
OR I G I NA L A RT I C L E
Jou rna l Se c t i on

An exact bidirectional pulse algorithm for the
constrained shortest path

Nicolás Cabrera1 | Andrés L.Medaglia1 | Leonardo
Lozano2 | Daniel Duque3

1Industrial Engineering Department,
Universidad de los Andes, Carrera 1 Este
No. 19 A - 40, 111711, Bogotá, Colombia
2Operations, Business Analytics &
Information Systems, University of
Cincinnati, 2906Woodside Drive,
Cincinnati, Ohio, U.S.
3Industrial Engineering andManagement
Sciences, Northwestern University, 2145
Sheridan Rd, Evanston, Illinois, U.S.

Correspondence
Andrés L. Medaglia PhD, Industrial
Engineering Department, Universidad de
los Andes, Carrera 1 Este No. 19 A - 40,
111711, Bogotá, Colombia
Email: amedagli@uniandes.edu.co

Funding information
Office of Naval Research under Grant
N00014-19-1-2329

A constrained shortest path is a minimum-cost sequence
of arcs on a directed network that satisfies knapsack-type
constraints on the resource consumption over the arcs. We
propose an exact method based on a recursive depth-first
search procedure known as the pulse algorithm. One of
the key contributions of the proposal lies in a bidirectional
search strategy leveraged on parallelism. In addition, we
developed a pulse-based heuristic that quickly finds near-
optimal solutions and shows great potential for column gen-
eration schemes. We present computational experiments
over large real-road networkswith up to 6million nodes and
15 million arcs. We illustrate the use of the bidirectional
pulse algorithm in a column generation scheme to solve a
multi-activity shift scheduling problem, where the pricing
problem ismodeled as a constrained-shortest pathwithmul-
tiple resource constraints.
K E YWORD S

constrained shortest path, bidirectional search, large-scale
networks

1 | INTRODUCTION

Let G = (N,A) be a directed graph defined by a set of nodes N = {v1, . . . ,vn } and a set of directed arcs A = {(i , j ) |vi ∈
N,vj ∈ N, i , j }. Each arc (i , j ) ∈ A has a corresponding nonnegative cost ci j and a nonnegative resource consumption
vector ti j ∈ Òm . The constrained shortest path problem (CSP) consists on finding a path P between a start node vs ∈ N

1



2 CABRERA ET AL.

and an end node ve ∈ N that minimizes the total cost, without exceeding a maximum resource consumption vector
T ∈ Òm . Unless stated otherwise, for simplicity in the exposition, we assume throughout the paper thatm = 1, thus the
resource consumption t i j and resource limitT are scalars. The CSP is known to beNP-Hard even for the case of one
resource [1].

The CSP naturally arises in a wide range of transportation and logistics applications. Zabarankin et al. [2] model
an aircraft’s flight trajectory problem in which the goal is to minimize exposure to radars while satisfying technical
constraints such as trajectory length. Cabral et al. [3] model a telecommunication network design in which the goal
is to find a set of edges that allow for minimum cost paths between communicating pairs of nodes while satisfying a
constraint on the path length (in the case of a single pair of communicating nodes, the problem reduces to the CSP).
In addition, the CSP is often used as an auxiliary problem in column generation (CG) schemes. CG is a technique that
solves linear programswith a large number of decision variables. Instead of considering all the variables at once, CG
starts with amodestly-sized subset of variables and incorporates candidate variables in an iterative fashion. At every
iteration of a CG scheme, the goal is to either prove optimality or choose a promising decision variable to enter the
basis. This goal is accomplished by solving an optimization problem, known as the auxiliary problem [4]. Examples of
problems in which variants of the CSP appear as an auxiliary problem in a CG scheme include planning and routing [5],
flight planning [6], crew pairing [7], shift scheduling [8], and tail assignment in aircraft scheduling [9], among others.

There is significant literature addressing theCSP throughdifferent solution strategies includingdynamicprogramming-
based (DP) labeling algorithms [10, 11], Lagrangian relaxation [12], and path ranking approaches [13, 14, 15] among
others. DP-based algorithms have the distinctive feature that they save the state of the search using labels. Although
they could be extremely fast, they might fail to scale well in very large instances due to the well-known “curse of
dimensionality”. Methods based on Lagrangian relaxation take advantage of the effectiveness of methods to solve the
unconstrained shortest path, by relaxing the side resource constraints. Ranking approaches solve the CSP by using a
k -th shortest path algorithm that identifies multiple paths that are later sorted and evaluated.

We highlight two works from the literature that are closely related to our approach. The first one is the pulse
algorithm by Lozano andMedaglia [16]. This method is based on a recursive depth-first search that combines various
pruning strategies to avoid complete exploration of the solution space. One key aspect of the pulse algorithm is that it
uses a limited number of labels to discard dominated partial paths; however, these labels are never extended, nor the
exactness of the algorithm depends on storing the complete set of nondominated labels at each node. We also focus our
attention on the recent bidirectional A* algorithm by Thomas et al. [17]. Their labeling approach searches for paths in
the network from both the starting and ending node, storing the complete set of nondominated labels for each node in
both directions until reaching a stopping criterion. Complete paths are then obtained bymerging labels coming from
opposite directions. To avoid the curse of dimensionality associatedwith labeling algorithms, the authors use a set of
pruning strategies to avoid extending suboptimal or infeasible labels. Computationally, the bidirectional A* algorithm
outperforms the pulse algorithm and compares favorably with the best-knownmethods for CSP on a set of very large
instances. As a result, we consider bidirectional A* to be one of the current state-of-the-art algorithms in the literature
and use it as a benchmark for our computations.

Historically, some bidirectional label-settingmethods have suffered from poor computational performance. Pohl
[18] argued that the reason for this is that paths starting in one direction do not meet with those coming from the
other direction. This notion is commonly known as the “crossing missiles metaphor”. Most of the solutions to solve
this problem focus on joining labels created from both search directions and defining a search perimeter. For example,
Thomas et al. [17] defined a perimeter based on the resource consumption. Specifically, if a label had consumedmore
than half of the resource, the label is not expanded. The definition of this perimeter implies storing all non-dominated
labels whichmay lead to scalability problems. In contrast, we do not define a search perimeter nor the correctness of



CABRERA ET AL. 3

our algorithm depends on storing all non-dominated labels. However, we do consider a strategy to link partial paths
created in both search directions using a limited number of labels.

The pulse algorithm has been successfully extended for the elementary shortest path problem with resource
constraints [19], the biobjective shortest path problem [20], the weight constrained shortest path problemwith replen-
ishment [21], the orienteering problemwith timewindows [22], andmore recently, the robust shortest path problem
[23]. Beyond the domain of shortest path problems, several authors have used the pulse algorithm as a component
to solve other hard combinatorial problems. For instance, the pulse algorithm has been used in network interdiction
[24], shift scheduling [8], evasive flow [25], resource constrained pickup-and-delivery [26], and green vehicle routing
problems [27], among others.

The contribution of this paper is twofold. From amethodological perspective, we propose an alternative approach
to conduct bidirectional search that is not based on extending labels. Our approach builds on the ideas from the pulse
algorithm by performing an exact bidirectional adjustable depth-first (or breadth-first) search executed in parallel both
from the starting and ending node. We use a limited number of labels per node to enforce dominance relationships
and propose additional strategies based on completing andmerging partial paths represented by these labels. Since
we enforce a strict limit on the number of labels stored at each node, we avoid the curse of dimensionality while still
ensuring optimality as the exactness of our algorithm does not depend on storing a complete set of nondominated labels.
From a computational perspective, we compare favorably with the state-of-the-art algorithm by Thomas et al. [17] over
a set of 360 instances from real road networks in the US commonly used in the literature. Additionally, we embedded
our algorithm in a column generation scheme to solve the linear relaxation of themulti-activity shift scheduling problem
(MASSP), which involves solving a CSP with multiple resources. Moreover, we present a pulse-based heuristic that
provides high-quality feasible solutions fast.

This paper is organized as follows. Section 2 presents an overview of the proposed algorithm. Section 3 provides a
detailed description of the proposed acceleration strategies. Section 4 presents the computational experiments. Section
5 provides a sensitivity analysis on the algorithm’s components. Section 6 presents our pulse-based heuristic for the
CSP. Finally, Section 7 concludes the paper and outlines future work.

2 | BIDIRECTIONAL PULSE ALGORITHM: INTUITION AND OVERVIEW

In this section, we provide a high-level explanation of our proposed algorithm. For completeness, Section 2.1 presents a
summary of the original pulse algorithm. Section 2.2 provides an overview of our proposed bidirectional search while
Section 2.3 describes the pseudocode of our algorithm and highlights the proposed acceleration strategies.

