
European Journal of Operational Research 242 (2015) 788–797

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

An exact method for the biobjective shortest path problem

for large-scale road networks

Daniel Duque, Leonardo Lozano, Andrés L. Medaglia∗

Centro para la Optimización y Probabilidad Aplicada (COPA), Departamento de Ingeniería Industrial, Universidad de los Andes, Bogotá, Colombia

a r t i c l e i n f o

Article history:

Received 18 January 2013

Accepted 1 November 2014

Available online 6 November 2014

Keywords:

Routing

Multiobjective combinatorial optimization

(MOCO)

Biobjective shortest path

Multiobjective shortest path

Pulse algorithm

a b s t r a c t

The Biobjective Shortest Path Problem (BSP) is the problem of finding (one-to-one) paths from a start node

to an end node, while simultaneously minimizing two (conflicting) objective functions. We present an exact

recursive method based on implicit enumeration that aggressively prunes dominated solutions. Our approach

compares favorably against a top-performer algorithm on two large testbeds from the literature and efficiently

solves the BSP on large-scale networks with up to 1.2 million nodes and 2.8 million arcs. Additionally, we

describe how the algorithm can be extended to handle more than two objectives and prove the concept on

networks with up to 10 objectives.

© 2014 Elsevier B.V. All rights reserved.

t

t

v

r

o

p

P

m

L

s

&

s

n

r

o

p

c

a

S

1. Introduction

Consider a directed graph G = (N ,A) where N = {v1, . . . ,

vi, . . . , vn} is the set of nodes and A = {(i, j)|vi ∈ N , vj ∈ N } is the

set of arcs. For all arcs (i, j) ∈ A let there be two nonnegative weights

denoted by cij and tij. Henceforth, and without loss of generality, we

refer to cij and tij as the cost and time of traversing arc (i, j) ∈ A, re-

spectively. The Biobjective Shortest Path Problem (BSP) is the problem

of finding paths P from the start node vs ∈ N to the end node ve ∈ N
that minimize two different (often conflicting) objective functions.

The BSP can be formally defined as follows:

min z(x) = (c(x), t(x)) (1)

s.t.,

x ∈ X (2)

where x is a path P represented by a vector of (binary) arc flows xij,

(i, j) ∈ A; c(x)�
∑

(i,j)∈A cijxij is the cost of path x; t(x)�
∑

(i,j)∈A tijxij

is the time of path x; and X is the set of all paths from vs to ve. In (1)

we (simultaneously) minimize the cost and time components of the

vector function z(x). Since the existence of a path that simultaneously

minimizes both objectives in (1) cannot be guaranteed, alternatively

we seek for a set of paths with an acceptable tradeoff between the
∗ Corresponding author: Universidad de los Andes, Cr 1E No. 19A-10, ML711,

Bogotá, Colombia Tel.: +57 13394949, ext:2880. URL http://wwwprof.uniandes.

edu.co/∼amedagli

E-mail address: amedagli@uniandes.edu.co, andres.medaglia@gmail.com

(A. L. Medaglia).

2

s

v

http://dx.doi.org/10.1016/j.ejor.2014.11.003

0377-2217/© 2014 Elsevier B.V. All rights reserved.
wo objectives. Henceforth, we use functions c(·)and t(·) to represent

he cost and time for complete solutions (i.e., a path P from vs to

e) or partial solutions (i.e., a path P from vs to a certain node vi),

espectively.

This work aims to expand the body of knowledge of exact meth-

ds for the BSP. Our work shares its intuition with the pulse algorithm

roposed by Lozano and Medaglia (2013) for the Constrained Shortest

ath Problem (CSP), which has been successfully used as an algorith-

ic block for the multi-activity shift scheduling problem (Restrepo,

ozano, & Medaglia, 2012) and has been extended to the weight con-

trained shortest path problem with replenishment (Bolívar, Lozano,

Medaglia, 2014). To emphasize the fact that this work is an exten-

ion of a flexible solution framework, we purposely keep the pulse

ame in this paper.

The rest of the paper is organized as follows. Section 2 introduces

elevant concepts for the BSP. Section 3 presents a literature review

f the main solution strategies for the BSP. Section 4 introduces the

ulse algorithm and the intuition behind it. Section 5 presents the

ore components of the algorithm. Section 6 compares the proposed

lgorithm against a top-performer algorithm by Raith (2010). Finally,

ection 7 concludes the paper and outlines future work.

. Basic concepts

This section introduces relevant concepts related to the biobjective

hortest path problem. Let us recall thatX is the set of all paths x from

s to ve. The image of any solution x ∈ X on the objective space Z is a

http://dx.doi.org/10.1016/j.ejor.2014.11.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2014.11.003&domain=pdf
http://wwwprof.uniandes.edu.co/~amedagli
mailto:amedagli@uniandes.edu.co
mailto: andres.medaglia@gmail.com
http://dx.doi.org/10.1016/j.ejor.2014.11.003


D. Duque et al. / European Journal of Operational Research 242 (2015) 788–797 789

v

v

o

o

f

D

i

c

p

o

v

m

w

t

o

o

t

a

s

s

r

D

b

i

n

D

p

t

z

D

b

x

D

e

c

a

s

b

n

3

m

p

t

c

t

e

t

r

t

a

s

w

m

t

A

c

t

t

t

p

s

a

(

m

a

r

v

(

n

g

e

n

r

b

h

p

c

s

c

i

c

t

(

t

d

T

e

g

p

b

t

a

a

G

s

d

e

n

b

s

w

(

e

d

(

t

(

p

c

a

f

C

m

i

p

s

n

ector denoted by z(x) = (c(x), t(x)) ∈ Z , where c(x) and t(x) are the

alues of each objective function (cost and time, respectively).

In the BSP, we look for a set of solutions that cannot improve

ne component of the objective vector z(x)without deteriorating the

ther one. These solutions are referred to as efficient solutions and are

ormally defined as follows:

efinition 2.1. A solution x ∈ X is efficient if there does not ex-

st another solution x′ ∈ X such that c(x′) < c(x) and t(x′) ≤ t(x) or

(x′) ≤ c(x) and t(x′) < t(x).

Efficient solutions could be either supported or non-supported. Sup-

orted solutions correspond to the optimal solutions of the mono-

bjective shortest path problem defined by the following linear (con-

ex) combination of the objectives:

in
x∈X

λcc(x)+ λtt(x) (3)

here (λc, λt) ∈ � are the weights given to the cost and time within

he weight set � = {(λc, λt) ∈ �2|λc ≥ 0, λt ≥ 0, λc + λt = 1}. On the

ther hand, efficient solutions which are non-supported cannot be

btained by solving a shortest path problem with a weighted sum of

he objectives as in (3).

Similar to the efficiency concept defined over the solution space,

ny given solution has a corresponding vector (point) in the objective

pace Z that can be either dominated or non-dominated. The following

et of definitions clearly states the concepts of dominance and their

elation with efficiency.

efinition 2.2. The image z(x) of an efficient solution x is said to

e a non-dominated vector. If the solution is not efficient, then its

mage is a dominated vector in the objective space. The set of all

on-dominated vectors is denoted by ZN .

efinition 2.3. Let x, x′ ∈ X be two solutions representing feasible

aths. If c(x′) < c(x) and t(x′) ≤ t(x) or c(x′) ≤ c(x) and t(x′) < t(x),
hen z(x) is said to be dominated by z(x′), and it is denoted by z(x′) 	
(x).

efinition 2.4. Let x, x′ ∈ X be two solutions representing feasible,

ut different paths (x′ 
= x). If c(x′) = c(x)and t(x′) = t(x), then x′ and

are said to be alternative paths.

efinition 2.5. The set of all efficient solutions XE is called the true

fficient set. Given an algorithm, the set of efficient solutions dis-

overed so far at any given iteration is called the online efficient set

nd it is denoted by X̂E. If the algorithm is exact, once it meets its

topping criterion, X̂E coincides with XE. We also make the distinction

etween the online set of non-dominated vectors ẐN and the true

on-dominated set ZN .

