)
and vj is still reached before aj (i.e., tðPs;iÞþti;kþtk;jraj), we can safely
prune the incoming pulse to vj since there is at least another path to vj,
P0

s;j ¼Ps;i [fvkg [fvjg, with a better score (i.e., sðP 0
s;jÞ4sðPs;i [fvjgÞ)

and the same resource consumption up to node vj (i.e., tðP0
s;jÞraj). To

apply this strategy, we calculate for every arc ðvi; vjÞ and for every
detour to any node vk the latest time that a path can arrive to vi in
order to detour to vk and reach vj before aj; we denote these latest
times by Lkði;jÞ. We also define Lkðk;jÞ9minfaj�tk;j; bkg, the latest time a
partial path can arrive to vk in order to reach vj before aj. If L

k
ðk;jÞZak,

then the latest time a partial path can arrive to vi is Lkði;jÞ9min
fLkðk;jÞ �ti;k; big. Fig. 3 presents a graphical representation of the latest

Fig. 2. Example of all possible swaps under the soft dominance test for a 6-node
partial path reaching node vi.

Fig. 3. Graphical representation of the latest arrival times in a detour to node vk
from node vi.

D. Duque et al. / Computers & Operations Research 54 (2015) 168–176 171

arrival times calculated for nodes vi, vk and vj in the detour explained
above. More formally, Algorithm 3 shows how these values are calcu-
lated in a preprocessing stage.

Algorithm 3. Latest arrival times calculation.

Input: G, directed graph.
Output: L, latest arrival times.
1: for ðvi; vjÞAA do
2: for vkAN do
3: Lkði;jÞ’�1
4: Lkðk;jÞ’minfaj�tk;j; bkg
5: if Lkðk;jÞZak and minfLkðk;jÞ �ti;k; bigZai then
6: Lkði;jÞ’minfLkðk;jÞ �ti;k;big
7: end if
8: end for
9: end for
10: return L

With these pre-calculated values, to prune a pulse that is trying
to propagate from node vi to vj, the algorithm compares tðPs;iÞ
against Lkði;jÞ for every node vkAΓþ ðviÞ n Ps;i. Algorithm 4 shows the
detour pruning strategy.

Algorithm 4. Pruning by detours.

Input: vi, current node; vj, destination node; tðPs;iÞ cumulative
time; Ps;i partial path.

Output: boolean
1: prune’false

2: for vkAΓþ ðviÞ n Ps;i do
3: if tðPs;iÞrLkði;jÞ then
4: prune’true

5: end if
6: end for
7: return prune

The idea behind this pruning strategy can be taken to a next level
by demonstrating that arc ðvi; vjÞAA can be removed from G if a
detour from vi to a given node vk can take place within the time
interval ½bi; aj�. These arcs can be removed from the network at a
preprocessing phase and need not to be considered in the explora-
tion. The following theorem supports this preprocessing procedure.

Theorem 3.1. For any arc ðvi; vjÞAA, if it is feasible to detour from vi
to a given node vk within the time interval ½bi; aj�, then ðvi; vjÞAA can
be removed from the graph G without sacrificing optimality.

Proof. Let Pn be an optimal solution, AðPnÞ be the set of arcs in
Pn, and N ðPnÞ be the set of nodes visited in Pn. Under the
assumption that ðvi; vjÞ=2AðPnÞ, removing arc ðvi; vjÞAA does not
change Pn or the score sðPnÞ. Now assume that ðvi; vjÞAAðPnÞ. Let
Pn ¼Pn

s;i [Pn

j;e, where Pn

s;i is the path from vs to vi and Pn

j;e the path
from vj to ve. Let sðPnÞ ¼ sðPn

s;iÞþsðPn

j;eÞ and tðPnÞ ¼ tðPn

s;iÞþti;jþ
tðPn

j;eÞ. If vk =2N ðPnÞ, then Pn cannot be optimal since there is a
feasible solution P 0 ¼Pn