2.1 | Pulse algorithm

The original pulse algorithm (PA) by Lozano andMedaglia [16] is a recursive search based on the idea of propagating
a pulse through the network, starting at node vs . Pulses represent partial paths and propagate through the outgoing
arcs from each node, storing crucial information about the partial path being explored. Once a pulse corresponding to
a feasible path reaches the end node ve , the PA tries to update an upper (or primal) bound on the objective function,
stops the pulse propagation, and backtracks to continue the recursive search resulting in a pure depth-first exploration.
Opposite to labels, pulses are not stored in memory but passed as arguments in the recursive search function. If nothing
prevents pulses from propagating, the PA enumerates all feasible paths from vs to ve ensuring that an optimal path P∗ is
found.



4 CABRERA ET AL.

To avoid a complete enumeration of the solution space, the PA relies on a set of pruning strategies proposed to
rapidly and effectively prune pulses, without cutting off the optimal solution. The core strategies in the PA are pruning
by infeasibility, bounds, and dominance. The infeasibility pruning strategy (see §3.1.1) uses a lower bound on the
minimum resource required to reach the end node from any given intermediate node and discards partial paths that
cannot be completed into a feasible vs to ve path. The bounds pruning strategy (see §3.1.2) uses lower bounds on the
minimum-cost paths from any intermediate node to the end node and discards partial paths that cannot be part of an
optimal solution. The dominance pruning strategy (see §3.1.3) uses a limited number of labels to store information on
partial paths explored during the search and discard partial paths based on traditional dominance relationships. In
contrast to labeling algorithms, the PA does not rely on extending every non-dominated label for correctness; instead,
this is guaranteed by properly truncating the recursive search. Hence, even if no labels were used at any of the nodes,
the algorithm remains correct.

2.2 | Bidirectional recursive search

Wepropose a bidirectional pulse algorithm (BP) that explores the network in both search directions. The BP propagates
pulses simultaneously from the start node vs to the end node ve , resulting in a forward search (f ); and from the end node
ve to the start node vs , resulting in a backward search (b). Regardless of the search direction, each pulse traverses the
network building a partial path P, while storing the cumulative cost c(P) and the cumulative resource consumption
t (P). For the sake of clarity in the exposition, we denote a partial path P arriving to node vi by P(i ) and a partial path
P coming from vj to vi by P(j , i ), where partial paths of the form P(s, i ) and P(j , e) correspond to the forward search
while paths of the form P(e, i ) and P(j , s) correspond to the backward search. Henceforth, we use P, P(i ), and P(j , i )
interchangeably depending on the context. We also refer to an initial node vα and a destination node vω for both search
directions, where vα ,vω ∈ {vs ,ve } and, with a slight abuse of notation, we avoid the use of sub- or superscripts to
indicate the search direction.

In the absence of pruning strategies, the BP enumerates all the paths in the network twice, once in the forward
search and once in the backward search. Although both single-thread and parallel implementations of the BP are
conceivable, we proceed in our explanation under a parallel mindset as it is more natural to understand (and implement)
the algorithm1. We propose a bidirectional search paradigm that leverages the fact that both the forward and the
backward search are executed concurrently to update the primal bound faster compared to a single-directional search,
while using additional pruning strategies based on the partial paths being explored in both directions. We include all the
core pruning strategies from the PA in both directions and propose two additional strategies, namely, path completion
and path joins. The intuition behind these primal bound-update strategies is to construct feasible paths before reaching
the destination node on either the forward or the backward direction.

A fundamental difference between the BP and traditional bidirectional algorithms is that BP does not rely on labels
to guide the search and thus it does not require storing a possibly exponential number of nondominated labels for each
search direction. However, we do use a limited number of labels for the dominance pruning and path joining strategies.
At every node vi , we store a list of non-dominated labels Lk (vi ) = {(ci l , t i l ) | l = 1, . . . , R } corresponding to partial
paths created on the search direction k ∈ {f , b }, where R denotes the total number of labels (i.e., memory size), and ci l
and t i l are the cost and resource consumption, respectively. It is important to note that the correctness of our algorithm
does not rely on storing all non-dominated labels and choosing R � ∞ poses a tradeoff between the ability to efficiently
prune pulses and the amount of memory required to execute the algorithm.
1In a single-thread implementation, the BP could alternate between the forward and the backward search taking turns, but a rule to switch between directions
would be required.



CABRERA ET AL. 5

In the BP, we also address a problem that stems from the pure depth-first search exploration done by the PA.
On some networks, a pure depth-first search could explore vast unpromising regions of the search space, before
backtracking and correcting poor decisions made earlier. To overcome this problem, we adapt the pulse queueing
strategy proposed byBolívar et al. [21] for theWeight Constrained Shortest Path Problemwith Replenishment (WCSPP-
R). Formally, let δ be a depth limit, and for each search direction k , let Qk be a pulse queue that stores halted partial
paths traveling on the search direction k . We describe the queueing procedure indistinctly of the search direction as
both queues operate independently. A pulse is halted for the first timewhen it is extended δ additional nodes from the
origin node. Upon dequeueing a pulse P from Qk , the recursive search is resumed from the last node in P. Halting a
pulse entails saving the partial path P in the corresponding queue (alongwith the nodewhere the pulse was paused
n(P), the cumulative cost c(P), and the resource consumption t (P)) and backtracking to resume the current recursion
stack. Note that when a pulse P is dequeued, the recursive search will never backtrack to the node visited before n(P).
Also note that a pulse is only dequeuedwhen the partial path that is currently propagating is exhausted, i.e., when all its
descendant paths halt, get pruned, or reach the end node. Pulses are dequeued following a queue discipline (i.e., a rule
to select the next pulse to be dequeued) that we defer until Section 3.3. Finally, observe that for δ = 0 the BP results in a
pure breadth-first search, whereas for δ = ∞ the BP reduces to a pure depth-first search.

Let G(k ) be the directed network to be traversed on the search direction k ∈ {f , b }. Let the forward network
G(f ) = (N,A(f ))be theoriginal directednetwork G = (N,A). Let G(b) = (N,A(b))denote thebackward (i.e., reversed)
network forwhichA(b) = {(j , i ) |(i , j ) ∈ A(f )}. The BP startswith an initialization step that computesminimal resource
consumption paths Pt (i , s) and Pt (i , e), and minimal cost paths Pc (i , s) and Pc (i , e), from every node vi to both the
start node vs and the end node ve , using graphs G(f ) and G(b), accordingly. These paths provide lower bounds on
resource consumption and cost used in most of the pruning strategies. After the initialization step, the BP executes
the pulseSearch function (described in Algorithm 1 below) initiating the recursive search on the forward direction by
invoking pulseSearch(G(f ),T ,vs ,ve , f ) and in the backward direction by invoking pulseSearch(G(b),T ,ve ,vs , b) on
separate concurrent threads. The BP stops as soon as one of the searches is completed.

2.3 | Bidirectional pulse algorithm

Algorithm 1 presents themain logic of the pulse search algorithm. Line 1 initializes the best incumbent path P∗. Lines 2
and 3 initialize the pulse queue Qk with a paused pulse at the initial node vα . Lines 4-7 propagate pulses stored in Qk .
Line 5 selects the next pulse to be processed given the queue discipline and removes it fromQ k . Line 6 propagates the
pulse (see Algorithm 2) resuming the exploration at node n(P) and setting the path depth to zero. Finally, line 8 returns
an optimal path P∗, which is obtained as the best incumbent path through the recursion.



6 CABRERA ET AL.

Algorithm 1 pulseSearch function
Require: G(k ), directed graph;T , resource constraint; vα , initial node; vω , destination node; k , search direction.
Ensure: P∗, optimal path.
1: P∗ ← ∅
2: P ← {vα }
3: push(Qk , P)
4: while Qk , ∅ do
5: P ← pop(Qk ) . see §3.3
6: pulse(n(P), c(P), t (P), 0, P, k ) . see Algorithm 2
7: endwhile
8: return P∗

Algorithm 2 shows the body of the recursive pulse function. The set Γ+(vi ) = {vj ∈ N | (i , j ) ∈ A(k )} comprises
the nodes directly connected to node vi (on search direction k ). Lines 2 through 5 update the cumulative cost, the
resource consumption, the pulse depth, and the partial path. Lines 6-9 performBoolean function checks that return
true if the incoming pulse to node vj is pruned (they return false, otherwise). Line 6 checks if it is feasible to reach the
destination node vω from node vj given that the path has already a resource consumption of t ′. Line 7 tries to prune the
pulse using lower bounds on the best cost achievable by the current partial path. Line 8 checks the dominance relations
of P′ against a list of non-dominated partial paths Lk (vj ) for node vj . Line 9 explores the possibility of completing the
partial path P′ with theminimum cost feasible path. In case the path is completed, the path P∗ is updated. Line 10 tries
to join partial paths using the lists of non-dominated labels for node vj that were created in the opposite direction. If a
path is successfully joined, the path P∗ is updated. Line 11 checks if the path has advanced δ additional steps, if so, line
12 adds it to the pulse queue Qk ; otherwise, line 14 recursively propagates the pulse through node vj .



