
Optim Lett (2014) 8:2155–2172
DOI 10.1007/s11590-014-0742-x

ORIGINAL PAPER

Acceleration strategies for the weight constrained
shortest path problem with replenishment

Manuel A. Bolívar · Leonardo Lozano ·
Andrés L. Medaglia

Received: 17 July 2013 / Accepted: 28 March 2014 / Published online: 17 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract The weight constrained shortest path problem with replenishment (WCSPP-
R) generalizes the constrained shortest path problem (CSP) and has multiple appli-
cations in transportation, scheduling, and telecommunications. We present an exact
algorithm based on a recursive depth-first search that combines and extends ideas pro-
posed in state-of-the-art algorithms for the CSP and the WCSPP-R. The novelty lies in
a set of acceleration strategies that significantly improves the algorithm’s performance.
We conducted experiments over large real-road networks with up to 6 million nodes
and 15 million arcs, achieving speedups of up to 219 times against the state-of-the-art
algorithm.

Keywords Constrained shortest path problem · replenishment · large-scale networks

1 Introduction

Let G = (N ,A)be a directed graph defined by a set of nodes N ={v1, . . . , vi , . . . , vn}
and a set of directed arcs A = {

(i, j)|vi ∈ N , v j ∈ N , i �= j
}
. Each arc (i, j) ∈ A

has a cost ci j , a resource consumption wi j , and a binary indicator ri j that takes the
value of 1 if the arc is a replenishment arc and takes the value of 0, otherwise. The
weight constrained shortest path problem with replenishment (WCSPP-R) consists of

M. A. Bolívar · L. Lozano · A. L. Medaglia (B)
Universidad de Los Andes, Cr 1E No. 19A-10, ML711, Bogotá, Colombia
e-mail: amedagli@uniandes.edu.co
URL: http://wwwprof.uniandes.edu.co/∼amedagli

M. A. Bolívar
e-mail: ma.bolivar643@uniandes.edu.co

L. Lozano
e-mail: leo-loza@uniandes.edu.co

123

2156 M. A. Bolívar et al.

finding the minimum cost path between a start node vs ∈ N and an end node ve ∈ N
without exceeding a resource constraint W . The WCSPP-R considers replenishment
arcs that reset the value of the consumed resource to zero at the tail node, that is,
just before traversing the replenishment arc. A feasible path P in the WCSPP-R is an
ordered sequence of nodes that satisfies the resource constraint W everywhere.

The WCSPP-R is a generalization of the well-studied constrained shortest path
problem (CSP). For the CSP, Joksch [6] proposed a dynamic programming algorithm
that was lately extended with preprocessing techniques by Dumitrescu and Boland [4].
Handler and Zang [5] used a k-shortest path algorithm where they identify k paths, sort
them by length, and evaluate them successively until finding a feasible path. Santos
et al. [10] extended this idea by improving the search direction based on the relative
tightness of the resource constraint. More recently, Lozano and Medaglia [8] proposed
a recursive depth-first search combined with pruning strategies to avoid a complete
exploration of the solution space of the CSP.

In contrast to the CSP, the WCSPP-R has not been studied, with the notable excep-
tion of Smith et al. [11]. Motivated by the existence of several replenishment opportu-
nities in contexts like airline crew pairing, aircraft routing, and crew scheduling, they
proposed two exact algorithms. The first algorithm uses a meta-network (or high level
network) that exploits the inter-replenishment subpath structure of feasible paths. The
second method is a label correcting (LC) algorithm combined with an efficient pre-
processing technique. After testing the algorithms over a set of randomly generated
grid networks and a set of acyclic networks arising from airline planning applica-
tions, the LC algorithm clearly outperformed the meta-network based method. This
LC algorithm comprises two stages. The first stage is a preprocessing procedure that
finds the minimum cost paths Pc

si and Pc
ie from vs to all nodes vi ∈ N and from every

node vi ∈ N to the end node ve; then, it finds the minimum weight feasible paths Pw
si

and Pw
ie and aggressively removes from the network those nodes and arcs that cannot

be part of the optimal solution. The second stage is a labeling algorithm where a label
at node vi represents a partial path P from vs to vi ; the label stores the node vi , the
cumulative cost c(P), and the resource consumed since the last replenishment w(P).
The LC algorithm starts with an empty set of untreated labels that is triggered in vs

setting a label with cost and resource consumption equal to zero. Labels are pulled
out from the untreated label set according to a given label treatment criterion and
extended from their node along each outgoing arc, generating new labels but discard-
ing infeasible or dominated ones. The LC algorithm stops when the untreated label
set is empty.