s;i [fvkg [Pn

j;e where sðP0Þ ¼ sðPn

s;iÞþskþ
sðPn

j;eÞ4sðPnÞ with tðP0Þ ¼ tðPn

s;iÞþti;kþ tk;jþtðPn

j;eÞ and tðPn

s;iÞþ
ti;kþtk;jraj. If vkAN ðPnÞ, then vkAPn

s;i or vkAPn

j;e. If arc ðvi; vjÞA
A is removed, an alternative optimal solution P0 ¼Pn

s;i n fvkg [fvkg
[Pn

j;e or P″¼Pn

s;i [fvkg [Pn

j;e n fvkg exists. Notice that N ðP0Þ ¼
N ðP″Þ ¼N ðPnÞ, then sðP0Þ ¼ sðP″Þ ¼ sðPnÞ and either P0 or P″ are
feasible because detouring to vk is feasible within the time inter-
val ½bi; aj�. □

4. Parallelizing the algorithm

The pulse algorithm explores many partial paths before and
after finding the optimal solution. In a sense, the paths that the
algorithm explores are almost independent because the pulse

function carries along the information of the path; only a binary
array that keeps track of the visited nodes and the primal bound
information have a global scope. For this reason, it is possible to
perform a parallel search of the solution space taking care of how
to update the global information. Once we obtain all the required
bounds (see Section 3.1.2), we can invoke multiple times the
pulse function using different parallel threads to accelerate the
search. To do so, a fixed number of threads are triggered at node vs
propagating pulses through different outgoing arcs of vs as
proposed in Lozano and Medaglia [19]. Each thread uses a separate
binary array for marking the visited nodes to avoid race conditions.
Two threads can execute the pulse function over the same node
at the same time except for the end node ve, where threads must
wait in queue for other threads to finish because the primal bound
can be updated only by one thread at a time. Note that the number
of threads determines the number of parallel explorations in
progress; a new exploration is only triggered once a thread
finishes its recursion stack. In the next section, we conduct a
comprehensive set of experiments with different multi-thread
versions of the algorithm to show the effect of parallelization in
the performance of the algorithm.

5. Computational experiments

We tested our algorithm over the well-known Solomon's
benchmark for the VRPTW [27], over the instances proposed by
Cordeau et al. [7] for the Periodic Vehicle Routing Problem with
Time Windows (PVRPTW), and over large-scale instances derived
from Schilde et al. [26]. Solomon's testbed contains 29 instances
with 100 nodes organized in three categories: the r-instances,
where nodes are randomly located; the c-instances, where nodes
are located in clusters; and the rc-instances, where some nodes
are randomly located and others are clustered. Cordeau's testbed
contains 10 instances that range from 48 to 288 nodes. These
instances are considered to be harder because the time windows
are wider, making the problems less constrained. The testbed from
Schilde et al. [26] comprises real world networks ranging from 92
to 2143 nodes. Solomon's testbed is available at http://w.cba.neu.
edu/�msolomon/problems.htm and Cordeau's testbed is available
at http://neumann.hec.ca/chairedistributique/data/.

We coded our algorithm in Java, using Eclipse SDK version 4.2.1,
and performed our experiments on a computer with an Intel Core
i7-3517U @1.9 GHz CPU (2 cores) with 512 MB of RAM allocated to
the memory heap size of the Java Virtual Machine on Windows 8.
After tuning the algorithm parameters, we set the time step Δ to
5 and the time threshold t to 30% of the global time constraint T.
We reported the computational time with a precision of 1/100 s;
any time under 0.005 is reported as 0.00.

5.1. Comparison against the state-of-the-art algorithm

For the OPTW, the state-of-the-art algorithm is a bi-directional
and bounded DP algorithm with DSSR by Righini and Salani [24].
They coded their algorithm in ANSI-C compiled with gcc 3.0.4 and
executed their experiments on a Pentium IV 1.6 GHz processor with
512 MB RAM with a time limit of 2 h. For the sake of fairness, we
scaled our times by 4.3 according to the LINPACK benchmark [9].