CABRERA ET AL. 7

Algorithm 2 pulse function
Require: vi , node; c , cumulative cost; t cumulative resource; d , depth; P, partial path; k , search direction.
1: for vj ∈ Γ+(vi ) do
2: c′ ← c + ci j

3: t ′ ← t + t i j

4: d ′ ← d + 1

5: P′ ← P ∪ {vj }
6: if ¬check_feasibility(vj , t ′, k ) then . see §3.1.1
7: if ¬check_bounds(vj , c′, k ) then . see §3.1.2
8: if ¬check_dominance(vj , c′, t ′, k ) then . see §3.1.3
9: if ¬check_complete_path(vj , c′, t ′, k ) then . see §3.2.1
10: join_paths(vj , c′, t ′, k ) . see §3.2.2
11: if d ′ > δ then
12: push(Qk , P′)
13: else
14: pulse(vj , c′, t ′, d ′, P′, k )
15: end if
16: end if
17: end if
18: end if
19: end if
20: end for
21: return void

Figure 1 shows a schematic summary of the bidirectional pulse algorithm. Note that the BP constructs paths on
the forward (blue) and the backward (green) direction. Every time a partial path P(i ) reaches an intermediate node vi ,
we check if it can be safely pruned using the core pruning strategies (i.e., infeasibility, bounds, and dominance). If this
fails, we use the path completion strategy that attempts to construct a feasible path to the destination node vω . This
strategy adds theminimum cost path Pc (i ,ω) and theminimum resource consumption path Pt (i ,ω). With the same
purpose, the path joins strategy uses information stored on Lk (vi ) about partial paths created on the opposite search
direction. Finally, we check if the partial path has reached themaximum depth limit. If so, the partial path is added to the
corresponding pulse queueQ k .



8 CABRERA ET AL.

𝑣௦ 𝑣௜ 𝑣௘

𝒫(𝑖)

𝒫௧ 𝑖, 𝑠 : Minimum resource consumption path from 𝑣௜ to 𝑣௦

𝒫௖(𝑖, 𝑠): Minimum cost path from 𝑣௜ to 𝑣௦

Forward pulse queue 𝒬௙

⋮
𝑐 𝒫 , 𝑡 𝒫 , 𝑛(𝒫)

⋮

𝒫(𝑖) is pruned by ቐ 
Infeasibility 
Bounds         
Dominance  

𝒫∗ is updated by ቊ
Path completion
Path joins             

𝒫௧ 𝑖, 𝑒 : Minimum resource consumption path from 𝑣௜ to 𝑣௘

𝒫௖(𝑖, 𝑒): Minimum cost path from 𝑣௜ to 𝑣௘

Backward pulse queue 𝒬௕

⋮
𝑐 𝒫 , 𝑡 𝒫 , 𝑛(𝒫)

⋮

Forward labels ℒ ௙(𝑣௜)

⋮
𝑐 𝒫(𝑖) , 𝑡 𝒫(𝑖)

⋮

Backward labels ℒ௕ 𝑣௜

⋮
𝑐 𝒫(𝑖) , 𝑡 𝒫(𝑖)

⋮

𝒫(𝑖)

F IGURE 1 A schematic view of the bidirectional pulse algorithm for the CSP.

3 | ACCELERATION STRATEGIES FOR THE BIDIRECTIONAL PULSE

In this section, we first review the core pruning strategies of the bidirectional pulse algorithm, namely infeasibility,
bounds, and dominance pruning. Then, we present a detailed description of the proposed primal bound-update strate-
gies. Finally, we discuss key aspects regarding the pulse queue and its exploration order.

3.1 | Pruning strategies

This section outlines the core strategies implemented for the CSP adapted from Lozano andMedaglia [16]. Sections
3.1.1, 3.1.2, and 3.1.3, provide details of lines 6, 7, and 8 in Algorithm 2, respectively.

3.1.1 | Pruning by infeasibility

The idea behind this strategy is to prune pulses as soon as it is known that it will not be possible to reach the destination
node vω meeting the resource constraint. Thus, we can prune a partial path P(α , i ) arriving to node vi in the search
direction k when the cumulative resource consumption t (P(α , i )) already (meets or) exceeds themaximum resource
consumptionT . We can make this pruning strategy stronger by using the information of the resource consumption
t (Pt (i ,ω)) of theminimum resource consumption path Pt (i ,ω) from vi to the destination node vω . More specifically,
let t̄ (vi ) = T − t (Pt (i ,ω)) be the resource consumption limit for a partial path arriving to any given node vi . Thus, we
prune partial path P(α , i ), if t (P(α , i )) > t̄ (vi ) as this partial path cannot reach the destination nodewithout violating
the resource constraint.



CABRERA ET AL. 9

3.1.2 | Pruning by bounds

In a similar fashion, we prune a pulse as soon as it is proven to have a cost equal or greater than the best objective
c(P∗) found so far, i.e., we prune a partial path P(α , i ) if c(P(α , i )) ≥ c(P∗). Furthermore, we strengthen this strategy by
pruning pulses using the cumulative cost of theminimum cost path c(Pc (i ,ω)) from vi to the destination node vω . Given
that c(Pc (i ,ω)) is the best achievable cost from node vi , we can safely prune a pulse if c(P(α , i )) + c(Pc (i ,ω) ≥ c(P∗).

3.1.3 | Pruning by dominance

During the recursive search, a node vi could be reachedmore than one time by different pulses. With this in mind, we
define dominance relations between two partial paths P1(i ) and P2(i ) arriving to node vi on the same search direction κ .
Partial path P1 strongly dominates P2 if:

c(P1(i )) < c(P2(i )) and t (P1(i )) < t (P2(i )).

Additionally, partial path P1 weakly dominates P2 if:

c(P1(i )) = c(P2(i )) and t (P1(i )) < t (P2(i ))

or c(P1(i )) < c(P2(i )) and t (P1(i )) = t (P2(i )).

Weuse the non-dominated list of labels Lk (vi ) to check for strong andweak dominance to prune incoming pulses to
node vi from both search directions independently. Since the number of labels on Lk (vi ) is limited by R is necessary to
define a strategy to decide which labels are kept andwhich labels are discarded. We use amixture between a random
and an elitist rule. More specifically, at each nodewe keep a first non-dominated label that is overwritten every time
that a partial path exhibits a lower cost than the one stored and a second non-dominated label that is overwritten every
time that a partial path exhibits a lower resource consumption than the one stored. If R > 2, we randomly replace a label
within the third and the R -th positions. For further discussion on the storage rules the interested reader is referred to
Lozano andMedaglia [16].

3.2 | Primal bound-update strategies

In the context of the pulse algorithm, the strategy of pruning by bounds strongly depends on the quality of the primal
bound. For this reason, we devise primal bound-update strategies with the purpose of strengthening these primal
bounds as fast as possible. These strategies rely on exploring the network in both directions at the same time to
increase the chances of finding high-quality solutions earlier in the execution of the algorithm, which in turns result in
more effective pruning as a result of having tighter primal bounds earlier in the exploration. On the downside, they
require additional computational resources for the initialization procedures and the execution of the strategies in both
directions. Sections 3.2.1 and 3.2.2 provide details of lines 9 and 10 in Algorithm 2, respectively.

3.2.1 | Path completion

Themain purpose of this strategy is to update the primal bound early in the exploration of the network. An additional
benefit of this strategy is that it allows us in certain cases to prune partial paths as well. Using theminimum cost path or



10 CABRERA ET AL.

theminimum resource consumption path to reach the destination node vω , we test whether joining such a path with the
partial path being explored improves the primal bound. Formally, let us consider a partial path P(α , i ) arriving to node vi
in the search direction k . The path completion strategy greedily adds theminimum cost path Pc (i ,ω) to the partial path
P(α , i ), i.e., P(α ,ω) = P(α , i ) ∪ Pc (i ,ω). If the completed path P(α ,ω) is feasible and c(P(α ,ω)) < c(P∗), we update
the incumbent solution accordingly. Furthermore, we can prune the incoming pulse P(α , i ), because (by construction)
we know that P(α ,ω) is already theminimum cost path beginning with the partial path P(α , i ).

In case theminimum cost path cannot be successfully added to the current partial path, there is still a chance to
update the incumbent solution. Given a partial path P(α , i ), the path can be completed by adding theminimum resource
consumption path Pt (i ,ω) to the partial path P(α , i ), i.e., P(α ,ω) = P(α , i ) ∪ Pt (i ,ω). If the completed path P(α ,ω)
is feasible and c(P(α ,ω)) < c(P∗), the incumbent solution can be updated. Note, however, that the associated pulse
P(α , i ) cannot be pruned because there is still a chance to find a completion path from vi to vω with a cost lower than
c(P(α ,ω)).