. Literature review

The BSP arises naturally on multiple real applications. In telecom-

unications, Clímaco and Pascoal (2012) presented network routing

roblems where it is necessary to find paths that minimize the to-

al number of links while simultaneously minimize the bandwidth

onsumption. Pallotino and Scutellà (1998) stated that transporta-

ion problems often offer a tradeoff between two or more objectives,

.g., minimizing the arrival time to a final destination and the cost of

he path. Müller-Hannemann and Weihe (2006) reported a railway

outing problem that faces a compromise between monetary cost and

ravel time. Ehrgott, Wang, Raith, and Van Houtte (2012) presented

biobjective cyclist route choice model in which bike routes are de-

igned based on the travel time and a suitability weight associated

ith each arc. Erkut and Verter (1998) presented a real-world haz-

at transportation application, where the conflicting objectives are

he path risk (i.e., probability of an accident) and its associated cost.
side from its direct application, the BSP arises as a subproblem of

ombinatorial optimization models (Skriver & Andersen, 2000). In all

he cases cited above, it is necessary to find a set of solutions that

akes into account more than one objective simultaneously, rather

han to find a single solution that focuses on a single objective.

Aside from its practical relevance, the BSP is also a challenging

roblem that is NP-hard (Serafini, 1986). Even though several re-

earchers have proposed different methods for solving the BSP, there

re two major solution strategies for the BSP: dynamic programming

DP) and ranking.

In the DP category, there are label correcting and label setting

ethods. Hansen (1980) and Martins (1984) were among the first

uthors who proposed a labeling approach for the BSP. The label cor-

ecting method is a straightforward extension of the mono-objective

ersion (cf. Bertsekas, 1998), but with several labels at each node

Raith & Ehrgott, 2009). To find the efficient set of solutions, each

ode stores labels that represent tentative efficient paths. At the be-

inning, only the start node vs is labeled. All labels at each node are

xtended through all the outgoing arcs, setting new labels over target

odes. When the label set of a node changes, the node is marked for

econsideration. When a node is reconsidered, all the dominated la-

els are deleted and the rest are extended. When the reconsideration

eap is empty the algorithm finishes. Skriver and Andersen (2000)

resented a label correcting algorithm that employs a node selection

riterion for the reconsideration heap. Other versions, as the one pre-

ented by Guerriero and Musmanno (2001), employ a label selection

riterion for the reconsideration heap. The label setting method works

n a similar fashion. These algorithms always employ a label selection

riterion and the main difference with label correcting is that only

he selected label is extended through all the arcs. Raith and Ehrgott

2009) implemented a label setting algorithm using a binary heap for

he labels storage. In this algorithm, the smallest lexicographically or-

ered label is selected from all nodes to be extended at each iteration.

he extended label is compared with the labels at the target node of

ach arc and dominated labels are deleted. Several speedup strate-

ies for DP approaches have been developed recently. Raith (2010)

roposed bounded label correcting and setting algorithms. These

ounded versions use the labels at the end node for the dominance

est at each node (in addition to the node’s own labels). Iori, Martello,

nd Pretolani (2010) presented a label setting policy that treats labels

ccording to an aggregate function calculated for each label. Demeyer,

oedgebeur, Audenaert, Pickavet, and Demeester (2013) used the

ame idea of a bounded labeling algorithm (Raith, 2010) in a uni-

irectional/bidirectional label setting algorithm. The bidirectional DP

xtends labels forward from the start node and backward from the end

ode. When forward and backward labels reach the same node, the la-

els are combined and added into the online non-dominated set. Both

earches are aborted as soon as the there are no forward nor back-

ard labels dominating solutions of the online non-dominated set

i.e., there are no promising labels to extend). Even though Demeyer

t al. (2013) reported speedups of the bidirectional DP over the uni-

irectional version on the common testbed instances used by Raith

2010) and Demeyer et al. (2013), computational times are better for

he labeling approach of Raith (2010). Müller-Hannemann and Schnee

2007) and Disser, Müller-Hannemann, and Schnee (2008) also pro-

osed speedup techniques for DP algorithms that exploit particular

haracteristics of time-dependent networks used in railroad routing.

In the ranking category, the near shortest path (NSP) method finds

ll the paths within a certain deviation from the shortest path length

ound by solving the weighted sum problem associated with the BSP.

arlyle and Wood (2005) presented a method that, besides its re-

arkable performance for solving the near shortest path problem,

t outperforms other specialized algorithms solving the k-shortest

ath problem. Raith and Ehrgott (2009) compared different solution

trategies including label setting and label correcting approaches, the

ear shortest path method, and a two-phase method based on the



790 D. Duque et al. / European Journal of Operational Research 242 (2015) 788–797

Algorithm 1 Pulse algorithm

Input: G, directed graph; vs, start node; ve, end node.

Output: XE, true efficient set

1: P ← {}
2: c(P) ← 0

3: t(P) ← 0

4: initialization(G) � see Section 5.2

5: pulse(vs, c(P), t(P),P)

6: return XE

t

p

p

b

a

fi

l

t

b

n

c

v

p

g

t

p

w

c

A

I

O

1
1

1
1

1
1

1

t

e

a

A

e

fi

a

t

n

s

t

a

t

d

u

approach of Ulungu and Teghem (1995). The two-phase method by

Raith and Ehrgott (2009) starts with an initialization procedure with

the best solution for each single objective. In phase one, the algorithm

focuses on supported efficient solutions; while in phase two, it finds

the missing non-supported efficient solutions.

Aside from these methods, Geisberger, Kobitzsch, and Sanders

(2010) proposed an algorithm that solves several mono-objective

shortest path problems to compute supported efficient solutions.

Recent research has focused on speedup techniques and preprocess-

ing steps to accelerate mono-objective shortest path algorithms over

large networks. A comprehensive survey of these advances is pre-

sented by Bast et al. (2014).

The BSP can be seen as a special case of the Multiobjective Shortest

Path Problem (MSP); nevertheless, the BSP is by far, the most studied

problem among MSPs (Chinchuluun & Pardalos, 2007). Martins (1984)

presented one of the first label setting algorithms for the MSP. Later

on, Carraway, Morin, and Moskowitz (1990) proposed a generalized

DP approach for the MSP that includes probabilities on the objectives

(i.e., the probability of successfully traversing the arc). Guerriero and

Musmanno (2001) presented a labeling method that outperforms the

one by Martins (1984) on networks with two, three, and four ob-

jectives. More recently, Paixão and Santos (2013) considered two

labeling techniques on a large set of test problems with 6, 8, and

10 objectives. Although most algorithms for the BSP are extensible

in theory to the general case, just few of them have been tested with

more than two objectives (Chinchuluun & Pardalos, 2007). Aside from

the implementation and computational challenges, the exponential

growth of the efficient set might be the most significant hurdle to ex-

tend most of the current state-of-the-art algorithms for the MSP. Such

large efficient sets (with an exponentially large number of efficient

solutions) might turn out simply impossible to handle from a practi-

cal standpoint. Under a large-efficient set scenario, some algorithms

tackle the MSP by finding a high-quality approximation of the efficient

set with less computation effort (than that of an exact method). Along

this line, multiobjective evolutionary algorithms (MOEAs, cf. Coello,

Lamont, & Veldhuizen, 2007) have proven to be a valuable source

to solve a wide range of multiobjective combinatorial problems (cf.

Coello & Lamont, 2004). For a survey on multiobjective combinato-

rial optimization, the reader is referred to Ehrgott and Gandibleaux

(2003).