To adapt instances from the VRPTW to the OPTW, we replicated
the same approach used by Righini and Salani [24] in which they
consider the demand at each node vi in the original Solomon's and

D. Duque et al. / Computers & Operations Research 54 (2015) 168–176172

http://w.cba.neu.edu/~msolomon/problems.htm
http://w.cba.neu.edu/~msolomon/problems.htm
http://w.cba.neu.edu/~msolomon/problems.htm
http://neumann.hec.ca/chairedistributique/data/

Cordeau's instances as the score si. Tables 1 and 2 present a head-
to-head comparison between the 4-thread version of our pulse
algorithm and the best approach for each instance presented by
Righini and Salani [24]. Column 1 shows the instance name;
column 2 presents the optimal score; column 3 shows the time
in seconds as reported by Righini and Salani [24]; column 4 dis-
plays the scaled computational time of our algorithm; and finally,
column 5 shows the corresponding speedup for each instance
calculated as the ratio of column 3 over column 4. At the end of the
table we present the arithmetic and geometric mean of the
speedups. Note that the geometric mean provides a fairer compar-
ison between the algorithms since large ratios on few instances
do not affect sharply the measure as it often happens with the
arithmetic mean [4].

Table 1 shows that in 28 out of 29 instances the pulse outper-
forms the state-of-the-art algorithm, achieving speedups of up to
266. On average, the arithmetic mean of the speedup shows that
the pulse algorithm is 70 times faster, whereas the more con-
servative geometric mean exhibits an average speedup of 27 times.
Some instances that are not solved by the DSSR algorithm in a
time limit of 2 h are successfully solved by the pulse algorithm in
less than 80 s. It is also noteworthy that 27 out of 29 instances are
solved in less than a minute and all the instances are solved in less
than two minutes.

Table 2 presents the same performance comparison made over
the harder Cordeau's testbed. In summary, the pulse algorithm
also outperforms DSSR in Cordeau's testbed. The speedups over
this testbed range from 8 to 186 times. The average speedups

Table 1
Head-to-head comparison of the pulse algorithm against the state-of-the-art algorithm for the OPTW over Solomon's testbed. Bold values indicate the faster algorithm.

Instance Optimal score Righini and Salani DSSR (s) Pulse (s) Speedup

C101_100 320 0.06 0.00 13.85
C102_100 360 3.81 0.54 7.03
C103_100 400 1081.04 8.94 120.87
C104_100 420 1856.39 8.94 207.56
C105_100 340 0.12 0.07 1.85
C106_100 340 0.14 0.07 2.02
C107_100 370 0.20 0.07 2.88
C108_100 370 1.43 0.14 10.31
C109_100 380 10.57 0.34 31.27

R101_100 198 0.03 0.07 0.43
R102_100 286 233.20 7.51 31.04
R103_100 293 5498.81 31.29 175.76
R104_100 303 47200 80.04 489.95
R105_100 247 0.23 0.07 3.54
R106_100 293 334.49 12.66 26.42
R107_100 299 2979.94 35.49 83.98
R108_100 308 47200 75.64 495.18
R109_100 277 3.09 0.20 15.17
R110_100 284 30.83 0.75 41.36
R111_100 297 1408.80 14.56 96.79
R112_100 298 2508.17 9.41 266.49

RC101_100 219 0.23 0.07 3.54
RC102_100 266 6.11 0.13 45.48
RC103_100 266 88.12 0.47 186.56
RC104_100 301 264.84 1.56 170.24
RC105_100 244 2.86 0.07 44.00
RC106_100 252 2.08 0.13 15.48
RC107_100 277 49.19 0.41 120.76
RC108_100 298 68.95 0.81 85.09

Arithmetic mean 68.79
Geometric mean 27.83

Table 2
Head-to-head comparison of the pulse algorithm against the state-of-the-art algorithm for the OPTW over Cordeau's testbed. Bold values indicate the faster algorithm.

Instance Optimal score Righini and Salani DSSR (s) Pulse (s) Speedup

pr01_48 308 1.19 0.14 8.58
pr02_96 404 37.52 1.22 30.81
pr03_144 394 151.73 2.30 65.94
pr04_192 489 648.82 4.06 159.62
pr05_240 595 6815.82 36.57 186.36
pr06_288 591 47200 78.23 492.04
pr07_72 298 3.65 0.27 13.59
pr08_144 463 90.71 1.69 53.67
pr09_216 493 3270.88 81.01 40.38
pr10_288 594 47200 64.26 4112.04

Arithmetic mean 76.30
Geometric mean 52.45

D. Duque et al. / Computers & Operations Research 54 (2015) 168–176 173

reassert that the pulse algorithm is 76 and 52 times faster than
DSSR with regard to the arithmetic and the geometric mean,
respectively. Note that the pulse algorithm consistently solves
larger instances (of up to 288 nodes) with wider time windows in
less than 2 min.