3.2.2 | Path joins

Formally, given a partial path P(α , i ) arriving to node vi ∈ N in the search direction k , the path joins strategy adds
all partial paths stored on Lk ′ (vi ), which are the partial paths that arrived at node vi from the opposite direction
k ′. Consider a partial path P(ω, i ) coming from the destination node ω to node i , and let reverse(P(ω, i )) be its
reversed counterpart (i.e., the same sequence of nodes, but in reverse order). Extending the partial path P(α , i )with
reverse(P(ω, i )) creates a complete path P(α ,ω), i.e., P(α ,ω) = P(α , i ) ∪ reverse(P(ω, i )). If the complete path is
feasible and c(P(α ,ω)) < c(P∗), the incumbent solution is updated. Note that this strategy entirely depends on the
bidirectional search to be performed in parallel as partial paths can only be joined if the search from the opposite
direction has already stored labels at node vi . The order in which nodes are visited and the quality of the (limited) labels
stored at each node can be controlled to some extent by the order in which outgoing arcs are explored at each node. We
adopted an ordering rule in which outgoing arcs of each node are sorted in ascending order according to ametric that
sums the cost of an arc plus the (minimum) cost-to-go from the corresponding head node.

Figure 2 shows a summary of the proposed primal bound-update strategies. Using the path joins and the path com-
pletion strategies enable us to construct feasible paths without reaching the corresponding destination node, increasing
the chances of finding high-quality feasible solutions early in the exploration. We delay until §6, the introduction of
a simple, yet effective heuristic that takes advantage of this fact. Furthermore, our computational experiments in §4,
show the success of our primal bound-update strategies to identify near-optimal solutions very early in the recursive
exploration on a set of benchmark instances. In Appendix Bwe include a numerical example that illustrates both the
pruning and the primal bound-update strategies.



CABRERA ET AL. 11

𝑣௦ 𝑣௜ 𝑣௘

𝒫(𝑠, 𝑖)

𝒫(𝑒, 𝑖)

𝑐(𝒫∗) is updated by ൞

Minimum cost path completion if 𝑐 𝒫(𝛼, 𝑖) + 𝑐 𝒫௖(𝑖, 𝜔) < 𝑐 𝒫∗ ∧ 𝒫 𝛼, 𝜔  is feasible                                       
Minimum resource consumpution path completion if 𝑐 𝒫(𝛼, 𝑖) + 𝑐 𝒫௧(𝑖, 𝜔) < 𝑐(𝒫∗) ∧ 𝒫 𝛼, 𝜔  is feasible 
Path joins if ∃ label 𝑙 ∈ ℒ఑ᇱ

𝑣௜  such that 𝑐 𝒫 𝛼, 𝑖 + 𝑐 𝒫 𝜔, 𝑖 < 𝑐 𝒫∗ ∧ 𝒫 𝛼, 𝜔  is feasible                          path 𝒫(𝛼, 𝑖)

Forward labels ℒ ௙(𝑣௜)

⋮
𝑐 𝒫(𝑖) , 𝑡 𝒫(𝑖)

⋮

Backward labels ℒ௕ 𝑣௜

⋮
𝑐 𝒫(𝑖) , 𝑡 𝒫(𝑖)

⋮

𝒫௧ 𝑖, 𝑠 : Minimum resource consumption path from 𝑣௜ to 𝑣௦

𝒫௖(𝑖, 𝑠): Minimum cost path from 𝑣௜ to 𝑣௦

𝒫௧ 𝑖, 𝑒 : Minimum resource consumption path from 𝑣௜ to 𝑣௘

𝒫௖(𝑖, 𝑒): Minimum cost path from 𝑣௜ to 𝑣௘

F IGURE 2 Primal bound-update strategies

3.3 | Pulse queueing

The choice between a depth-first search (DFS) or a breadth-first search (BFS) strategy is non-trivial since the perfor-
mance of each strategy is instance dependent. We adapt the queueingmechanism proposed by Bolívar et al. [21] for
the bidirectional search by combining both search behaviors with a pulse queue Qk for each search direction k . The
key idea of these queues is to halt pulses by limiting the depth of the propagation in order to avoid exploring too deep
into unpromising regions of the solution space. We denote by steps the number of times a pulse propagates, which
corresponds to the number of additional nodes visited by the corresponding partial path since its exploration began (or
was resumed after being halted inside a queue). We impose amaximum depth limit δ that restricts the number of steps
that a pulse can advance before being halted and stored in the queue. Once there are no active pulses left, the search
resumes the exploration of the queued pulses.

The queue discipline for each Qk is critical for the algorithm’s performance because it defines the graph exploration
order. Given a partial path P(α , i ) arriving to node vi , in the search direction k , we consider a best promise queueing
discipline, where we define the best promise of a partial path asψ(P(α , i )) = c(P(α , i )) + c(Pc (i ,ω))). The idea behind
this queue discipline is to explore first those partial paths which promise the best possible objective function, i.e., those
paths with a better chance of improving the incumbent, which correspond to paths exhibitingminimumψ(P(α , i )). In
particular, the operation pop(Qk ) in line 5 of Algorithm 1 removes and returns a partial path P from Qk , such thatψ(P)
is theminimum value across all paths in Qk .

4 | COMPUTATIONAL EXPERIMENTS

We study the performance of our proposed algorithm in two sets of experiments. Section 4.1 presents the results for
the first set of experiments conducted over a testbed of large-scale road networks from the literature. Section 4.2
presents the results for the second set of experiments, in which our algorithm is embedded in a CG scheme to solve a
multi-activity shift scheduling problem.



12 CABRERA ET AL.

4.1 | Experiments over large-scale road networks

We compare the performance of our proposed bidirectional pulse algorithm (labeled by "BP") against the original pulse
algorithmby Lozano andMedaglia [16] (labeled by "PA") and the state-of-the-art algorithmby Thomas et al. [17] (labeled
by "RC-BDA"). The proposed algorithm "BP" and the original pulse algorithm "PA" were implemented in Java, compiled
using Eclipse SDK version 4.8.0, and the experiments executed on a computer with an Intel Core i7-4610M@3.00GHz
with 8GB of RAM allocated to thememory heap size of the Java Virtual Machine onWindows 10. The initialization step
of the PA and BP is conducted in parallel for each search direction.

To compare the algorithms, we use the large-sized US-road-network instances of the 9t h DIMACS challenge [28].
Each instance is a combination of a road network, a destination, and a tightness factor p . Low (high) values of p indicate
that the resource constraint is tight (loose). We considered nine road networks, with five destinations each, and eight
values of p ranging from 0.1 to 0.8 (step of 0.1), for a total of 360 instances. Information regarding the origin, the
destination, the time limit T and the road network for each instance are available on https://github.com/copa-
uniandes/BidirectionalPulse. Table 1 describes the road networks and its size in terms of the number of nodes and
arcs.
TABLE 1 Large-sized US-road networks information.

Road network Nodes Arcs
BAY San Francisco Bay Area 321,270 800,172
NY NewYork City 264,346 733,846
COL Colorado 435,666 1,057,066
FLA Florida 1,070,376 2,712,798
NE Northeast USA 1,524,453 3,897,636
CAL California andNevada 1,890,815 4,657,742
LKS Great Lakes 2,758,119 6,885,658
E Eastern USA 3,598,623 8,778,114
W Western USA 6,262,104 15,248,146

We use as a benchmark the computational results for the RC-BDA as reported in Thomas et al. [17]. They coded
their algorithm in a PC running 64-bit Ubuntu 14.04with a quad core 2.5GHz Intel i7-4710HQprocessor with 8GB of
RAM. For the sake of fairness, we scaled our times by 1.12 according to the LINPACK benchmark [29] which takes into
account differences in processing power. However, we acknowledge the difficulty tomeasure differences in operating
systems and programming languages and as such, our computational results comparing BP and RC-BDA should be
interpreted as a general indication of how the algorithms perform and not as a head-to-head performance comparison.
On the contrary, the comparison between BP and PA is indeed a head-to-head race executed under identical conditions
in the samemachine.

Table 2 compares the performance of the bidirectional pulse algorithm against the benchmark algorithms. Each
row corresponds to a road network from the US presented in Table 1. Columns 2, 4, and 6, show the average runtime
in seconds for each algorithm over the solved instances (out of the 40 combinations of tightness and destination) per
road network. Columns 3, 5, and 7, show the number of instances solved in less than 14, 400 seconds (4 hours) by each
algorithm (out of 40). After fine tuning the bidirectional pulse algorithm, the depth limit was set to (δ = 2) and the

https://github.com/copa-uniandes/BidirectionalPulse
https://github.com/copa-uniandes/BidirectionalPulse


CABRERA ET AL. 13

memory size for each nodewas set to three labels (R = 3).