Equivalently, the pulse algorithm for the CSP [8] also comprises two stages: (1)
a bounding stage that finds lower bounds on the cost and the resource consump-
tion from any node vi to the end node ve, and (2) a recursive exploration stage that
finds the optimal solution based on an implicit enumeration of the solution space.
The exploration is started by sending a pulse from the start node vs . The pulse tries
to propagate throughout the outgoing arcs of each visited node recursively, stor-
ing at each node the partial path P , the cumulative cost c(P), and the cumulative
resource consumption w(P). At each node, different pruning strategies try to pre-
vent pulse propagation based on partial path dominance, infeasibility, and bounds.
Every pulse that reaches the end node ve contains all the information of a feasi-

123

Acceleration strategies for the WCSPP-R 2157

ble path from vs to ve and it is a candidate solution to update the global primal
bound.

It is worth noting the similarities between these independent research fronts. First,
both algorithms find cost and resource bounds for all nodes. Nonetheless, the pre-
processing of the LC algorithm goes a step further and uses the computed information
to remove nodes and arcs from the graph. Second, the ideas of discarding a label or
pruning a pulse are very similar. Finally, both algorithms use analogous strategies
to prevent the propagation of labels and pulses, i.e., infeasibility, dominance, and
bounds. However, there are a couple of key differences. First, while the LC algorithm
explores all the successors of a label’s node and then globally selects the next label
to be extended following a lexicographic breadth-first search [1], the pulse algorithm
follows a pure depth-first search until the pulse reaches the end node or until it is
pruned. Second, in contrast to LC, the pulse algorithm does not require an exhaustive
dominance check for correctness, but it heavily relies on the strength of the pruning
strategies.

The contribution of this paper is twofold: from a methodological perspective, we
present a set of acceleration strategies that combine depth and breadth search, gen-
eralizing the ideas proposed by Smith et al. [11] and Lozano and Medaglia [8], both
state-of-the-art algorithms for the WCSPP-R and CSP, respectively. From a computa-
tional perspective, we adapted a vast set of real-road networks for the WCSPP-R and
conducted extensive computational experiments that showed remarkable speedups of
up to 219 times against the state-of-the-art algorithm. Moreover, we incorporated the
proposed acceleration strategies into the pulse algorithm for the CSP and achieved
speedups of up to 23 % on instances from the literature.

The remainder of this paper is organized as follows. Section 2 presents an overview
of the pulse algorithm and outlines the intuition behind the acceleration strategies.
Section 3 provides a detailed description of the acceleration strategies. Section 4
presents the computational results for the WCSPP-R. Section 5 presents a sensitivity
analysis on the individual effect of the acceleration strategies. Section 6 presents
additional computational results on the CSP. Finally, Sect. 7 concludes the paper and
outlines future work.

2 An overview of the proposed algorithm

We extend the pulse algorithm presented by Lozano and Medaglia [8] for the CSP
integrating key ideas by Smith et al. [11] for the WCSPP-R and adding three new
acceleration strategies, namely, path completion, pulse queueing, and best-promise
exploration order. Our approach brings together the best from both algorithms under
the pulse framework. In a first stage, our algorithm obtains primal and dual bounds
using the flawless preprocessing procedure by Smith et al. [11]. In a second stage,
our algorithm explores the network using a modified pulse algorithm that includes
the acceleration strategies. A major modification to the original pulse algorithm is the
inclusion of a pulse queue denoted by Q. When the depth of a partial path P reaches
a maximum allowed value δ, its exploration pauses and the corresponding pulse is
stored in Q, saving the partial path P , the node where the pulse was paused n(P),

123

2158 M. A. Bolívar et al.

the cumulative cost c(P), and the resource consumption w(P). The algorithm stops
when the queue Q is empty. Note that how the algorithm explores the graph depends
on the value of δ: if δ is equal to one, the exploration becomes a pure lexicographic
breadth-first search; if δ is large enough, the exploration becomes a pure depth-first
search; and for 1 < δ < ∞, the algorithm combines depth-first and breadth-first
search strategies.