5.2. Experiments on large-scale networks

We tested the proposed pulse algorithm over large-scale instances
derived from the work of Schilde et al. [26] on the multiobjective
orienteering problem (MOOP), where each node has two scores
(objectives). We considered networks ranging from 273 to 562 nodes
and created OPTW instances by dropping the second objective and
generating time windows for every node following a procedure
similar to that outlined by Solomon [27]. For each network, we
generated 12 instances varying the maximum travel time T and
the tightness of the time windows. To vary the maximum travel time,
we defined T as the maximum T used by Schilde et al. [26] for each
network and built instances with T equal to roughly 25%, 50%, 75%,
and 100% of T . For each value of T, we generated three variants
changing the tightness of the time windows. To do so, we first
generate the centroid of the time window for each node vi following
a uniform distribution in the interval defined by the earliest pos-
sible arrival time to vi and the latest possible departure time, i.e.,
½ts;i; T�ti;e�. With respect to these random centroids, we set the width
of the time windows as follows: tight (T) time windows have a width
uniformly distributed between ½0:10T ;0:15T �, i.e., between 10% and
15% of the maximum travel time T; medium (M) time windows have
a width uniformly distributed between ½0:15T ;0:20T �; and loose
(L) time windows have a width uniformly distributed between
½0:20T ;0:25T �. It is important to mention that on this testbed, the
triangle inequality does not hold, which means that for this experi-
ment our algorithm was unable to use the detour pruning strategy
and the arc deletion preprocessing procedure.

Table 3 presents the computational results for the 36 generated
instances. Column 1 presents the number of nodes in the network;
column 2 shows the maximum travel time for each instance;
column 3 presents the tightness of the time windows; column
4 shows the optimal value of the objective function; and finally,
column 5 reports the computational time (in seconds).

On these large-scale networks, the pulse algorithm was able to
solve all instances within one hour, but as the windows become
loose, the harder they become. On instances with 273 nodes, it
solved all problems in less than 12 s. For instances with 559 nodes,
the algorithm solves the tighter instances in a couple of milli-
seconds, but as the time windows become loose, the computa-
tional time increases up to 1713 s. Similarly, for the instances with
562 nodes the algorithm solved 6 out of 12 instances in less than
one second, but the harder problem took up to 60 s. This experi-
ment shows that as the time constraints are relaxed, the computa-
tional time required by the pulse algorithm to solve the problems
grows. Moreover, the computational time seems to be more
sensitive to changes in the tightness of the time windows. This
may be explained by the fact that with wider time windows the
algorithm needs to calculate more bounds in the bounding
procedure (see Section 3.1.2). Nevertheless, it is noteworthy that
even though these instances are up to five times larger than the
instances in Solomon's testbed (and twice those of Cordeau), the
algorithm was still able to efficiently solve these problems.

5.3. Assessing the strength of the problem-specific pruning strategies

To measure the strength of the proposed problem-specific
strategies, we compared two versions of the pulse algorithm: a
basic pulse algorithm that only uses the core pruning strategies;
and an enhanced pulse algorithm that relies on both the core and

problem-specific pruning strategies. For the comparison we chose
the hardest instances from Solomon's and Cordeau's testbeds (i.e.,
those that took more than one second to solve), and we measured
the computational time and the number of pulses that reached the
end node. Note that if a large number of pulses reach the end node
it means that the pruning strategies are weak and they are not
pruning pulses efficiently. On the contrary, when few pulses reach
the end node the metric is a good proxy of the strength of the
pruning strategies. To eliminate confounding factors, both versions
of the algorithm were tested using a single thread of execution.
Table 4 presents the results of this experiment. Column 1 shows
the name of the instance; columns 2 and 3 present the computa-
tional time in seconds and the amount of pulses reaching the end
node with the basic pulse algorithm; columns 4 and 5 show the
same performance measures but for the enhanced pulse algo-
rithm; column 6 presents the speedup achieved by the enhanced
version of the algorithm; and finally, column 7 presents the
exploration fraction calculated as the number of paths explored

Table 3
Computational results for the large-scale instances derived from Schilde et al. [26].