TABLE 2 Computational results on large-sized US-road networks

Road network PA RC-BDA BP
Average time (s) Solved Average time (s) Solved Average time(s) Solved

BAY 25.57 40/40 1.27 40/40 0.30 40/40
NY 100.82 40/40 0.59 40/40 0.23 40/40
COL 3.99 36/40 4.60 40/40 1.67 40/40
FLA 120.72 24/40 62.32 40/40 2.64 40/40
NE 16.21 35/40 4.06 40/40 1.24 40/40
CAL 21.90 28/40 643.87 40/40 109.93 35/40
LKS 5.08 24/40 816.74 37/40 319.26 36/40
E 9.30 29/40 65.08 40/40 13.63 40/40
W 1.01 16/40 1,063.44 40/40 139.59 38/40

272/360 357/360 349/360
*Average time on solved instances

Table 2 shows that the proposed BP solves 349 out of the 360 instances within the time limit. Furthermore, the
BP solves 87more instances than the original PA, thus showing a remarkable improvement in terms of scalability. In
contrast, the RC-BDA solves slightly more instances (eight) than the BP. In terms of average times, these times vary
widely depending on the road network. However, we can see qualitatively that the proposed BP behavesmuch better
than the PA, and it is competitive against RC-BDA. Note that the original PA is indeed fast on those instances where it
can find a solution, yet it fails to find one in 88 instances, within the time limit. At the other end of the spectrum, the
average time over the solved instances of RC-BDA is larger than BP, yet it finds eight more solutions on harder instances
of the CAL, LKS, andW road networks, within the time limit.

Table 3 shows average speedups for the BP computed as the ratio between the execution time of the BP and the
execution time of the corresponding benchmark algorithm. For each road network, columns 2 and 5 show the arithmetic
mean of the speedups of the BP against each benchmark algorithm. In addition, columns 3 and 6 show the geometric
mean of the speedups of the BP against both benchmark algorithms. Note that opposed to the arithmetic mean, the
geometric mean avoids being overly optimistic with large ratios obtained on few instances, thus it provides a fairer
comparison [30]. Columns 4, and 7, present the number of instances in which the BPwas faster than the corresponding
benchmark algorithm.

Remarkably, Table 3 shows that the proposed BP is consistently faster in most of the instances than the benchmark
approaches and achieves considerable speedups over all road networks. Specifically, the BP is roughly 750 and 13
times faster in average than the pulse algorithm (PA) considering the arithmetic and the geometric mean, respectively.
However, the PA is faster in more than half of all instances (212 out of 360 instances). We explain this by noting that the
PA exhibits an "all-or-nothing" type of behavior as when it solves an instance, it usually solves it very fast; but it also
fails to solve a considerable number of instances within the time limit adding a lot of variability to the solution times.
In comparisonwith the RC-BDA, the BP is roughly 12 and 4 times faster in average considering the arithmetic and the
geometric mean, respectively. Furthermore, the BP is faster in 335 out of the 360 instances.



14 CABRERA ET AL.
TABLE 3 Average and geometric speedups vs benchmark algorithms on large-size US-road networks

Road network PA RC-BDA
Arithmetic mean

of speedups
Geometric mean

of speedups
BPWins Arithmetic mean

of speedups
Geometric mean

of speedups
BPWins

BAY 27.88 1.03 9/40 4.42 2.89 36/40
NY 415.34 3.93 18/40 2.62 2.33 38/40
COL 126.58 1.37 7/40 3.61 2.79 40/40
FLA 3117.64 69.33 24/40 25.82 8.35 40/40
NE 1106.97 3.56 16/40 3.40 3.07 40/40
CAL 371.62 3.81 19/40 12.59 4.76 35/40
LKS 321.56 5.53 20/40 12.03 5.16 35/40
E 553.00 4.82 13/40 5.13 2.20 34/40
W 719.34 23.40 22/40 37.59 7.19 37/40

Overall avg. 751.10 12.97 148/360 11.91 4.30 335/360
*The speedup calculation assigns a computational time of 14,400 seconds for unsolved instances.

4.2 | Solving pricing problems stemming from a CG approach

We study amulti-activity shift scheduling problem (MASSP), which aims to find a set of shifts to satisfy a demand for
staff requirements over a planning horizon [8, 31]. An employeemay perform different work activities in the same shift,
where K denotes the set of activities. We consider upper limits, ui , that constraint the number of time periods that an
employee can work on each activity as well as the number of times that an employee can change between activities
during the shift.

We explore a CG approach to solve the linear relaxation of the problem. Let Ω be the set of all feasible shifts
(columns) and let integer variable λj be the number of employees assigned to shift j . Let binary matrix sj denote
the schedule for shift j ∈ Ω, where s j

i t
= 1 indicates that an employee is assigned to work activity i ∈ K at time

t ∈ {1, . . . ,H } of the planning horizon. Let di t denote the staffing requirement for activity i at time t . TheMASSP can
be formulated as the followingmaster problem:

MP : min ∑
j ∈Ω

λj (1a)

s.t. ∑
j ∈Ω

s
j
i t
λj ≥ di t [i = 1, . . . , |K |, t = 1, . . . ,H (1b)

λ ∈ Ú|Ω |+ . (1c)

The objective function (1a) minimizes the total number of employees hired. Constraints (1b) ensure that the staffing
requirements are satisfied per activity and time period. Constraints (1c) require the λ-variables to be nonnegative
integers. We refer to the linear relaxation of model (1) as the relaxed master problem. Feasible shifts in setΩmust satisfy
the following constraints:

• at most onework activity can be performed during any time period;



CABRERA ET AL. 15

• an employee canwork at most ui time periods on activity i during a shift;
• there is no idle time once the shift starts; and
• switching activities takes one period of time.

As the size of setΩ could be exponentially large, we consider a CG approach that generates shifts (columns) iteratively
by solving a pricing problem (ofen called auxiliary problem), which searches for aminimal reduced cost shift (column).
Let π be the dual variables associated with constraints (1b) in the relaxedmaster problem. Let xi t be a binary variable
that takes the value of 1 if activity i is scheduled at time t ; it takes the value of 0, otherwise. Let yt be a binary variable
that denotes the start of the shift, and it takes the value of 1 if the shift starts at time t ; it takes the value of 0, otherwise.
We let activity 1 denote that the employee is switching activities and thus u1 denotes themaximum number of times
that an employee can change betweenwork activities during a shift. A standard integer programming formulation for
the pricing problem is:

PP : min 1 −
|K |∑
i=1

H∑
t=1

xi t πi t (2a)
|K |∑
i=1

xi t ≤ 1 [t = 1, . . . ,H (2b)
H∑
t=1

xi t ≤ ui [i = 1, . . . , |K | (2c)
H∑
t=1

yt = 1 (2d)

xi1 ≤ y1 [i = 1, . . . , |K | (2e)
xi t ≤ yt + xi t−1 + x1t−1 [i = 2, . . . , |K |, t = 2, . . . ,H (2f)

x1t ≤
|K |∑
i=2

xi t−1 [t = 2, . . . ,H (2g)

x ∈ {0, 1} |K |×H ; y ∈ {0, 1}H . (2h)

The objective function (2a) minimizes the reduced cost of the shift. Constraints (2b) ensure that at most one work
activity is performed at each timeperiod. Constraints (2c) enforce the upper time limits for each time activity. Constraint
(2d) requires that the shift starts exactly once. Constraints (2e)–(2g) enforce shift continuity. Note that constraints (2g)
ensure that an activity change only occurs when the employee is busy in the previous time period. Our CG approach
iteratively solves the relaxedmaster problem and the pricing problem until no negative reduced shift (column) exists
ensuring an optimal solution to the linear relaxation of theMASSP.

Problem (2) can be transformed into a CSPwithmultiple resources over a directed acyclic network, where each
resource corresponds to a work activity as shown in Appendix A. To solve this variant of the CSP, we modified the
bidirectional pulse algorithm as follows: (1) in the initialization step we found lower bounds on theminimum cost and all
theminimum resources needed to reach the end node; (2) the infeasibility pruning strategywas extended to prune using
multiple resource constraints; (3) the path completion strategy completes paths using minimum-resource completions
for every resource; and (4) for the path joins strategy we need to check that all resource constraints aremet. All other
acceleration strategies remain the same.



16 CABRERA ET AL.

We compare the performance of our proposed algorithm against a traditional single-directional labeling approach
denoted by "LA" [32] inside our CG scheme over a set of 15 synthetic instances. We consider a number of activities |K |
ranging from three to five (including the change between activities modeled as activity 1) and generate five random
instances for each value of |K |. We generate upper time limits ui for each activity using a discrete uniform distribution
between 2 and 5. In addition, we generate staffing demands di t following a uniform distribution between 10 and 20.
Finally, the number of time periods for all instances was set to 100.

Table 4 compares the performance of the bidirectional pulse algorithm against the labeling algorithmwhile solving
the auxiliary problem of the CG procedure. Each row corresponds to a number of activities, i.e., results are averaged
over the five instances generated for each value of |K |. We solve the relaxedmaster problem to optimality and report
themaximum, average, andminimum time (in seconds) it takes to solve one pricing problem to optimality during the
execution of the CG procedure. Columns 2 and 6 show themaximum runtime for solving a pricing problem for each
algorithm. Columns 3 and 7 show the average runtime while columns 4 and 8 show the average minimum runtime.
Finally, columns 5 and 9 show the number of relaxedmaster problem instances solved to optimality by the CGwithin a
time limit of 3, 600 seconds (1 hour) using each algorithm.