4. The pulse algorithm: Intuition and overview

The pulse algorithm gets its name from a very simple, yet insight-

ful analogy. Given a network, the algorithm sends a pulse from the

start node vs to the end node ve. This pulse travels through the entire

network storing the partial path P (an ordered sequence of visited

nodes) and its cumulative objective functions, c(P) and t(P). Every

pulse that reaches the end node ve, is a feasible solution that might

be efficient. Once a pulse reaches the end node, it recursively back-

tracks to continue its propagation through the rest of the nodes in

the search for more efficient paths from vs to ve. If the pulse is let

free, this recursive algorithm resembles a complete enumeration of

all possible paths, which guarantees that the efficient set is always

found. However, the practical value of the algorithm relies on the fact

that it stops the exploration of any partial path whenever there is

enough information that shows that the path will not lead to an ef-

ficient solution. This look-ahead mechanism prunes aggressively vast

regions of the solution space and ultimately accelerates the explo-

ration of the network. Algorithm 1 presents a high-level pseudocode

of the pulse algorithm. For the initialization procedure, we run a

one-to-all mono-objective shortest path algorithm, but more details

are deferred until Section 5.2.

To avoid a complete enumeration and to control the pulse propa-

gation, we use a set of strategies that prunes pulses without cutting

off any efficient solution. Every time that a pulse arrives to a node,
he algorithm uses a battery of strategies to determine whether the

artial path being explored should be propagated or not. Most im-

ortantly, pruning a partial path does not discard just one solution,

ut all the solutions that contain this partial path. Hence, aggressive

nd effective strategies transform an explicit enumeration into an ef-

cient implicit enumeration. This idea shares the spirit of algorithms

ike branch-and-bound that also perform implicit enumerations. Note

hat the algorithm propagation follows a depth-first search truncated

y particular pruning strategies.

In particular, for the BSP, we define four pruning strategies: cycles,

adir point, efficient set, and label. Algorithm 2 presents the pulse re-

ursive function which receives as parameters the node being visited

i, the cumulative cost c(P), the cumulative time t(P), and the partial

ath P . Lines 1–4 of Algorithm 2 apply the different pruning strate-

ies to the incoming pulse; if the pulse is not pruned, line 5 stores

he current c(P) and t(P) while line 6 adds the node vi to the partial

ath. In lines 7–11, the pulse propagates over all nodes vj ∈ �+(vi),
here �+(vi) is the set of outgoing neighbors of vi, adding cij to the

umulative cost and tij to the cumulative time.

lgorithm 2 Pulse function

nput: vi , current node; c(P), cumulative cost; t(P), cumulative time; P , cur-
rent path.

utput: void
1: if isAcyclic(vi,P) then � see Section 5.1
2: if ¬checkNadirPoint(vi, c(P), t(P)) then � see Section 5.2
3: if ¬checkEfficientSet(vi, c(P), t(P)) then � see Section 5.3
4: if ¬checkLabels(vi, c(P), t(P)) then � see Section 5.4
5: store(c(P), t(P)) � see Section 5.4
6: P ′ ← P ∪ {vi}
7: for vj ∈ �+(vi) do
8: c(P ′) ← c(P)+ cij

9: t(P ′) ← t(P)+ tij

0: pulse(vj, c(P ′), t(P ′),P ′)
1: end for
2: end if
3: end if
4: end if
5: end if
6: return void

Every time the pulse function is invoked at the end node ve, a par-

ial path P becomes a complete solution x and we update the online

fficient set X̂E. Note that the information about X̂E has a global scope

nd it is not an attribute of the traveling pulse within the recursion.

lgorithm 3 presents the pulse function when it is invoked over the

nd node ve. Since a new solution has been found, the algorithm veri-

es if the new solution is efficient and updates the online efficient set

ccordingly.

At this point it is important to highlight the main differences be-

ween the pulse algorithm and traditional labeling algorithms. First,

ote that while labeling algorithms usually follow a breadth-first

earch, the pulse algorithm follows a depth-first search, increasing

he chances of finding complete efficient solutions faster. Addition-

lly, due to the recursive nature of the algorithm there is no need

o explicitly store the state space (e.g., labels in a priority queue) as

one in labeling algorithms. Finally, even though the pulse algorithm

ses a label pruning strategy, these labels are never extended, nor the



D. Duque et al. / European Journal of Operational Research 242 (2015) 788–797 791

Algorithm 3 Pulse function for the end node

Input: ve, end node; c(P), cumulative cost; t(P), cumulative time; P ,

current path.

Input: void
1: if ¬checkEfficientSet(ve, c(P), t(P)) then

2: P ← P ∪ {ve}
3: x ← mapPathToSolution(P)
4: updateEfficientSet(x) � see Section 5.3

5: end if

6: return void

c

t

n

5

p

p

5

l

i

t

a

5

s

t

a

z

p

t

v

s

s

p

z

t

d

a

c

t

n

(

g

c

o

a

w

n

l

a

a

a

t

e

r

c

A

A

I

O

l

a

S

(

a

5

fi

H

t

i

a

t

a

M

a

R

i

orrectness of the algorithm depends on an exhaustive dominance

est. In contrast to labeling approaches, this allows us to limit the

umber of labels stored at each node.

. Pruning strategies

The performance of the pulse algorithm is tightly coupled to the

runing strategies defined for the problem at hand. This section ex-

lains the different strategies implemented for the BSP.

.1. Pruning by cycles

Because all weights on the arcs are nonnegative, any efficient so-

ution cannot contain cycles. To avoid cycles in a path, every time we

nvoke the pulse function at node vi, the algorithm checks a function

hat indicates whether a node has been visited or not. If node vi lies

lready on the partial path, P is pruned by cycles.

.2. Pruning by nadir point

Let x∗
c and x∗

t be the optimal solutions for the mono-objective

hortest path problem with the cost and time objectives, respec-

ively. The images for the optimal solutions in the objective space

re z(x∗
c) = (T̄, C) and z(x∗

t ) = (T, C̄). The nadir point, denoted by
N = (T̄, C̄), is a vector in the objective space that establishes an up-

er bound for each objective. Under alternative optimal solutions for

he mono-objective shortest path problem, T̄ and C̄ are the smallest

alues among all alternative solutions of x∗
c and x∗

t , respectively. Fig. 1

hows the minimizer vectors z(x∗
c) and z(x∗

t ), and zN in the objective

pace. Note that the nadir point can also be seen as the anti-ideal

oint in the objective space, whereas z∗ is the ideal point.

Consequently, for any solution x with c(x) > C̄ or t(x) > T̄, its image

(x) is dominated and x is not efficient. Fig. 1 shows how any point

hat falls in the dark gray region (i.e., c(x) > C̄ or t(x) > T̄) is either

ominated by z(x∗
c) or z(x∗

t ).
Based on this idea of the nadir point, the algorithm aims to prune

s early as possible any pulse exceeding either C̄ or T̄. To do so, we

alculate the minimum cost (regardless of time) and the minimum
t(x)

c(x)

zNz(x∗
c)

z(x∗
t )z∗

C̄C

T̄

T

Fig. 1. Nadir point and lower and upper bounds.

s

s

s

g

(

f

t

i

a

d

i

o

c

e

ime (regardless of cost) it takes from any node vi to reach the end

ode ve. These lower bounds are obtained by reversing the network

i.e., reversing the direction of every arc), thus creating a new directed

raph G′ = (N ,A′) where A′ = {(j, i)|(i, j) ∈ A} and the weights c′
ji

=
ij and t′

ji
= tij for (j, i) ∈ A′. The starting node in G′ is the end node

f the original network, v′
s = ve. We run a one-to-all shortest path

lgorithm for each objective from v′
s to all nodes. Using this procedure

e obtain the minimum time t(vi) and minimum cost c(vi) from any

ode vi to the end node ve in the original network. Knowing these

ower bounds, we determine the maximum values t̄(vi) and c̄(vi) that

partial path P to node vi can show upon arrival as t̄(vi) := T̄ − t(vi)
nd c̄(vi) := C̄ − c(vi) for the time and cost objectives, respectively. If

ny partial path P to node vi shows that t(P) > t̄(vi) or c(P) > c̄(vi),
hen partial path P can be safely pruned because it will surely exceed

ither one or both upper bounds defined by the nadir point before

eaching (or at) the end node. The procedure for calculating t̄(vi) and

¯(vi) is done at the initialization phase of Algorithm 1 (see line 4).

lgorithm 4 shows the nadir point verification procedure.

lgorithm 4 Pruning by nadir point

nput: vi, current node; c(P), cumulative cost; t(P), cumulative time.

utput: boolean
1: prune ← false
2: if c(P) > c̄(vi) or t(P) > t̄(vi) then

3: prune ← true
4: end if

5: return prune

It is worth noting that Tung and Chew (1992) proposed simi-

ar preprocessing procedures to strengthen dominance tests in DP

pproaches. Also Machuca, Mandow, Pérez de la Cruz, and Ruiz-

epulveda (2012) explored the usage of exact and heuristic dual

lower) bounds to improve computational efficiency of label setting

lgorithms.