Number of
nodes

T Windows
tightness

Optimal
score

Pulse time (s)

273 5 T 280 0.02
M 327 0.03
L 358 0.03

10 T 688 0.08
M 728 0.13
L 746 0.23

15 T 1156 0.33
M 1213 0.66
L 1226 1.52

20 T 1387 0.97
M 1508 2.13
L 1581 11.94

559 40 T 241 0.06
M 284 0.06
L 284 0.06

75 T 635 0.16
M 716 0.22
L 716 0.33

110 T 1092 3.14
M 1213 41.33
L 1260 901.89

150 T 1507 6.59
M 1649 62.28
L 1768 1713.38

562 40 T 562 0.09
M 574 0.11
L 603 0.13

75 T 1086 0.31
M 1242 0.81
L 1293 0.89

110 T 1386 1.75
M 1494 4.19
L 1673 11.82

150 T 1674 7.72
M 1756 44.71
L 1978 60.12

D. Duque et al. / Computers & Operations Research 54 (2015) 168–176174

in the enhanced pulse over the number of paths explored in the
basic version.

As expected, by the design of the experiment, the enhanced
pulse clearly outperforms the basic pulse across all instances. The
problem-specific strategies in the enhanced version are responsible
for pruning at early stages a huge number of paths that lead to
average speedups of 2.65. The number of paths that reach the end
node in the enhanced version was reduced from the basic version
on average by 64%. Moreover, the r-instances show the largest
reduction in time, where the explored paths are reduced by roughly
80% on the hardest instances of Solomon's testbed (R103, R104,
R107, and R108). In this sense, we show that the proposed problem-
specific pruning strategies improve the performance of the pulse
algorithm leading to significant reductions in computational time
and in the number of complete solutions explored.

5.4. Effect of the parallelization

We parallelized the enhanced pulse as explained in Section 4. In
this experiment, we used the same set of hard instances from Section
5.3 and evaluated the parallel version of the pulse algorithmwith 2, 4,
8, and 16 threads. Table 5 summarizes the results. Column 1 shows
the name of the instance; columns 2–6 show the computational time
of the algorithm varying the number of threads; column 7 shows the
speedup calculated as the ratio between the time of the single-thread
version over the best time obtained by the multi-thread versions.

Table 5 shows a clear reduction in computational time when
more than one thread is used. Speedups range from 1.08 to 1.47,
and on average, the multi-thread version is approximately 26%
faster than the single-thread version. The computational time
stabilizes when four threads or more are used, which is expected
given the CPU (2 cores and 4 threads) used in the experiment.
These speedups might be the result of the multiple paths explored
in parallel, obtaining better primal bounds in earlier stages of the
algorithm, which in turn, strengthens the bounds pruning strategy.

6. Concluding remarks

We outlined how the pulse algorithm [19,18] can be seen as a
framework for hard shortest path variants which are at the core of
the solution of hard routing problems. In this paper, we success-
fully adapted the pulse algorithm for the OPTW by adding new

problem-specific strategies that exploit the problem structure.
Extensive computational experiments showed that our algorithm
outperforms the state-of-the-art algorithm by Righini and Salani
[24] on two different benchmark instances from the literature,
achieving speedups of up to 266 in Solomon's dataset and 186 in
Cordeau's dataset. On average, our algorithm exhibited a 70-fold
speedup (arithmetic mean) over both datasets. Moreover, using
the more conservative geometric mean, we found speedups of 27
and 52 for Solomon's and Cordeau's datasets, respectively.