TABLE 4 Comparison of LA vs BP as the auxiliary problem under CG forMASSP instances

|K |
LA BP

Max time (s) Average (s) Min time (s) Solved Max time (s) Average (s) Min time (s) Solved
3 0.38 0.11 0.01 5/5 0.18 0.03 <0.01 5/5
4 33.47 2.42 0.16 4/5 1.22 0.34 0.01 5/5
5 73.27 27.56 5.63 4/5 13.04 3.04 <0.01 5/5

Overall avg. 35.71 10.03 1.93 13/15 4.81 1.13 0.01 15/15

Table 4 shows that using our algorithm embedded in a CG scheme allows us to solve all instances to optimality
within the time limit. In contrast, the CG scheme that uses the LA is unable to solve two instances. In terms of the
average time per pricing problem, the BP outperforms LA both in terms of themaximum and average solution times.
Our proposed BP is roughly 4, 7, and 9 times faster than the LA for instances with 3, 4, and 5 activities, respectively. This
behaviour is explained by the fact that the LA is heavily dependent on dominance relationships to eliminate suboptimal
paths. As the number of activities increases, dominance relationships becomeweaker and it is more computationally
expensive to check if partial paths are dominated. In contrast, the BP uses a combination of several pruning strategies
along with path completion that enable the algorithm to accelerate the search.

5 | SENSITIVITY ANALYSIS OF THE BIDIRECTIONAL PULSE

We conducted three experiments to further assess the performance of the bidirectional pulse. First, we propose an
experiment to evaluate the impact of performing a bidirectional search against a single-directional search on the CSP. In
contrast to the assessment made in Section 4.1, where the original PA does not implement the path completion and
pulse queue strategies, the single-directional search variants shown in this section embed these strategies. Second,
we conducted an experiment on the relative effectiveness of the pruning and the primal bound-update strategies.
Finally, we conducted a sensitivity analysis on the value of themaximum depth limit δ for the pulse queues. For these
experiments, we chose the road networks of San Francisco Bay Area, NewYork City, Colorado, Florida, and EasternUSA,



CABRERA ET AL. 17

as these networks are a representative sample of the original testbedwith amixture of smaller and larger networks.

5.1 | Bidirectional versus single-directional search

To analyze the impact of exploring the search space in both directions we ran all 40 instances (combinations of tightness
and destination) on each of the selected five networks, performing a single-directional search, sending pulses either
in the forward direction or the backward direction (including all strategies outlined in §3). Table 5 compares the
performance of each algorithm. Columns 2, 3, and 4 show the average computational times achieved with the BP, a
forward-direction-only pulse algorithm (FDP) and a backward-direction-only pulse algorithm (BDP), respectively. In
addition, columns 5 and 6, show the speedups achieved by the BP against the single-directional pulses. Finally, column 7
shows the speedup of the FDP against the BDP. To calculate these speedups, we first computed the speedup achieved on
each of the 40 instances (i.e., pairwise or head-to-head) for each road network. Then, we calculated the geometric mean.

TABLE 5 Bidirectional pulse vs single-directional pulse on large-size road networks
Road network BP (s) FDP (s) BDP (s) BP vs FDP speedup BP vs BDP speedup FDP vs BDP speedup

BAY 0.30 0.26 0.79 0.77 2.61 3.11
NY 0.23 0.85 0.20 3.52 0.85 0.24
COL 1.67 1.61 2.31 0.93 1.42 1.53
FLA 2.64 1.98 14.35 0.78 5.21 7.32
E 13.63 239.26 12.94 10.30 0.94 0.05

Overall avg. 3.69 48.79 6.12 3.26 2.21 2.45

We also trackedwhich search direction finished first in the BP. Figure 3 shows the fraction of instances in which
the search in either the forward or the backward direction terminates first (therefore stopping the execution of the
algorithm), considering the 40 instances of each of the five road networks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

COL BAY FLA E NY

Fr
eq

u
en

cy

Road network

Backward

Forward

F IGURE 3 Fraction of instances in which the forward and the backward search finished first



18 CABRERA ET AL.

Both Table 5 and Figure 3 show that the performance of a particular search direction varies from one instance to
another. As a practical matter, we never know beforehand which search direction would be better. However, these
results are insightful as they highlight the robustness of the bi-directional approach relative to the single-directional
approaches. As BP explores both directions concurrently, the computational time of the BP is roughly the time of the
best single-directional approach (FDP or BDP) plus a small overhead (see Table 5). This is expected because the BP
terminates as soon as one of the searches in any direction is completed.

5.2 | Relative effectiveness of the bidirectional pulse acceleration strategies

We designed two experiments to assess the relative contribution of the acceleration and pruning strategies to the
overall performance of the bidirectional pulse algorithm. We refer the reader to Bolívar et al. [21] for an analysis of the
relative contribution of the acceleration strategies (path completion and pulse queue) over the original core strategies
of the PA [16]. For both experiments, we ran all 40 instances (combinations of tightness and destination) on each of the
selected five networks.

In the first experiment, we analyzedwhich strategies update the primal boundmore frequently. Figure 4 shows that
theminimum resource consumption path completion in both the forward (MTF) and backward (MTB) direction are the
ones that update the incumbentmore frequently. Moreover, the algorithm relies on theminimum resource consumption
path completion strategy to update the primal bound about 70%of the time. Note that the path joins (PJ) strategy seems
to have greater impact when the resource constraint is tighter (smaller p values). On the contrary, regardless of the
search direction, theminimum-cost path completion relative effectiveness increases when the resource constraint is
loose (larger p values).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fr
eq

u
en

cy

Tightness factor (p)

MTF

MTB

PJ

MCF

MCB

F IGURE 4 Relative effectiveness of the primal bound-update strategies

In the second experiment, we analyzed the relative effectiveness of the pruning strategies based on how frequently
they pruned partial paths. Figure 5 shows the relative effectiveness of the pruning strategies as the tightness factor
varies. In summary, the most effective strategy is dominance pruning. More specifically, the algorithm relies on this
strategy to prune almost 80%of the partial paths, followed by bounds pruning with 15%, and infeasibility pruning with
just 5%. Nonetheless, since pruning a path at an early stage might be more effective than a very frequent pruning



CABRERA ET AL. 19

strategy used at a later stage, this analysis only measures the relative effectiveness of the strategies. Note that as the
resource constraint becomes loose, the relative effectiveness of the bounds pruning strategy increases.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Fr
eq

ue
nc

y

Tightness factor (p)

Dominance

Bounds

Infeasibility

F IGURE 5 Relative effectiveness of the pruning strategies

5.3 | The effect of halting pulses: queues and their depth limit

Finally, we studied the impact of themaximum depth limit δ (of the pulse queues) on the BP performance. With this
purpose we ran all 40 instances (combinations of tightness and destination) on each of the selected five networks. Then,
we used the performance degradation proposed by Bolívar et al. [21], defined as the ratio of the average time (for a
given δ) to the minimum average time (across all values of δ). A performance degradation of 1means that the given
depth limit δ achieved theminimum average time (as good as it gets). Figure 6 shows the performance degradation as a
function of the depth limit over each road network.



20 CABRERA ET AL.

1.00

1.25

1.50

1.75

2.00

2 3 4 5 6 7 8 9 10

P
er

fo
rm

an
ce

 d
eg

ra
d

at
io

n

Depth limit (δ)

BAY

NY

COL

FLA

E

Road network

F IGURE 6 Sensitivity analysis on the depth limit on a sample of large-sized US-road networks

For almost all the road networks considered, the BP achieved its best performance with a depth limit of two. Note
that an increase on the depth limit favors depth over breadth, and in these road networks, it degrades the performance
of the bidirectional pulse. The short depth allows the bidirectional pulse to re-route the searchmore frequently, without
going too deep into the network when it is too late to backtrack.

6 | A PULSE-BASED HEURISTIC FOR THE CSP

The bidirectional pulse is an exact algorithm for the CSP. However, in some applications finding an optimal solution is
not mandatory. For example, when the CSP is used as the auxiliary problem on a column generation scheme (as shown
in §4.2), it is only necessary to find paths with negative reduced cost during the early iterations of the scheme. For this
reason, we analyze the ability of the bidirectional pulse to find high quality solutions during the initial stages of the
exploration using the primal bound-update strategies on the California and the Great Lakes road networks. We chose
these networks because all algorithms struggled to solve all instances to optimality (within the time limit of four hours),
and for those they solved, they took longer (on average) than on the other road networks. In particular, RC-BDA and BP,
failed to solve 3 and 9 instances out of 80 on these hard road networks within the time limit. Figures 7 and 8 show the
computational time required to find a solution within a 1%gap and the computational time needed to find an optimal
solution for the California and the Great Lakes road networks instances, respectively. For this experiment, we used the
samemachine specifications of §4 and imposed a time limit of 14, 400 seconds. In order to compute optimality gaps, we
found optimal solutions for the unsolved instances from §4 using amachine with Intel Xeon E5-2630 v3@2.40 GHz
with 14GB allocated on thememory heap size of the Java VirtualMachine and no time limit.