.3. Pruning by efficient set

Given that the algorithm uses implicit enumeration, the true ef-

cient set is unveiled only at the end of the algorithm’s execution.

owever, the online efficient set obtained at intermediate stages of

he algorithm is useful to prune partial paths whose images are dom-

nated by solutions in this set. This idea has been explored by some

uthors in DP approaches. For instance, Tung and Chew (1992) used

he labels stored at the end node (i.e., the online non-dominated set)

nd lower bounds to strengthen the dominance tests at each node.

üller-Hannemann and Schnee (2007) also used lower bounds to

ccelerate a DP algorithm in the context of railroad transportation.

aith (2010) and Demeyer et al. (2013) do not use lower bounds, but

nclude the labels stored at the end node in the dominance tests for

everal variants of labeling algorithms.

Henceforth, we will refer to the efficient set as the online efficient

et X̂E that is updated as the algorithm finds new solutions. Fig. 2

hows a typical evolution of the efficient set as the algorithm pro-

resses. After the initialization, the efficient set starts with two points

i.e., z(x∗
c) and z(x∗

t )) and there is a large promising region, spanning

rom the ideal up to the nadir point, where efficient solutions can map

heir images (see Fig. 2(a)). As the algorithm evolves, new solutions

n X̂E enlarge the dominated region (white space). At any stage of the

lgorithm, a new solution is labeled efficient if its image is in the non-

ominated (gray) region. We can safely prune a partial path, if its

mage—after completing the path with the optimistic bounds—falls

utside of the promising (non-dominated) region.

Consider X̂E at a given intermediate stage of the algorithm. We

an determine whether a partial path has the potential to become an

fficient solution (or not) using the same lower bounds calculated for



792 D. Duque et al. / European Journal of Operational Research 242 (2015) 788–797

t(x)

c(x)

(a)

t(x)

c(x)

(b)
t(x)

c(x)

(c)

t(x)

c(x)

(d)

Fig. 2. Evolution of the non-dominated set as the algorithm progresses. Black points

are associated to supported solutions and “×” to non-supported solutions. (a) Initial

non-dominated set obtained after the initialization procedure. (b) Intermediate non-

dominated set with three non-dominated points. (c) Intermediate non-dominated set

with five non-dominated solutions. (d) True non-dominated set.

Algorithm 6 Updating the efficient set

Input: x, complete solution.

Output: void
1: for x′ ∈ X̂E do

2: if c(x) ≤ c(x′) and t(x) ≤ t(x′) then

3: X̂E ← X̂E\{x′}
4: end if

5: end for

6: X̂E ← X̂E ∪ {x}
7: return void

t

r

r

5

(

n

w

a

L
a

v

p

p

t

a

C

b

c

l

(

t

A

I

O

6

r

(

n

t

2

t

t

t

W

m

(

t

a

the previous strategy, namely, t(vi) for time and c(vi) for cost. Given

a partial path P to node vi, if there is a solution x ∈ X̂E such that

c(P)+ c(vi) ≥ c(x) and t(P)+ t(vi) ≥ t(x), we can safely prune partial

path P , because even if it spends both the minimum cost and the

minimum time to reach the end node, it will still be dominated by x.

Algorithm 5 shows the efficient set verification process.

Algorithm 5 Pruning by efficient set

Input: vi, current node; c(P), cumulative cost; t(P), cumulative time.

Output: boolean
1: prune ← false
2: for x ∈ X̂E do

3: if c(x) ≤ c(P)+ c(vi) and t(x) ≤ t(P)+ t(vi) then

4: prune ← true
5: end if

6: end for

7: return prune

To guarantee that we only store efficient solutions, whenever a

partial path reaches the end node (becomes a solution x) the efficient

set X̂E is updated as follows: if z(x) is dominated, solution x is dis-

carded; if z(x) is non-dominated, x is added to the efficient set X̂E and

any solution dominated by z(x) is deleted from the set. In the case

where alternative efficient solutions share the same objective vector,

the algorithm only records one solution per objective vector. Note

that as the algorithm approaches to the true efficient set, this prun-

ing strategy becomes stronger. Algorithm 6 shows the procedure to

update the efficient set once a new efficient solution is found.

It is important to highlight that the efficient set also contains the

best solutions for each objective. Since the nadir point falls into this

category, pruning by efficient set is a more general strategy that in-

cludes the test performed in the nadir point strategy. However, from

a computational point of view, it is better to consider these two as

separate strategies because the nadir point strategy is a simple check

that requires considerably less computational effort. Note that each
ime that a solution is pruned by the nadir point strategy, the algo-

ithm avoids the inspection of an often large list of efficient solutions

equired by the efficient set pruning strategy.

.4. Pruning by labels

We can use labels to prove dominance relations over partial paths

subpaths from vs to any node vi) in the same way we prove domi-

ance over complete solutions (see Definition 2.3). For each node vi,

e store a fixed number of labels. Each label saves a tuple of values

ssociated with cost and time. The labels at node vi are denoted by

(vi) = {(cil, til)|l = 1, . . . , Q} where cil and til are the cumulative cost

nd time for a partial path to vi and Q denotes the number of labels at

i. For an incoming pulse, the algorithm checks if the incoming partial

ath P is dominated or not; that is, if any label dominates z(P), the

ulse is discarded by label pruning. Labels safely prune partial paths

hat may lead to inefficient paths, because any partial path within

n efficient solution must be efficient too (cf. Proposition 9.4 and

orollary 9.5; Ehrgott, 2005). When a partial path P is not pruned

y any of the strategies, the algorithm stores the cumulative cost

(P) and cumulative time t(P) in an empty slot of L(vi) following a

exicographical order. If there are no empty slots, it overwrites any

randomly selected) label except those with the minimum cost and

ime. Algorithm 7 shows the label verification process.

lgorithm 7 Pruning by labels

nput: vi, current node; c(P), cumulative cost; t(P), cumulative time.

utput: boolean
1: prune ← false
2: for (cil, til) ∈ L(vi) do

3: if cil ≤ c(P) and til ≤ t(P) then

4: prune ← true
5: end if

6: end for

7: return prune

. Computational experiments on benchmark problems

We compared the computational performance of the pulse algo-

ithm against the bounded label setting (bLSET) algorithm by Raith

2010) which is among the best performers for the BSP on real road

etworks. We implemented both algorithms in Java and compiled

hem with Eclipse SDK version 4.3 on a Windows 7 computer with a

.6 GHz Intel Core i5 2540M (2 cores) CPU and 6 GB of RAM allocated

o the memory heap size of the Java Virtual Machine. The initializa-

ion procedure was parallelized taking into account that we perform

wo independent shortest path executions, one for each objective.

e coded the Dijkstra’s algorithm using the double buckets imple-

entation (DIKBD) presented by Cherkassky, Goldberg, and Radzik

1996) to solve the mono-objective shortest path problem. After fine

uning the algorithm, we fixed the maximum number of labels stored

t each node to Q = 20. We sort the outgoing arcs of a node when we



D. Duque et al. / European Journal of Operational Research 242 (2015) 788–797 793

Table 1

Computational results over real road networks DC, RI, and NJ from Raith and Ehrgott

(2009).