Algorithm 1 presents the pseudocode of the proposed algorithm. Lines 1 and 2
initialize the optimal path P∗ and a partial path P . Line 3 executes the preprocessing
algorithm proposed by Smith et al. [11]. Line 4 initializes the pulse queue Q with
a paused pulse at node vs . Lines 5 through 10 propagate pulses stored in Q. Line 6
selects the next pulse to be processed given a queue discipline (see Sect. 3.4) and
removes it from Q. Line 7 checks if the pulse can be discarded by bounds pruning.
If the pulse is not discarded, line 8 propagates the pulse resuming the exploration at
node n(P) and setting the path depth to zero. Finally, line 11 returns the optimal path
P∗ which is obtained (and modified) through the recursion.

Algorithm 1 Pulse algorithm
Input: G, directed graph; W , resource constraint; vs , start node; ve , end node.
Output: P∗, optimal path.
1: P∗ ← ∅
2: P ← {vs }
3: preprocess(G,W, vs , ve)

4: push(Q,P)
5: while Q �= ∅ do
6: P ← pop(Q) 	 see Section 3.4
7: if checkBounds(n(P), c(P)) = false then 	 see Section 3.1
8: pulse(n(P), c(P), w(P), 0,P) 	 see Algorithm 2
9: end if
10: end while
11: return P∗

Algorithm 2 shows the body of the recursive function pulse, where �+(vi) ={
v j ∈ N |(i, j) ∈ A}

is the set of head nodes of the outgoing arcs of node vi . Every
time the pulse function is called over the end node ve, the pulse propagation stops, the
primal bound is updated, and the information of the best path known is stored globally.
Lines 2 through 5 update the cumulative cost, the resource consumption, pulse depth,
and partial path. Line 6 checks if it is feasible to reach the end node ve from node
v j given a resource consumption of w′. Line 7 tries to prune the pulse using lower
bounds on the best cost achievable by the current partial path. Line 8 checks the dom-
inance relations of P ′ against the list of non-dominated partial paths L(v j) for node
v j . If P ′ is not dominated, it is inserted into L(v j) following the same queue disci-
pline of Q and any path dominated by P ′ is removed from L(v j). Line 9 explores the
possibility of completing the partial path P ′ with the minimum cost feasible path (see
Sect. 3.2). Line 10 checks if the path has reached the maximum depth δ, if so, line 11
adds it to the pulse queue Q. Finally, line 13 recursively propagates the pulse through
node v j .

123

Acceleration strategies for the WCSPP-R 2159

Algorithm 2 Pulse function
Input: vi , current node; c, cumulative cost; w, cumulative resource; d, current depth; P , partial path.
Output: void
1: for v j ∈ �+(vi) do
2: c′ ← c + ci j
3: w′ ← w · (1− ri j)+ wi j
4: d ′ ← d + 1
5: P ′ ← P ∪ {v j }
6: if checkFeasibility(v j , w

′) = true then 	 see Section 3.1
7: if checkBounds(v j , c′) = false then 	 see Section 3.1
8: if checkDominance(v j ,P ′) = false then 	 see Section 3.1
9: if checkCompletePath(v j , c′, w′) = false then 	 see Section 3.2
10: if d ′ > δ then 	 see Section 3.3
11: push(Q,P ′)
12: else
13: pulse(v j , c′, w′, d ′,P ′)
14: end if
15: end if
16: end if
17: end if
18: end if
19: end for

3 Acceleration strategies

In this section we first review the core pruning strategies of the pulse algorithm [8],
namely, infeasibility, bounds, and dominance pruning. Then, we present a detailed
description of the newly proposed acceleration strategies.

3.1 Core pruning strategies

The core pruning strategies are used in both the LC algorithm and the pulse algorithm.
The infeasibility pruning strategy discards a partial path Psi when it is not possible to
reach the end node without exceeding the resource constraint, i.e.,w(Psi)+w(Pw

ie) >

W . The bounds pruning strategy uses a primal bound c̄ that it is updated with the value
of the best solution found so far. If c(Psi) + c(Pc

ie) ≥ c̄, then path Psi can be safely
pruned because a better (or equal) solution has already been found in the exploration.
Finally, for dominance pruning, let P1 and P2 be two partial paths at a given node
vi ∈ N . It is said that P1 dominates P2 if c(P1) ≤ c(P2) and w(P1) < w(P2); or
c(P1) < c(P2) and w(P1) ≤ w(P2). For further information about these strategies,
the reader is referred to Lozano and Medaglia [8] and Smith et al. [11].