CABRERA ET AL. 21

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
(s

) 
-

Lo
g 

sc
al

e

Instance

Time to 1% optimality gap Time to optimality Time limit

F IGURE 7 Performance of the bidirectional pulse on the California road network instances (sorted by solution time)

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C
o

m
p

u
ta

ti
o

n
al

 t
im

e 
(s

) 
-

Lo
g 

sc
al

e

Instance

Time to 1% optimality gap Time to optimality Time limit

F IGURE 8 Performance of the bidirectional pulse on the Great Lakes road network instances (sorted by solution
time)

Note that in all the California road network instances, the bidirectional pulse found a solution within a 1%gap in
less than one second. However, the BPwas not able to prove optimality within the time limit for five instances (out of
40). Similarly, for the Great Lakes instances, the BP found solutions within a 1%gap in less than 20 seconds. However,
the algorithm failed to close the gap for four of those 40 instances within the time limit. We note that, as it is often the
case in discrete problems, the algorithm finds high quality solutions in initial stages of the search and spendsmost of the
computational time closing the optimality gap.

To complement our analysis, we selected a hard instance of theWestern USA road network (destination 5 and
tightness factor of 0.2) based on the computational times that both the BP and the RC-BDA needed to solved it (RC-BDA



22 CABRERA ET AL.

tookmore than two hours). Then, we ran the BP storing information about which strategy updated the primal bound
and the values for the sequence of bounds. Figure 9 shows the primal bounds, the time at which each solutionwas found,
and the strategy that found the solution. As a reference, the optimal cost is marked by a green horizontal line. The initial
solution is the cost of theminimum resource consumption path found on the initialization step. In addition, we denote a
minimum resource consumption path asMTF orMTB, depending on the search direction, and the path joins strategy as
PJ. Note that on this instance theminimum resource consumption path completion on the backward direction (MTB)
found solutions faster. However, theminimum resource consumption path completion on the forward direction (MTF)
was able to construct solutions of higher quality. Moreover, on this instance the BPwas not able to complete paths using
theminimum-cost path completion. In addition, is relevant tomention that an optimal solution was found by the path
joins (PJ) strategy, 110 seconds after the algorithm began. Finally, note that 900 seconds elapsed from themoment in
which an optimal solution was found until BP terminates. Although this analysis is instance-dependent, we observed
a similar behavior on several instances of the testbed, where the BP found an optimal solution at an early stage but
needed considerable additional time to prove optimality.

13,000,000

13,500,000

14,000,000

14,500,000

15,000,000

15,500,000

16,000,000

0.0 0.0 0.1 1.0 10.0 100.0 1000.0 10000.0

C
o

st
 (

$
)

Computational time (s) - Log scale

Initialization

MTB

MTF

PJ

BP terminates

Optimal solution

F IGURE 9 Primal-bound evolution for BP on theWestern USA road network on the destination 5with 0.2 tightness

Based on the previous analysis, in some applications it might be worth to design a pulse-based heuristic for the CSP
just by adding a naïve stopping criterion to the BP.We conducted an experiment where we impose a computational
time limit γ. If the computational time reaches this value γ, the algorithm stops, andwe accept the current incumbent
solution. To evaluate the quality of the solutions obtained with this pulse-based heuristic, we used the complete testbed
of 360 instances introduced in §4, varying the time limit γ. Figure 10 shows the number of instances where the heuristic
found a solution within a 1%gap for a given computational time budget γ. Note that 90%, 95%, and 99%of all instances
are within 1%of the optimal solution in less than 3, 5, and 30 seconds, respectively.



CABRERA ET AL. 23

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Fr
ac

ti
o

n
 o

f 
in

st
an

ce
s

Time limit (s)

F IGURE 10 Quality of the pulse-based heuristic as the fraction of instances within 1% optimality as a function of
the computational budget (time limit) for the large-size US-road networks

7 | CONCLUDING REMARKS

In this workwe presented an exact algorithm for the CSP that solves large-sized road networks with up to 6, 000, 000
nodes and 15, 000, 000 arcs. The algorithm is based on a bidirectional adjustable depth-first (or breadth-first) search
leveraged by parallelism and a set of acceleration strategies. Specifically, we incorporated core pruning strategies that
allow to prune partial paths at early stages of the search. In addition, we integrated the path completion and the path
joins strategies to update the incumbent solution in intermediate parts of the network. It is noteworthy that the only
parameters to be defined by the user are themaximum number of labels stored at each node (R ) and the depth limit (δ)
that adjusts the search behavior (balancing between a breadth or depth emphasis).

From a computational perspective, we conducted several experiments over 360 instances from nine large-scale
road networks in the US to test the performance of the proposed algorithm against two state-of-the-art algorithms,
namely, the (original) pulse algorithm −PA− and the bidirectional A* algorithm −RC-BDA−. Against PA, the proposed
bidirectional pulse algorithm reached average speedups of up to 70 times andwas on average 12 times faster according
to the conservative geometric mean. Moreover, the bidirectional pulse algorithmwas able to solve 87 instancesmore
than the PAwithin the 4-hour time limit. On the other hand, comparedwith the RC-BDA, the bidirectional pulse was on
average four times faster, even though the RC-BDA solved 8 instancesmore. Additionally, we embedded our algorithm
in a column generation scheme to solve amulti-activity shift scheduling problem, where the auxiliary problem can be
represented as a CSP problemwithmultiple resources. We compared the performance of the BP against a traditional
single-directional labeling algorithm for solving the auxiliary problem, where the BP showed a remarkable performance
both in terms of themaximum and average solution times. In summary, the bidirectional pulse algorithm presents a fast,
reliable, and stable exact algorithm for the CSPwith one ormultiple resources.

In addition, we conducted a comprehensive sensitivity analysis to better understand the algorithm components and
their relative contribution to the bidirectional pulse. First, we showed the impact of performing a bidirectional search
comparing the algorithm against a single-directional version of the algorithm. Then, we designed an experiment to test
the primal bound-update strategies in which we observed that the path joins strategy has amajor relevance when the
resource constraint is tighter. Also, we noted that theminimum resource consumption path completion is themost used
strategy to create feasible solutions at early stages of the search. In addition, we analyzed the impact of halting pulses
on the bidirectional search, varying the pulse depth limit, noting that a smaller value leads to better results (favoring
breadth over depth, in this case).



24 CABRERA ET AL.

Finally, although the bidirectional pulse is an exact method for the CSP, we derived a new heuristic for the CSP that
finds high quality solutions for time-constrained applications −like in the pricing problemwithin a column generation
scheme−. We showed that the heuristic can find solutions within 1%of optimality in less than 30 seconds for 99%of the
360 instances of the testbed.

We are currently working on an extension that incorporates uncertainty on the arc weights and deals with chance
constraints. We are also evaluating the benefits versus the computational overhead of usingmultiple threads on each
search direction.

ACKNOWLEDGEMENTS

The authors are grateful for the detailed remarks of two anonymous referees, which greatly helped improve the
manuscript. Dr. Lozano gratefully acknowledges the support of theOffice of Naval Research under Grant N00014-19-
1-2329.

REFERENCES

[1] Garey MR, Johnson DS. Computers and intractability: A guide to the theory of NP-Completeness. New York, NY, USA:
W. H. Freeman &Co.; 1979.

[2] ZabarankinM, Uryasev S, Pardalos P. Optimal risk path algorithms. Cooperative Control andOptimization 2005;p. 273–
298.

[3] Cabral EA, Erkut E, Laporte G, Patterson RA. The network design problemwith relays. European Journal of Operational
Research 2007;180(2):834–844.

[4] Desaulniers G, Desrosiers J, SolomonMM. Column generation. Boston,MA, USA: Springer; 2005.
[5] Derigs U, Friederichs S, Schäfer S. A new approach for air cargo network planning. Transportation Science

2009;43(3):370–380.
[6] Graves GW, McBride RD, Gershkoff I, Anderson D, Mahidhara D. Flight crew scheduling. Management Science

2008;39(6):736–745.
[7] Lavoie S, Minoux M, Odier E. A new approach of crew pairing problems by column generation and application to air

transport. European Journal of Operational Research 1988;35:45–58.
[8] RestrepoMI, Lozano L,Medaglia AL. Constrained network-based column generation for themulti-activity shift schedul-

ing problem. International Journal of Production Economics 2012;140(1):466–472.
[9] Grönkvist M. Accelerating column generation for aircraft scheduling using constraint propagation. Computers and Op-

erations Research 2006;33(10):2918–2934.
[10] Dumitrescu I, Boland N. Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest

path problem. Networks 2003;42(3):135–153.
[11] Zhu X, Wilhelm WE. A three-stage approach for the resource-constrained shortest path as a sub-problem in column

generation. Computers andOperations Research 2012;39(2):164–178.
[12] Santos L, Coutinho-Rodrigues J, Current JR. An improved solution algorithm for the constrained shortest path problem.

Transportation Research Part B:Methodological 2007;41(7):756–771.
[13] Di L, Pugliese P, Guerriero F. Constrained shortest path problems 2012;1655(1980):1–19.