Instance Nodes Arcs |ZN| bLSET Pulse Speedup

time (s) time (s)

DC1 9559 39,377 2 0.11 < 0.01 27.25

DC2 9559 39,377 6 < 0.01 < 0.01 1.00

DC3 9559 39,377 3 < 0.01 < 0.01 1.00

DC4 9559 39,377 2 0.08 < 0.01 13.00

DC5 9559 39,377 1 < 0.01 < 0.01 1.00

DC6 9559 39,377 7 0.05 < 0.01 11.75

DC7 9559 39,377 2 0.02 0.01 2.00

DC8 9559 39,377 1 0.03 < 0.01 7.75

DC9 9559 39,377 6 0.05 < 0.01 11.75

Arithmetic mean 8.50

Geometric mean 4.50

RI1 53,658 192,084 3 0.05 < 0.01 11.75

RI2 53,658 192,084 15 0.83 0.03 25.88

RI3 53,658 192,084 2 0.20 0.02 8.83

RI4 53,658 192,084 17 0.41 0.02 18.45

RI5 53,658 192,084 16 0.60 0.02 29.75

RI6 53,658 192,084 3 2.30 0.02 127.61

RI7 53,658 192,084 3 1.34 0.02 74.67

RI8 53,658 192,084 4 0.66 0.02 34.58

RI9 53,658 192,084 22 0.22 0.04 5.92

Arithmetic mean 37.49

Geometric mean 24.22

NJ1 330,386 1,202,458 2 0.64 0.13 5.04

NJ2 330,386 1,202,458 6 0.25 0.10 2.58

NJ3 330,386 1,202,458 21 13.69 0.10 144.11

NJ4 330,386 1,202,458 5 0.97 0.11 9.15

NJ5 330,386 1,202,458 7 3.30 0.11 3.03

NJ6 330,386 1,202,458 12 14.11 0.10 146.98

NJ7 330,386 1,202,458 6 0.60 0.10 5.83

NJ8 330,386 1,202,458 13 5.30 0.11 48.62

NJ9 330,386 1,202,458 24 34.63 0.23 152.56

Arithmetic mean 57.54

Geometric mean 19.04

r

b

t

W

6

i

a

s

a

3

t

t

a

c

t

t

l

b

a

c

t

t

s

t

a

a

s

t

(

a

w

6

d

w

R

p

J

S

N

a

t

t

h

t

n

t

3

a

n

o

t

t

C

b

t

p

7

s

s

1

i

o

t

n

n

b

r

f

a

r

b

o

e

h

f

s

t

a

6

a

l

p

p

each it for the first time based on the sum of both cost and time best

ounds. All the execution times are reported in seconds and any run

ime that is less than 0.01 seconds appears in the tables as “< 0.01”.

e established a maximum running time of one hour.

.1. Large-scale real road networks

For this first experiment, we used the road networks from Wash-

ngton (DC), Rhode Island (RI), and New Jersey (NJ) presented by Raith

nd Ehrgott (2009). For each road network, there is a set of nine in-

tances which only difference is the randomly selected pair of start

nd end nodes. These are instances that range from 9559 nodes and

9,377 arcs to 330,386 nodes and 1,200,458 arcs. Table 1 presents

he computational results for this set of networks. Column 1 shows

he instance name; columns 2 and 3 present the number of nodes and

rcs, respectively; column 4 shows the size of the non-dominated set;

olumns 5 and 6 show the computational time for our implementa-

ions of the bLSET and pulse algorithms (including the initialization

ime), respectively; and finally, column 7 shows the speedup calcu-

ated as the bLSET computational time over the pulse time. Times in

old highlight the faster algorithm.

Over these networks, the pulse algorithm outperforms the bLSET

lgorithm in 24 out of 27 instances, showing computational times

onsistently under 0.23 seconds in contrast to the bLSET algorithm

hat takes up to 34.6 seconds in NJ9, one of the largest instances in

his testbed. For the DC instances, the pulse time remains under 0.005

econds on seven out of the nine instances. In the larger RI instances,

he pulse algorithm outperforms bLSET in all instances, achieving an

verage speedup of 37. Likewise, in the largest NJ instances the pulse

lgorithm outperforms bLSET in all instances, showing an average
peedup of 57 times and achieving speedups of up to 150 times faster

han the benchmark. Using the more conservative geometric mean

Bixby, 2002), the pulse is about 4, 24, and 19 times faster for DC, RI,

nd NJ instances, respectively. Note that it is on the larger instances

here the pulse achieves the larger speedups.

.2. Very large-scale real road networks

To better assess the scalability of the pulse algorithm, we con-

ucted a second experiment on very large-scale read road net-

orks that are significantly larger than those in the testbed by

aith and Ehrgott (2009). For this experiment, we use networks

resented in the 9th DIMACS challenge (Demetrescu, Goldberg, &

ohnson, 2006), namely, those representing New York City (NY),

an Francisco Bay Area (BAY), Colorado (COL), Florida (FLA), and

orthwest USA (NW). These networks range from 264,346 nodes

nd 733,846 arcs to 1,207,945 nodes and 2,840,208 arcs. The objec-

ives considered for these networks correspond to the physical dis-

ance and transit time between nodes. Full datasets are available at

ttp://www.dis.uniroma1.it/challenge9/download.shtml. For each of

he five networks, we generated 30 random pairs of start and end

odes for a total of 150 instances. For each instance, we verified

hat either bLSET or pulse were able to solve it to optimality within

600 seconds. Additionally, we categorized the 30 instances gener-

ted from each network into three clusters according to the size of the

on-dominated set. To do so, we sorted the instances in increasing

rder and allocated the first 10 instances into the small cluster (S),

he next 10 into the medium cluster (M), and the remaining 10 into

he large cluster (L).

Table 2 presents the computational results for this experiment.

olumn 1 presents the cluster’s name; column 2 presents the num-

er of instances in the corresponding cluster; columns 3 and 4 show

he number of nodes and arcs in the network, respectively; column 5

resents the average size of the non-dominated set; columns 6 and

show the average computational time and the number of instances

olved to optimality using the bLSET algorithm; columns 8 and 9

how the same performance metrics for the pulse algorithm; column

0 shows the geometric mean of the individual speedups for the 30

nstances of each network; and finally, column 11 shows the number

f times that the pulse algorithm outperformed bLSET on each clus-

er. As for the initialization procedure, it is worth mentioning that it

ever spent more than 0.36 seconds, which for most of the cases is a

egligible time.

Over these very-large instances, the pulse algorithm outperforms

LSET on 123 out of 150 instances, showing average speedups that

ange from 4.28 to 45.89 according to the geometric mean. Note that

or the largest instances, the pulse algorithm achieves larger speedups

nd outperforms the bLSET algorithm in more cases. The pulse algo-

ithm found the true efficient set on 144 out of 150 instances while

LSET found the true efficient set on 139 out of 150 instances. More-

ver, on the six instances that the pulse algorithm missed the true

fficient set, it was able to provide an approximation. On the other

and, bLSET was not able to solve 11 instances to optimality and it

ailed to provide any approximation of the true efficient set in 3600

econds, meaning that no label ever reached the end node within the

ime limit. The quality of the approximation provided by the pulse

lgorithm is discussed in detail in Section 6.3.

.3. Detailed assessment of the pulse algorithm

This section presents an introspective assessment of the pulse

lgorithm. First, we use a solution quality metric to analyze the evo-

ution of the online efficient set into the true efficient set. Second, we

resent several metrics to evaluate the relative effectiveness of the

runing strategies in a subset of instances.

http://www.dis.uniroma1.it/challenge9/download.shtml


794 D. Duque et al. / European Journal of Operational Research 242 (2015) 788–797

Table 2

Computational results over real road networks from the 9th DIMACS challenge.