3.2 Path completion

Given a partial path Psi arriving to node vi ∈ N , the path completion strategy adds
the minimum cost path Pc

ie from vi to ve to the partial path Psi , i.e., Pse = Psi ∪Pc
ie

and checks if the completed path Pse is feasible and if c(Pse) is less than the primal

123

2160 M. A. Bolívar et al.

bound c̄. Note that if a path completion occurs, there is no need to explore additional
paths beginning with Psi because Pc

ie is already the minimum cost path from vi to ve

and thus Pse will be the minimum cost path beginning with partial path Psi . In this
case the pulse associated with Psi can be pruned and the primal bound can be updated.
This idea was implemented in the pulse framework following the intuition shared by
Smith et al. [11] as a future extension to their algorithm.

Furthermore, if a path cannot be completed using the minimum cost path, there is
still a chance to update the primal bound. Given a partial path Psi , the path can be
completed by adding the minimum-weight feasible path Pw

ie from vi to ve to the partial
path, i.e., Pse = Psi ∪Pw

ie . If Pse is feasible and c(Pse) < c̄, the primal bound can be
updated, but the pulse associated with path Psi cannot be pruned.

3.3 Pulse queueing

Breadth-first and depth-first search have both advantages and limitations [7]. Breadth-
first search (BFS) expands the start node through the outgoing arcs, and then processes
the nodes by depth level, layer by layer, until it reaches the end node. The main
drawbacks of BFS are: (1) the memory requirements to store all the states; and (2) the
possible lack of feasible solutions at intermediate steps of the search (i.e., it may take
until the last iteration to reach the end node). On the other hand, depth-first search
(DFS) processes an outgoing arc from the most recently expanded node until it reaches
the end node; then it backtracks to process unexplored outgoing arcs. In contrast to
BFS, the only information stored in DFS relates to the currently explored path; thus
it requires less memory than BFS. Because DFS favors depth over breadth, it reaches
the end node often, thus it generates complete solutions that are used to update the
primal bound. However, a major disadvantage of DFS is that it could waste time
exploring unpromising regions of the search space before backtracking and correcting
poor decisions made at earlier stages of the exploration.

Because it is not obvious on which instances BFS or DFS performs better, we
combine both search paradigms in a simple, yet effective way. The idea is to perform
a depth-first search from the start node but restricted to a maximum depth δ. When a
pulse reaches that depth, the partial path is stored in the pulse queue Q following a
given queue discipline. Once there are no active pulses, the queued pulses are processed
until Q is empty. If the value for δ is large enough, the exploration behaves as a pure
DFS. Thus, if the first extended arc in a path P is not part of the optimal solution, it
may be necessary to explore all the possible paths that include that arc to conclude that
extending it was a naïve decision. However, by fixing a low value for δ, the algorithm
is able to look ahead and behaves more like BFS, acquiring the capability to timely
reroute the exploration after reaching the depth limit.

3.4 Best-promise exploration order

The graph exploration order is critical for the algorithm’s performance and it is defined
by the queue discipline for Q. Given a partial path Psi arriving to node vi , we con-
sidered the following queueing disciplines: (1) minimum cost, (2) maximum cost, (3)

123

Acceleration strategies for the WCSPP-R 2161

minimum weight, (4) maximum weight, and (5) best promise. The first four disciplines
were presented by Smith et al. [11] and the latter is our proposed exploration order.
We define the promise of a path ψ(Psi) as the cumulative cost of a path Psi plus the
cost of the minimum cost path from vi to ve, formally ψ(Psi) = c(Psi) + c(Pc

ie).
Given that Pc

ie is the best possible path from node vi to ve, the rationale behind this
queue discipline is to explore first those partial paths which promise the best possible
objective function, that is, those paths with the minimum ψ(Psi).

Finally, it is important to note that each one of the acceleration strategies has an
important effect on the algorithm’s performance; however, its efficiency is not the sum
of the individual effects of each strategy, but the interaction among all the acceleration
strategies and the core pruning strategies.

4 Computational experiments

We conducted a head-to-head comparison between our pulse algorithm and the LC
algorithm by Smith et al. [11]. Both algorithms were coded in Java, using Eclipse
SDK version 3.6.1 and tested on a computer with an Intel Xeon X5450 @ 3.00 GHz
(four cores) with 6 GB of RAM allocated to the memory heap size of the Java Virtual
Machine on Windows Vista Professional.