To stress the algorithm, we also conducted a set of computational
experiments over a testbed derived from Schilde et al. [26], with
instances ranging from 273 to 562 nodes. Over these large-scale
problems, the pulse algorithm was able to solve all instances within
1700 s. We observed that computation time is highly dependent on
the width of the time windows. As the time constraints become
loose, the problem becomes harder for the pulse algorithm because
it needs to calculate more bounds and the implicit enumeration
needs to deal with a solution space that grows in size.

We assessed the strength of the new problem-specific pruning
strategies. These new pruning strategies are a key factor in the
performance of the algorithm, achieving speedups of up to 4.46
times. On average, problem-specific pruning strategies accelerated
the basic pulse 2.65 times and reduced the explored paths by 64%.

We also explored the effect of the parallelization of the algo-
rithm on the computational time. The multi-thread version of the
algorithm speeds up by 26% (on average) the single-thread version;
and multi-threading accelerates the algorithm up to 47% in certain
instances. In summary, the parallelization of the pulse algorithm
showed potential for scalability and improved performance, with-
out being overly expensive in terms of the coding effort.

Research currently underway aims to adapt the pulse algorithm to
stochastic variants of the OPTW problem and other multi-constrained
variants of the OP. We would like to embed the algorithm as a
building-block in large-scale solution schemes (e.g., column genera-
tion procedures) to tackle large and hard routing problems. Finally,
heuristic versions based on the pulse framework might be useful to
obtain high quality solutions for the OPTW and other variants.

References

[1] Archetti C, Bianchessi N, Speranza MG. Optimal solutions for routing problems
with profits. Discrete Appl Math 2013;161:547–57.

[2] Archetti C, Bianchessi N, Speranza MG, Hertz A. Incomplete service and split
deliveries in a routing problem with profits. Networks 2014;63(2):135–45.

Table 5
Evaluating the effect of the number of threads on the performance of the pulse
algorithm.

Instances Time for τ number of threads (s) Speedup

1 2 4 8 16

C103_100 2.24 2.09 2.06 1.98 1.95 1.15
C104_100 2.32 2.17 2.06 2.05 2.00 1.16
R102_100 1.87 1.73 1.73 1.78 1.75 1.08
R103_100 10.36 7.99 7.22 7.47 7.49 1.43
R104_100 27.13 20.88 18.47 19.13 19.57 1.47
R106_100 3.20 2.88 2.92 2.97 3.00 1.11
R107_100 12.05 8.55 8.19 8.17 8.18 1.47
R108_100 25.71 18.95 17.46 17.93 18.32 1.47
R111_100 3.55 3.33 3.36 3.05 3.03 1.17
R112_100 2.88 2.91 2.17 2.25 2.03 1.41
pr04_192 1.36 1.16 0.94 0.94 0.95 1.45
pr05_240 9.92 8.91 8.44 8.75 8.31 1.19
pr06_288 19.45 18.13 18.05 20.00 17.41 1.12
pr09_216 19.47 18.08 18.69 20.58 18.08 1.08
pr10_288 16.32 14.91 14.83 14.97 15.99 1.10

Arithmetic mean 10.52 8.84 8.44 8.80 8.54 1.26

Table 4
Assessing the strength of the problem-specific pruning strategies.

Instance Core pulse Enhanced pulse Speedup Exploration
fraction

Time
(s)

Paths Time
(s)

Paths

C103_100 3.36 129,850 2.24 83,016 1.50 0.64
C104_100 3.59 198,857 2.32 111,419 1.55 0.56
R102_100 5.08 619,111 1.87 136,527 2.72 0.22
R103_100 38.33 9,464,148 10.36 1,873,775 3.70 0.20
R104_100 120.92 26,679,302 27.13 4,492,992 4.46 0.17
R106_100 8.75 1,435,291 3.20 330,081 2.74 0.23
R107_100 42.47 10,855,293 12.05 2,242,278 3.53 0.21
R108_100 107.96 22,539,854 25.71 3,955,766 4.20 0.18
R111_100 8.38 1,427,060 3.55 384,245 2.36 0.27
R112_100 6.83 1,196,465 2.88 356,979 2.38 0.30
pr04_192 2.14 214,451 1.36 111,366 1.58 0.52
pr05_240 18.25 771,485 9.92 354,697 1.84 0.46
pr06_288 50.74 279,239 19.45 158,610 2.61 0.57
pr09_216 51.97 434,716 19.47 158,243 2.67 0.36
pr10_288 31.55 654,757 16.32 330,972 1.93 0.51

Arithmetic
mean

2.65 0.36

D. Duque et al. / Computers & Operations Research 54 (2015) 168–176 175

http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref1
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref1
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref2
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref2

[3] Archetti C, Bianchessi N, Speranza MG, Hertz A. The split delivery capacitated
team orienteering problem. Networks 2014;63(1):16–33.