Cluster n Nodes Arcs Average bLSET Pulse Geometric mean Pulse wins

|ZN| Average time (s) Solved Average time (s) Solved of speedups

NY-S 10 34.10 62.39 10 0.32 10 9

NY-M 10 264,346 733, 846 147.40 301.16 10 52.32 10 7.25 10

NY-L 10 422.70 881.26 10 1367.66a 7 4

BAY-S 10 8.80 6.78 10 0.16 10 4

BAY-M 10 321,270 800, 172 49.90 55.24 10 5.70 10 4.28 10

BAY-L 10 171.80 317.43 10 105.55 10 8

COL-S 10 18.20 7.30 10 0.20 10 8

COL-M 10 435,666 1, 057, 066 87.10 233.03 10 381.94a 9 9.61 8

COL-L 10 328.40 865.76 10 508.76 10 7

FLA-S 10 14.70 330.12 10 0.35 10 9

FLA-M 10 1,070,376 2, 712, 798 94.10 566.15a 9 347.91 10 45.89 10

FLA-L 10 552.30 2627.43a 4 888.59a 9 8

NW-S 10 39.00 260.73 10 1.99 10 10

NW-M 10 1,207,945 2, 840, 208 124.20 1109.98a 8 81.96 10 21.70 9

NW-L 10 281.60 1443.66a 8 438.54a 9 9

139/150 144/150 123/150

a Average time is calculated with a computational time of 3600 seconds for unsolved instances.

fi

t

d

t

d

t

t

r

t

e

i

t

2

p

t

p

2

M

s

t

c

v

o

p

a

Our first experiment in this section, analyzes the evolution of

the online efficient set at different points in time. Fig. 3 presents

the evolution of the solution quality for instances BAY1 and NW7.

The solution quality of an instance is based on the dominated space

metric by Zitzler and Thiele (1998), which measures the area in the

objective space dominated by the non-dominated vectors. Based on

this metric, we define the solution quality as the ratio between the

dominated space of the online non-dominated set found by the al-

gorithm within the time threshold and the dominated space of the

true non-dominated set. A solution quality of 100 percent means that

the algorithm found the true non-dominated set, and a value below

100 percent represents the fraction of the true dominated space cov-

ered by the online non-dominated set, that is, a proxy of the quality

of the approximation of the true non-dominated set.

Fig. 3(a) shows the evolution of the solution quality for in-

stance BAY1. For this instance, bLSET obtains the true efficient set in

65 seconds. Although the pulse algorithm takes a longer time to

achieve the true non-dominated set, given that computational bud-

get the pulse algorithm is able to find an approximate non-dominated

set with a quality of roughly 90 percent. For instance NW7, the online

efficient set converges to the true efficient set in 68 seconds as shown

on Fig. 3(b). What is remarkable is that in just three seconds the qual-

ity of the online non-dominated set is well above 90 percent, and

40 seconds later, over 99 percent. Moreover, Fig. 4 shows the evolu-

tion of the online non-dominated set for instance NW7. Each subfig-

ure compares the true non-dominated set (black dots) with different

online non-dominated sets (gray dots) at different times. From these
Fig. 3. Evolution of the solution quality (d
gures, it can be seen how the algorithm swiftly approximates the

rue non-dominated set. The bulk of the non-dominated set is shaped

uring the first 10 seconds (see Fig. 4(a)–(d)), while the rest of the

ime is spent on slight changes to fully converge to the true non-

ominated set (see Fig. 4(e)–(h)). What this experiment tells us is

hat the pulse algorithm rapidly provides a good approximation of

he non-dominated set and that if we impose a time budget, the algo-

ithm can provide heuristically a high-quality approximation of the

rue non-dominated set.

We conducted yet another experiment to evaluate the relative

ffectiveness of the pruning strategies. In Table 3, for a subset of

nstances, we count the number of times each strategy prunes a par-

ial path. Column 1 presents the name of the instance; and columns

–4 show the relative effectiveness of each strategy as the fraction of

aths pruned by the pulse algorithm.

For the first set of road networks by Raith and Ehrgott (2009),

he nadir point strategy prunes on average 52.1 percent of the

aths, while the label and efficient set pruning strategies account for

0.7 percent and 27.2 percent, respectively. On the second set of DI-

ACS instances, we observed a completely different behavior. In this

et, the label strategy prunes on average 63 percent of the paths while

he nadir point strategy just prunes 2.1 percent of the paths. We as-

ribe this behavior to the fact that on the first set of instances, the

alues of the arc attributes vary widely compared to those of the sec-

nd set. With wide arc variations, the nadir point can effectively prune

aths when the pulse propagates through arcs with large values for

ny given objective. Despite the fact that this result gives us a rough
ominated space metric) over time.



D. Duque et al. / European Journal of Operational Research 242 (2015) 788–797 795

Fig. 4. Evolution of the non-dominated set over time. Black dots represent the true non-dominated set and gray dots represent the online non-dominated set.

i

e

s

p

a

d

t

c

a

c

dea of which strategies are pruning more than others, this relative

ffectiveness metric has its own drawbacks. Under the exploration

cheme followed by the pulse algorithm, it is not the same to prune a

artial path at an early stage than a partial path that is close to become

complete solution. A partial path that is pruned close to completion
oes not reduce the solution space as much as an early partial path

hat can be the origin of millions of paths. Nevertheless, the pruning

ount provides us with some valuable insight into which operations

re considered the hot spots and should be subject to a more efficient

oding.



796 D. Duque et al. / European Journal of Operational Research 242 (2015) 788–797

Table 3

Relative effectiveness of the pruning strategies.

Pruning strategy

Instance Label Nadir point Efficient

(in percent) (in percent) set (in percent)

DC2 20.0 72.7 7.3

DC6 16.1 74.0 9.9

RI4 12.1 47.6 40.2

RI9 19.9 41.1 39.0

NJ3 20.2 38.8 41.0

NJ9 35.8 38.2 26.0

Arithmetic mean 20.7 52.1 27.2

NY1 39.1 4.0 56.9

NY4 66.9 1.1 32.0

BAY6 58.1 0.2 41.7

BAY9 64.0 3.6 32.4

COL5 68.7 1.4 29.9

COL9 63.7 3.6 32.7

FLA7 64.3 0.4 35.2

FLA9 68.1 0.6 31.3

NW7 76.6 0.3 23.1

NW10 60.9 5.7 33.4

Arithmetic mean 63.0 2.1 34.9

Table 4

Computational results for the multiobjective extension of the pulse algorithm on the

testbed by Beasley and Christofides (1989).

Instance Nodes Arcs Number of objectives

p = 3 p = 5 p = 10

Time (s) |ZN| Time (s) |ZN| Time (s) |ZN|
rcsp5 100 990 0.00 4 0.00 4 0.00 16

rcsp7 100 999 0.13 42 0.12 394 3.78 4279

rcsp13 200 2080 0.00 23 0.00 65 0.03 223

rcsp15 200 1960 0.01 24 0.17 219 16.81 4177

rcsp21 500 4847 0.00 5 0.01 50 0.01 123

rcsp23 500 4868 0.04 55 0.83 617 101.61 9735

T

t

f

c

s

P

p

k

c

c

k

k

s

d

p

m

t

B

s

a

a

o

t

M

b

t

t

p

r

s

a

r

t

i

a

t

b

s

h

t

b

7

w

a

6.4. Extending the algorithm for the Multiobjective Shortest Path (MSP)

problem

This section shows how the intuition of the proposed algorithm

and its pruning strategies can be easily extended to handle more than

two objectives. Formally, the MSP is defined as follows:

min z(x) = (c1(x), . . . , ck(x), . . . , cp(x)) (4)

s.t.,

x ∈ X (5)

where X is the set of all paths x from vs to ve and ck(x) is the kth

objective.

First, we discuss how the cycle, label, and efficient set pruning

strategies can be extended with minor modifications. The cycle prun-

ing strategy does not depend on the number of objectives at all, so no

change is needed. The dominance tests performed in the label prun-

ing strategy are easily extended by enlarging the labels dimension

on each node (one dimension per each objective). The efficient set

pruning strategy can be extended running the initialization proce-

dure for each objective. In this case, a vector of lower (dual) bounds

c(vi) = (c1(vi), . . . , ck(vi), . . . , cp(vi))is calculated for each node, where

ck(vi) is the value of the shortest path (lower bound) for the kth ob-

jective from node vi to the end node ve.