We designed two sets of computational experiments with different goals. The first
set validates our implementation of the LC algorithm, showing that it is efficient and
suitable as a benchmark for comparison. The second set assesses the contributions of
the acceleration strategies over a vast set of real-road networks.

4.1 The testbed

For the validation experiment we use randomly generated grid networks following
the procedure outlined by Smith et al. [11]. We generated 30 instances for grids of
100 × 100, 200 × 200, and 400 × 400 nodes for a grand total of 90 instances. Each
instance has a start node with outgoing arcs to the first layer of the grid and an end
node with incoming arcs from the last layer.

For the second experiment we used real road networks, three from Raith and Ehrgott
[9] and 10 from the 9th DIMACS implementation challenge for the shortest path
problem [2]. These networks were divided in two sets based on their size: medium
and large. The medium-sized networks range from 9,500 to 436,000 nodes while the
large-sized networks contain instances with over 1,000,000 nodes and up to 6,262,104
nodes and 15 million arcs. Following the same approach by Smith et al. [11], each
network was adapted to the WCSPP-R by randomly selecting replenishment arcs
with a probability of 5 %. For each adapted network, we generated 30 instances with
randomly selected start and end nodes for a grand total of 390 instances.

We tested different levels of tightness for the resource constraint. Smith et al. [11]
define the resource limit as W = αW−+(1−α)W+ where W− is the smallest amount
of resource for which there is a feasible path, W+ is the smallest amount of resource for
which the minimum cost path is the optimal solution, and α ∈ [0, 1]. We used four val-
ues for the tightness factor α: 0.1, 0.5, 0.9, and 1; where small (large) values for α lead

123

2162 M. A. Bolívar et al.

Table 1 Validation of our
implementation against the
original LC

Network α LC (s) LC/Java (s)

100× 100 0.1 0.21 0.02

0.5 0.19 0.04

0.9 0.13 0.10

1 0.12 0.01

200× 200 0.1 7.96 0.09

0.5 7.85 0.37

0.9 5.25 0.58

1 4.67 0.07

400× 400 0.1 10.41 0.39

0.5 9.56 3.08

0.9 8.62 3.85

1 8.05 0.30

to loosely (tightly) constrained problems. Additionally, we characterized each instance
by computing the exact values of W− and W+. We have made publicly available all
instances used in this paper for the WCSPP-R at http://hdl.handle.net/1992/1159.

4.2 Validation experiment

Smith et al. [11] tested the performance of 10 different label treatment criteria and
concluded that the minimum c(P) is a strong alternative to solve the WCSPP-R. For
this reason, we also chose this criterion in our Java implementation of the LC algorithm
(henceforth called LC/Java).

Table 1 compares the time (including preprocessing) reported by Smith et al. [11]
with their implementation of the LC algorithm against our LC/Java implementation
over the set of randomly generated grids. For the sake of fairness, we scaled all our
times using the LINPACK benchmark [3]; according to this benchmark our computer
is 1.54 times faster than the one used by Smith et al. [11]. Column 1 shows the name
of the instance (size of the grid), column 2 presents the tightness of the resource
constraint α, column 3 shows the average time in seconds reported by Smith et al.
[11], and column 4 reports the scaled average time in seconds for LC/Java over the 30
instances generated for each grid configuration.

Table 1 shows that LC/Java is a strong and robust implementation of the algo-
rithm. For all instances and values of α, LC/Java outperforms LC. Moreover, when
the network size increases, the time gaps become even larger. This good performance
is due to a thorough selection of the data structures and a careful implementation of
the procedures used for managing the set of labels.

4.3 Pulse vs. LC/Java

After having checked that our Java implementation of the LC algorithm by Smith
et al. [11] is a valid contender, we conducted a head-to-head comparison between