[4] Bixby RE. Solving real-world linear programs: a decade and more of progress.
Oper Res 2002;50(1):3–15.

[5] Bolívar MA, Lozano L, Medaglia AL. Acceleration strategies for the weight
constrained shortest path problem with replenishment. Optim Lett. Berlin,
Heidelberg: Springer; 2014:1–8. http://dx.doi.org/10.1007/s11590-014-0742-x.

[6] Chao I, Golden BL, Wasil EA. A fast and effective heuristic for the orienteering
problem. Eur J Oper Res 1996;88(3):475–89.

[7] Cordeau J-F, Gendreau M, Laporte G. A tabu search heuristic for periodic and
multi-depot vehicle routing problems. Networks 1997;30(2):105–19.

[8] Desrochers M, Desrosiers J, Solomon M. A new optimization algorithm for the
vehicle routing problem with time windows. Oper Res 1992;40(2):342–54.

[9] Dongarra JJ. Performance of various computers using standard linear equa-
tions software. Technical report CS-89-85. USA: University of Tennessee; 2009.

[10] Duque D, Lozano L, Medaglia AL. An exact method for the biobjective shortest
path problem for large-scale networks. Eur J Oper Res 2014. In press. http://dx.
doi.org/10.1016/j.ejor.2014.11.003.

[11] Feillet D, Dejax P, Gendreau M, Gueguen C. An exact algorithm for the
elementary shortest path problem with resource constraints: application to
some vehicle routing problems. Networks 2004;44(3):216–29.

[12] Fischetti M, Salazar JJ, Toth P. Solving the orienteering problem through
branch-and-cut. INFORMS J Comput 1998;10(2):133–48.

[13] Gambardella LM, Montemanni R, Weyland D. Coupling ant colony systems
with strong local searches. Eur J Oper Res 2012;220(3):831–43.

[14] Gendreau M, Laporte G, Semet F. A branch-and-cut algorithm for the undirected
selective travelling salesman problem. Networks 1998;32(4):263–73.

[15] Gendreau M, Laporte G, Semet F. A tabu search heuristic for the undirected
selective travelling salesman problem. Eur J Oper Res 1998;106:539–45.

[16] Golden BL, Levy L, Vohra R. The orienteering problem. Naval Res Logist
1987;34(3):307–18.

[17] Ílhan T, Iravani SMR, Daskin MS. The orienteering problem with stochastic
profits. IIE Trans 2008;40(4):406–21.

[18] Lozano L, Duque D, Medaglia AL. An exact algorithm for the elementary
shortest path problemwith resource constraints. Transp Sci 2014. Available at:
http://hdl.handle.net/1992/1181.

[19] Lozano L, Medaglia AL. On an exact method for the constrained shortest path
problem. Comput Oper Res 2013;40(1):378–84.

[20] Montemanni R, Gambardella LM. An ant colony system for team orienteering
problems with time windows. Found Comput Decis Sci 2009;34(4):287–306.

[21] Moser HD. Scheduling and routing tactical aerial reconninssance vehicles
[Master 's thesis]. Naval Postgraduate School; 1990.

[22] Ramesh R, Brown KM. An efficient four-phase heuristic for the generalized
orienteering problem. Comput Oper Res 1991;18(2):151–65.

[23] Righini G, Salani M. New dynamic programming algorithms for the resource
constrained elementary shortest path problem. Networks 2008;51(3):155–70.

[24] Righini G, Salani M. Decremental state space relaxation strategies and initi-
alization heuristics for solving the orienteering problem with time windows
with dynamic programming. Comput Oper Res 2009;36(4):1191–203.