In contrast, extending the nadir point pruning strategy is not

straightforward, because calculating this point for three or more ob-

jectives is not as direct as in the biobjective case (Ehrgott, 2005).

Instead, we calculate a pseudo nadir point zN̂ and adapt the strat-

egy for multiple objectives. Let zN̂ = (zN̂
1 , . . . , zN̂

k
, . . . , zN̂

p ), where zN̂
k

=
maxk

′ =1,...,p{ck(x
∗
k
′ )} and x∗

k
is the optimal solution of the mono-

objective shortest path problem for the kth objective. This vector

zN̂ contains the worst values for each objective among all vectors

z(x∗
1), . . . , z(x∗

p), henceforth called the minimizer vectors for each ob-

jective. For example, let us consider for p = 3 the minimizer vectors

z(x∗
1) = (4, 4, 7), z(x∗

2) = (8, 2, 10), and z(x∗
3) = (12, 7, 3). The pseudo

nadir point is zN̂ = (12, 7, 10). For the MSP, the pruning strategy dis-

cards a partial path from vs to vi, Ps,i, if ck(Ps,i)+ ck(vi) > zN̂
k

for all

k = 1, . . . , p, where ck(Ps,i) is the cumulative value for the kth objec-

tive. Note that the main difference with the initial pruning strategy for

the BSP is that the condition to prune must hold for all the objectives

simultaneously. The following theorem demonstrates that this mod-

ification to the nadir pruning strategy does not cut off any solution of
the true efficient set. d
heorem 6.1. Let zN̂
k

= maxk
′ =1,...,p{ck(x

∗
k
′ )} be the kth component of

he pseudo nadir point and z(x∗
1), . . . , z(x∗

p) be the minimizer vectors

or each objective. For a partial path Ps,i from node vs to node vi, if

k(Ps,i)+ ck(vi) > zN̂
k

holds for all objectives k = 1, . . . , p, Ps,i can be

afely pruned without cutting off any efficient solution.

roof. Let Ps,e = Ps,i ∪ Pi,e be any complete path beginning with

artial path Ps,i. For any Pi,e it holds that ck(Pi,e) ≥ ck(vi) for all

= 1, . . . , p, because ck(vi)is a lower bound for the kth objective. Since

k(Ps,i)+ ck(vi) > zN̂
k

for all k = 1, . . . , p, ck(Ps,e) = ck(Ps,i)+ ck(Pi,e) ≥
k(Ps,i)+ ck(vi) > zN̂

k
for all k = 1, . . . , p. Given that zN̂

k
≥ zk(x

∗
k′) for all

= 1, . . . , p and for all k′ = 1, . . . , p, then ck(Ps,e) > zN̂
k

≥ zk(x
∗
k′) for all

= 1, . . . , p and for all k′ = 1, . . . , p. Hence, the image in the objective

pace of any complete path Ps,e that begins with partial path Ps,i is

ominated by all the minimizer vectors z(x∗
1), . . . , z(x∗

p) and partial

ath Ps,i can be discarded.

As a proof of concept, we conducted an experiment with the

ultiobjective version of the pulse algorithm over a testbed for

he Resource-Constrained Shortest Path Problem (RCSP) proposed by

easley and Christofides (1989). We adapted those instances con-

idering the distance and the resource consumption over the arcs

s different objectives for the MSP. From the 24 instances avail-

ble, we discarded those with only two objectives, and for each

ne of the remaining instances, we considered 3, 5, and 10 objec-

ives. Table 4 summarizes the results for this set of instances for the

SP. Columns 1–3 show the instance name, followed by the num-

er of nodes and arcs. Columns 4 and 5 show the computational

ime and the size of the non-dominated set for each instance with

hree objectives. Similarly, columns 6 and 7, and columns 8 and 9,

resent the information for the instances with 5 and 10 objectives,

espectively.

By adapting the pulse algorithm for the MSP, we were able to

olve instances with up to 10 objectives. For 3, 5, and 10 objectives,

ll instances were solved in less than 0.13, 0.83, and 101.61 seconds,

espectively. As the number of objectives grows, so does the size of the

rue non-dominated set and the computational time required to find

t. This behavior is expected since it is difficult to prove dominance

mong vectors when several objectives are considered. For instance,

o prune a partial path by the label or efficient set strategy, it needs to

e dominated in all objectives (as many as ten). With larger efficient

ets, it might be impractical to handle such amount of solutions;

owever, with the pulse algorithm, a high quality approximation of

he non-dominated set can be obtained with limited computational

udget and a manageable size.

. Conclusions and future work

We developed a new exact approach for the BSP that performs

ell on large-scale real road networks with up to 1,207,945 nodes

nd 2,840,208 arcs. The intuition of the algorithm is very easy to un-

erstand, backed on the simple idea of a pulse propagating through



D. Duque et al. / European Journal of Operational Research 242 (2015) 788–797 797

a

b

c

g

p

w

a

R

R

u

i

t

i

t

B

m

t

p

b

f

s

c

l

t

f

a

f

l

A

o

t

r

p

R

B

B

B

B

B

C

C

C

C

C

C

C

D

D

D

E
E

E

E

G

G

H

I

L

M

M

M

M

P

P

R

R

R

S

S

T

U

Z

network. To implement it, there are few considerations that must

e taken into account, like the number of labels at each node and the

riterion used to sort the outgoing arcs of each node. Although the al-

orithm is based on the idea of (implicit) enumeration, the proposed

runing strategies dramatically accelerate the exploration of the net-

orks by exploring implicitly vast regions of the solution space. Our

pproach compares favorably against a top-performer algorithm by

aith (2010) in terms of the execution times. On the instance set from

aith and Ehrgott (2009), the proposed algorithm reaches speedups of

p to 152 times and achieves an average speedup of 57 times over all

nstances. On the very-large scale instances from the DIMACS dataset,

he pulse algorithm performed faster than bLSET on 123 out of 150

nstances with a geometric mean of speedups of roughly 45 and 21 on

he two largest problem sets. Aside from the good performance on the

SP experiments, we show the extensibility of the pulse algorithm to

ultiple objectives (p ≥ 3) on instances from the literature with up

o ten objectives.

Profiling our algorithm, we noticed that the key strategies are

runing by efficient set and nadir point for the proposed instances

y Raith and Ehrgott (2009); and label and efficient set strategies

or the DIMACS instances. As the algorithm progresses, the efficient

et strategy is strengthened as new solutions complement the quick

heck made by the nadir point strategy and partial paths are more

ikely to be dominated.

With the straightforward intuition behind the pulse, it is simple

o extend our algorithm to several network problems. Some of the

uture work includes studying acceleration strategies to improve the

lgorithm’s performance, including non-additive cost functions, and

urther experimentation with multiple objectives. Finally, we would

ike to explore the stochastic variants of the BSP.

cknowledgments

We would like to thank Professor Matthias Ehrgott at University

f Auckland (New Zealand) for his generosity in sharing with us his

estbed for the BSP. We would also like to thank to the anonymous

eferees for their insightful comments that helped us to improve this

aper.

eferences

ast, H., Delling, D., Goldberg, A. V., Müller-Hannemann, M., Pajor, T., Sanders, P., et al.
(2014). Route planning in transportation networks. Technical Report MSR-TR-2014-

4. Microsoft Research, Microsoft Corporation.

easley, J. E., & Christofides, N. (1989). An algorithm for the resource constrained
shortest path problem. Networks, 19, 379–394.

ertsekas, D. P. (1998). Network optimization: Continuous and discrete models. Belmont,
MA: Athena Scientific.

ixby, R. E. (2002). Solving real-world linear programs: A decade and more of progress.
Operations Research, 50(1), 3–15.

olívar, M. A., Lozano, L., & Medaglia, A. L. (2014). Acceleration strategies for

the weight constrained shortest path problem with replenishment. Optimization
Letters, 8(8), 2155–2172.