CABRERA ET AL. 25

[14] Sedeño-NodaA,Alonso-RodríguezS. AnenhancedK-SPalgorithmwithpruning strategies to solve the constrained short-
est path problem. AppliedMathematics and Computation 2015;265:602–618.

[15] Zeng W, Miwa T, Morikawa T. Application of the support vector machine and heuristic k-shortest path algorithm to
determine themost eco-friendly pathwith a travel time constraint. Transportation Research Part D: Transport and Envi-
ronment 2017;57:458–473.

[16] Lozano L, Medaglia AL. On an exact method for the constrained shortest path problem. Computers and Operations
Research 2013;40(1):378–384.

[17] Thomas BW, Calogiuri T, Hewitt M. An exact bidirectional A* approach for solving resource-constrained shortest path
problems. Networks 2019;73(2):187–205.

[18] Pohl I. Bi-directional and heuristic search in path problems. Stanford Linear Accelerator Center, Stanford University;
1969.

[19] LozanoL,DuqueD,MedagliaAL. Anexact algorithm for the elementary shortest pathproblemwith resource constraints.
Transportation science 2015;50(1):348–357.

[20] Duque D, Lozano L, Medaglia AL. An exact method for the biobjective shortest path problem for large-scale road net-
works. European Journal of Operational Research 2015;242(3):788–797.

[21] Bolívar MA, Lozano L, Medaglia AL. Acceleration strategies for the weight constrained shortest path problem with re-
plenishment. Optimization Letters 2014;8(8):2155–2172.

[22] Duque D, Lozano L, Medaglia AL. Solving the orienteering problem with time windows via the pulse framework. Com-
puters andOperations Research 2014;54:168–176.

[23] Duque D, Medaglia AL. An exact method for a class of robust shortest path problems with scenarios. Networks
2019;DOI:10.1002/net.21909.

[24] Lozano L, Smith JC. A backward sampling framework for interdiction problems with fortification. INFORMS Journal on
Computing 2017;29(1):123–139.

[25] Arslan O, Jabali O, Laporte G. Exact solution of the evasive flow capturing problem. Operations Research
2018;66(6):1625–1640.

[26] Schrotenboer A, Ursavas E, Vis I. A branch-and-price-and-cut algorithm for resource constrained pickup and delivery
problems. Transportation Science 2019;In press.

[27] Montoya A, Guéret C, Mendoza JE, Villegas JG. A multi-space sampling heuristic for the green vehicle routing problem.
Transportation Research Part C: Emerging Technologies 2016;70:113–128.

[28] 9th DIMACS Implementation Challenge - Shortest Paths;. Accessed: 2019-07-08. http://users.diag.uniroma1.it/
challenge9/.

[29] Dongarra JJ. Performance of various computers using standard linear equations software. ACM SIGARCH Computer
Architecture News 2014;20(3):22–44.

[30] Bixby RE. Solving real-world linear programs: A decade andmore of progress. Operations Research 2003;50(1):3–15.
[31] QuimperCG, Rousseau LM. A large neighbourhood search approach to themulti-activity shift scheduling problem. Jour-

nal of Heuristics 2010;16(3):373–392.
[32] Dumitrescu I, Boland N. Algorithms for the weight constrained shortest path problem. International Transactions in

Operational Research 2001;8(1):15–29.

http://users.diag.uniroma1.it/challenge9/
http://users.diag.uniroma1.it/challenge9/


26 CABRERA ET AL.

A | APPENDIX:MASSP AUXILIARY PROBLEM NETWORK

We transform problem (2) into a CSPwithmultiple resources on a directed acyclic network, in which nodes correspond
to combinations of activities and time periods arranged by layers, where each layer corresponds to a time period.

Let s and e denote the start and end nodes, and let ordered pair {i , t } denote a node corresponding to scheduling
activity i at time t . Figure 11 presents the general structure of our network. We generate two types of arcs to denote the
start of the shift (dashed arcs) and the assignment of an activity to a given time period (solid arcs). Node s is connected
to all nodes except for e and nodes corresponding to a change of work activity (recalling that activity 1 is used to
represent such changes). For i ≥ 2 and t < H , nodes {i , t } are connected to e , to node {i , t + 1}, and to node {1, t + 1},
representing the end of the shift, the continuation of activity i during time period t + 1, or a change of activity in period
t +1, respectively. Finally, for 2 ≤ t ≤ H −1, nodes {1, t } are connected to nodes {i , t +1} having i ≥ 2, which represents
that a change of activity occurred during time t and a new activity is scheduled starting at time t + 1.

s e
{2, 1}

.

.

.

{|K |, 1}

{1, 2}

{2, 2}

.

.

.

{|K |, 2}

{1, 3}

{2, 3}

.

.

.

{|K |, 3}

· · ·

· · ·

· · ·

{2,H }

.

.

.

{|K |,H }

F IGURE 11 Auxiliary network for the pricing problem in a column generation approach forMASSP.

Every path in this network corresponds to a shift. Feasible shifts are obtained by enforcing the upper limits ui on
the number of time periods that an employee can perform each activity via resource constraints, where activity arcs
consume one unit of a resource corresponding to the activity associated with the arc (see Restrepo et al. [8]).



CABRERA ET AL. 27

B | APPENDIX:BIDIRECTIONAL PULSE STRATEGIES EXAMPLE

The purpose of this section is to show an example of how the bidirectional pulse strategies work in an intermediate
stage of the algorithm. Figure 12 shows a network with six nodes and nine arcs. Each arc has an associated cost and
resource consumption. In addition, the resource consumption limit is set to 15. Finally, the best solution found so far is
P∗ = {s,v2,v3, e }with a cost of 18 and a total resource consumption of 3. In the current stage of the algorithm, a pulse
arriving from node s reaches node v1 with a cost of 1, a resource consumption of 6, and a partial path P = {s,v1 } (see
the red arc of the figure). Accordingly, before propagating this pulse to another node, the BP uses the pruning strategies
to check if the current pulse can be pruned and if the best path can be updated.

First, we consider the bounds pruning strategy using the cost of the partial path, the cost of the minimum cost
path from v1 to e , and the primal bound. In this case the condition 1 + 5 < 18 is true, so the pulse cannot be pruned by
bounds pruning. Then, we consider the infeasibility pruning strategy using the resource consumption of the partial path,
the resource consumption of the minimum resource consumption path from v1 to e , and the resource consumption
limit. In this case the condition 6 + 3 ≤ 15 is true, so the pulse cannot be pruned by this strategy. Finally, we consider
the dominance pruning strategy. Note that the BP already found a path that reaches node v1 on the forward direction
and added the information to the non-dominated list of labels Lf (v1). Consequently, we check if the partial path is
dominated by the previously found path. In this case the partial path is not dominated by it, because even if the partial
path has a higher resource consumption, it has a lower cost.

After checking the pruning strategies, the BP proceeds to check if the best solution can be updated using the path
completion and the path joins strategies. Regarding the path completion strategy, we first check if the path can be
completed using theminimum cost path. Formally we check if 1 + 5 < 18 and 6 + 11 ≤ 15. In this case this path cannot
be completed, as it is not feasible in terms of time. Then, we check if the path can be completed using the minimum
resource consumption path. More specifically if 1 + 10 < 18 and 6 + 3 ≤ 15. As both conditions aremet, the path can
be completed and the primal bound can be updated to 11. Finally, we check if we can join the path using partial paths
created on the opposite direction. Formally, we check if 1 + 9 < 11 and 6 + 7 ≤ 15. As both conditions aremet, we join
the partial paths and update the primal bound to 10.



28 CABRERA ET AL.

(4,1)

(1,10)

(7,1)

(3,2)
(2,7)(2,2)

(1,6)

(9,1)

(2,1)

Forward labels ℒ௙ 𝑣ଵ

11,3, {𝑠, 𝑣ଶ, 𝑣ଵ}

Backward labels ℒ௕ 𝑣ଵ

9,7, {𝑒, 𝑣ସ, 𝑣ଷ, 𝑣ଵ}

Minimum cost path from 𝑣ଵ to 𝑒

Minimum resource consumption path from 𝑣ଵ to 𝑒

F IGURE 12 A bidirectional pulse algorithm example


	Introduction
	Bidirectional pulse algorithm: intuition and overview
	Pulse algorithm
	Bidirectional recursive search
	Bidirectional pulse algorithm

	Acceleration strategies for the bidirectional pulse
	Pruning strategies
	Pruning by infeasibility
	Pruning by bounds
	Pruning by dominance

	Primal bound-update strategies
	Path completion
	Path joins

	Pulse queueing

	Computational experiments
	Experiments over large-scale road networks 
	Solving pricing problems stemming from a CG approach

	Sensitivity analysis of the bidirectional pulse
	Bidirectional versus single-directional search 
	Relative effectiveness of the bidirectional pulse acceleration strategies
	The effect of halting pulses: queues and their depth limit 

	A pulse-based heuristic for the CSP
	Concluding remarks
	appendix:MASSP Auxiliary problem network
	appendix:bidirectional pulse strategies example