[25] Royset JO, Reber DN. Optimized routing of unmanned aerial systems for the
interdiction of improvised explosive devices. Mil Oper Res 2009;14(4):5–19.

[26] Schilde M, Doerner KF, Hartl RF, Kiechle G. Metaheuristics for the biobjective
orienteering problem. Swarm Intell 2009;3(3):179–201.

[27] Solomon MM. Algorithms for the vehicle routing and scheduling problems
with time windows constraints. Oper Res 1987;35(2):254–65.

[28] Souffriau W, Vansteenwegen P, Vertommen J, Vanden Berghe G, Van
Oudheusden D. A personalized tourist trip design algorithm for mobile tourist
guides. Appl Artif Intell 2008;22(10):964–85.

[29] Tang H, Miller-Hooks E. A tabu search heuristic for the team orienteering
problem. Comput Oper Res 2005;32(6):1379–407.

[30] Tang H, Miller-Hooks E, Tomastik R. Scheduling technicians for planned
maintenance of geographically distributed equipment. Transp Res Part E:
Logist Transp Rev 2007;43(5):591–609.

[31] Tricoire F, Romauch M, Doerner KF, Hartl RF. Heuristics for the multi-period
orienteering problem with multiple time windows. Comput Oper Res 2010;37
(2):351–67.

[32] Tsiligirides T. Heuristic methods applied to orienteering. J Oper Res Soc
1984;35(9):797–809.

[33] Vansteenwegen P, Souffriau W, Van Oudheusden D. The orienteering pro-
blem: a survey. Eur J Oper Res 2011;209(1):1–10.

[34] Vansteenwegen P, Souffriau W, Vanden Berghe G, Van Oudheusden D. Iterated
local search for the team orienteering problem with time windows. Comput
Oper Res 2009;36(12):3281–90.

[35] Verbeeck C, Sörensen K, Aghezzaf E-H, Vansteenwegen P. A fast solution method
for the time-dependent orienteering problem. Eur J Oper Res 2014;236(2):419–32.

[36] Wang X, Golden BL, Wasil EA. Using a genetic algorithm to solve the
generalized orienteering problem. In: Golden B, Raghavan S, Wasil EA, editors.
The vehicle routing problem: latest advances and new challenges. Operations
research/computer science interfaces. New York, US: Springer; 2008.

D. Duque et al. / Computers & Operations Research 54 (2015) 168–176176

http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref3
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref3
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref4
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref4
dx.doi.org/10.1007/s11590-014-0742-x
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref6
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref6
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref7
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref7
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref8
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref8
http://dx.doi.org/10.1016/j.ejor.2014.11.003
http://dx.doi.org/10.1016/j.ejor.2014.11.003
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref11
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref11
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref11
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref12
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref12
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref13
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref13
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref14
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref14
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref15
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref15
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref16
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref16
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref17
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref17
http://hdl.handle.net/1992/1181
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref19
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref19
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref20
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref20
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref22
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref22
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref23
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref23
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref24
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref24
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref24
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref25
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref25
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref26
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref26
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref27
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref27
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref28
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref28
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref28
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref29
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref29
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref30
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref30
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref30
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref31
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref31
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref31
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref32
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref32
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref33
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref33
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref34
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref34
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref34
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref35
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref35
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref36
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref36
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref36
http://refhub.elsevier.com/S0305-0548(14)00229-9/sbref36

	Solving the Orienteering Problem with Time Windows via the Pulse Framework
	Introduction
	An overview of the pulse framework
	Pulse framework for the OPTW
	Core pruning strategies
	Pruning by infeasibility
	Pruning by bounds

	Problem-specific pruning strategies
	Pruning by soft dominance
	Pruning by detour

	Parallelizing the algorithm
	Computational experiments
	Comparison against the state-of-the-art algorithm
	Experiments on large-scale networks
	Assessing the strength of the problem-specific pruning strategies
	Effect of the parallelization

	Concluding remarks
	References