arlyle, W. M., & Wood, R. K. (2005). Near-shortest and K-shortest simple paths.
Networks, 46(2), 98–109.

arraway, R. L., Morin, T. L., & Moskowitz, H. (1990). Generalized dynamic program-
ming for multicriteria optimization. European Journal of Operational Research, 44(1),

95–104.

herkassky, B. V., Goldberg, A. V., & Radzik, T. (1996). Shortest paths algorithms: Theory
and experimental evaluation. Mathematical Programming, 73, 129–174.

hinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiob-
jective optimization. Annals of Operations Research, 154(2), 29–50.

límaco, J. C. N., & Pascoal, M. M. B. (2012). Multicriteria path and tree problems: discus-
sion on exact algorithms and applications. International Transactions in Operational

Research, 19, 63–98.
oello, C. A., & Lamont, G. B. (2004). Applications of multi-objective evolutionary algo-
rithms. Singapore: World Scientific.

oello, C. A., Lamont, G. B., & Veldhuizen, D. A. V. (2007). Evolutionary algorithms for
solving multi-objective problems. New York: Springer.

emetrescu, C., Goldberg, A., & Johnson, D. (2006). 9th DIMACS implementation
challenge—Shortest paths. www.dis.uniroma1.it/ challenge9/.

emeyer, S., Goedgebeur, J., Audenaert, P., Pickavet, M., & Demeester, P. (2013). Speed-
ing up Martins’ algorithm for multiple objective shortest path problems. 4OR, 11(4),

323–348.

isser, Y., Müller-Hannemann, M., & Schnee, M. (2008). Multi-criteria shortest paths
in time-dependent train networks. In C. McGeoch (Ed.), Experimental algorithms.

Lecture Notes in Computer Science, Vol. 5038 (pp. 347–361). Berlin Heidelberg:
Springer.

hrgott, M. (2005). Multicriteria optimization (2nd ed.). Springer.
hrgott, M., & Gandibleaux, X. (2003). Multiobjective combinatorial optimization—

Theory, methodology, and applications. International series in operations research &

management science (pp. 369–444). Dordrecht: Kluwer Academic Publishers.
hrgott, M., Wang, J. Y.T., Raith, A., & Van Houtte, C. (2012). A bi-objective cyclist route

choice model. Transportation Research Part A, 46, 652–663.
rkut, E., & Verter, V. (1998). Modeling of transport risk for hazardous materials. Oper-

ations Research, 46(5), 625–642.
eisberger, R., Kobitzsch, M., & Sanders, P. (2010). Route planning with flexible objective

functions. Proceedings of the 12th workshop on algorithm engineering and experiments

(pp. 124–137)). Philadelphia, PA: SIAM.
uerriero, F., & Musmanno, R. (2001). Label correcting methods to solve multicriteria

shortest path problems. Journal of Optimization Theory and Applications, 111(3),
589–613.

ansen, P. (1980). Bicriterion path problems. In G. Fandel, & T. Gal (Eds.), Multiple criteria
decision making theory and application. Lecture Notes in Economics and Mathematical

Systems, Vol. 177 (pp. 109–127). Berlin Heidelberg: Springer.

ori, M., Martello, S., & Pretolani, D. (2010). An aggregate label setting policy for the
multi-objective shortest path problem. European Journal of Operational Research,

207, 1489–1496.
ozano, L., & Medaglia, A. L. (2013). On an exact method for the constrained shortest

path problem. Computers & Operations Research, 40(1), 378–384.
achuca, E., Mandow, L., Pérez de la Cruz, J. L., & Ruiz-Sepulveda, A. (2012). A com-

parison of heuristic best-first algorithms for bicriterion shortest path problems.

European Journal of Operational Research, 217(1), 44–53.
artins, E. Q. V. (1984). On a multicriteria shortest path problem. European Journal of

Operational Research, 16(2), 236–245.
üller-Hannemann, M., & Schnee, M. (2007). Finding all attractive train connections

by multi-criteria Pareto search. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, &
C. Zaroliagis (Eds.), Algorithmic methods for railway optimization. Lecture Notes in

Computer Science, Vol. 4359 (pp. 246–263). Berlin Heidelberg: Springer.

üller-Hannemann, M., & Weihe, K. (2006). On the cardinality of the Pareto set in
bicriteria shortest path problems. Annals of Operations Research, 147(1), 269–286.

aixão, J. M., & Santos, J. L. (2013). Labelling methods for the general case of the multi-
objective shortest path problems—A computational study. In A. Madureira, C. Reis, &

V. Marques (Eds.), Intelligent Systems, Control and Automation: Science and Engineer-
ing. Computational intelligence and decision making (pp. 489–502). The Netherlands:

Springer.
allotino, S., & Scutellà, M. G. (1998). Shortest path algorithms in transportation mod-

els: classical and innovative aspects. In P. Marcotte, & S. Nguyen (Eds.), Centre

for Research on Transportation. Equilibrium and advanced transportation modeling
(pp. 245–281). Dordrecht: Kluwer Academic Publishers.

aith, A. (2010). Speed–up of labelling algorithms for biobjective shortest path prob-
lems. In Proceedings of the 45th annual conference of the ORSNZ, Auckland, New Zealand

(pp. 313–322). Operations Research Society of New Zealand.
aith, A., & Ehrgott, M. (2009). A comparison of solution strategies for biobjective

shortest path problems. Computers & Operations Research, 36, 1299–1331.

estrepo, M. I., Lozano, L., & Medaglia, A. L. (2012). Constrained network-based column
generation for the multi-activity shift scheduling problem. International Journal of

Production Economics, 140(1), 466–472.
erafini, P. (1986). Some considerations about computational complexity for multi

objective combinatorial problems. In J. Jahn, & W. Krabs (Eds.), Recent advances
and historical development of vector optimization. Lecture Notes in Economics and

Mathematical Systems (pp. 222–232). Berlin: Springer.

kriver, A. J. V., & Andersen, K. A. (2000). A label correcting approach for solving bicri-
terion shortest-path problems. Computers & Operations Research, 27, 507–524.

ung, C. T., & Chew, K. L. (1992). A multicriteria Pareto-optimal path algorithm. European
Journal of Operational Research, 62, 203–209.

lungu, E. L., & Teghem, J. (1995). The two phases method: An efficient procedure to
solve bi-objective combinatorial optimization problems. Foundations of Computing

and Decision Science, 20, 149–165.

itzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary
algorithms—A comparative case study. In A. Eiben, B. Thomas, M. Schoenauer, &

H. Schwefel (Eds.), Parallel problem solving from nature PPSN V. Lecture Notes in
Computer Science, Vol. 1498 (pp. 292–301). Berlin, Heidelberg: Springer.

http://refhub.elsevier.com/S0377-2217(14)00907-2/bib001
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib002
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib003
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib004
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib005
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib006
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib007
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib008
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib009
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib010
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib011
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib012
http://www.dis.uniroma1.it/~challenge9/
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib013
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib014
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib015
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib016
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib017
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib018
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib019
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib020
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib021
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib022
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib023
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib024
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib025
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib026
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib027
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib028
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib029
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib030
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib031
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib032
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib033
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib034
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib035
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib036
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib037
http://refhub.elsevier.com/S0377-2217(14)00907-2/bib038

	An exact method for the biobjective shortest path problemfor large-scale road networks
	1 Introduction
	2 Basic concepts
	3 Literature review
	4 The pulse algorithm: Intuition and overview
	5 Pruning strategies
	5.1 Pruning by cycles
	5.2 Pruning by nadir point
	5.3 Pruning by efficient set
	5.4 Pruning by labels

	6 Computational experiments on benchmark problems
	6.1 Large-scale real road networks
	6.2 Very large-scale real road networks
	6.3 Detailed assessment of the pulse algorithm
	6.4 Extending the algorithm for the Multiobjective Shortest Path (MSP) problem

	7 Conclusions and future work
	Acknowledgments
	References