123

http://hdl.handle.net/1992/1159

Acceleration strategies for the WCSPP-R 2163

Table 2 LC/Java vs. pulse on medium-size real road networks

Network Nodes Arcs α Timepre(s) LC/Java (s) Pulse (s) Avg. speedup

DC 9,559 39,377 0.1 0.01 <0.01 <0.01 1.01

Washington DC 0.5 0.01 <0.01 <0.01 2.58

0.9 0.01 <0.01 <0.01 2.19

1 0.01 <0.01 <0.01 1.02

RI 53,658 192,084 0.1 0.12 <0.01 <0.01 1.14

Rhode Island 0.5 0.12 0.02 0.01 4.54

0.9 0.12 0.05 0.03 7.30

1 0.11 0.05 0.04 2.35

NY 264,346 733,846 0.1 0.47 <0.01 <0.01 5.90

New York 0.5 0.47 0.05 <0.01 15.10

0.9 0.45 0.11 0.08 2.98

1 0.43 0.11 0.10 1.46

BAY 321,270 800,172 0.1 0.54 0.02 <0.01 15.18

San Francisco 0.5 0.54 0.10 0.01 41.23

Bay Area 0.9 0.50 0.11 0.09 3.66

1 0.47 0.15 0.17 1.40

NJ 330,386 1, 202,458 0.1 1.29 <0.01 <0.01 1.03

New Jersey 0.5 1.16 0.20 0.03 58.20

0.9 0.86 0.75 0.42 7.47

1 0.76 0.50 0.34 2.27

COL 435,666 1,057,066 0.1 0.75 0.06 <0.01 23.19

Colorado 0.5 0.75 0.15 0.02 34.36

0.9 0.76 0.24 0.13 7.16

1 0.84 0.36 0.31 3.42

Overall avg. 10.26

LC/Java and our pulse algorithm. Given that the preprocessing procedure is the same
for both algorithms, we decided to separate the preprocessing time from the rest of
the execution time. For these experiments, LC/Java still uses the minimum c(P) as
label treatment criterion, while the pulse follows an exploration order by best promise
ψ(P). After fine tuning the pulse algorithm, the depth limit δ was set to 2.

Tables 2 and 3 summarize the results of this head-to-head comparison. For each
network-tightness configuration, we solved 30 instances with randomly selected start
and end nodes for a grand total of 1,560 (=13× 4× 30) experiments. We calculated
the computational time with a precision of 1/100 s, meaning that any time under 0.01 is
reported as<0.01. Columns 1 through 3 show the name, nodes, and arcs of the network;
column 4 presents the tightness of the resource constraint α; column 5 presents the
average time in seconds spent in the preprocessing procedure (same for LC/Java and
for pulse); columns 6 and 7 present the average time in seconds used by LC/Java and
pulse after the preprocessing procedure; and column 8 presents the arithmetic mean of
the individual speedups calculated as the ratio between the time for LC/Java and the

123

2164 M. A. Bolívar et al.

Table 3 LC/Java vs. pulse on large-size real road networks

Network Nodes Arcs α Timepre (s) LC/Java (s) Pulse (s) Avg. speedup

FLA 1,070,376 2,712,798 0.1 2.28 0.23 <0.01 36.22

Florida 0.5 2.34 0.60 0.06 42.27

0.9 2.30 1.05 0.73 3.43

1 2.28 0.86 0.89 1.55

NW 1,207,945 2,840,208 0.1 2.46 0.14 <0.01 38.42

Northwest USA 0.5 2.48 0.45 0.05 46.19

0.9 2.41 0.65 0.29 5.79

1 2.31 0.86 0.89 1.79

NE 1,524,453 3,897,636 0.1 3.62 0.12 <0.01 33.21

Northeast USA 0.5 3.50 0.87 0.04 57.80

0.9 3.54 1.09 0.91 4.41

1 3.24 1.22 1.13 1.33

CAL 1,890,815 4,657,742 0.1 4.60 0.07 <0.01 53.00

California and 0.5 4.80 1.38 0.04 127.59

Nevada 0.9 5.17 2.04 1.10 6.95

1 5.44 3.76 1.39 2.84

LKS 2,758,119 6,885,658 0.1 6.71 0.47 0.05 27.83

Great Lakes 0.5 7.86 4.02 0.31 98.57

0.9 11.04 3.35 3.26 4.38

1 8.43 2.95 3.70 1.55

E 3,598,623 8,778,114 0.1 14.83 0.29 <0.01 219.64

Eastern USA 0.5 13.35 2.32 0.16 55.12

0.9 16.03 3.63 2.90 4.24

1 12.73 2.69 4.42 1.26

W 6,262,104 15,248,146 0.1 43.38 0.82 0.04 145.46

Western USA 0.5 62.96 5.04 0.56 100.81

0.9 64.25 8.59 2.38 6.69

1 57.68 11.99 11.66 1.59

Overall avg. 40.36

pulse for each instance (note that this value is not the ratio between columns 4 and 5,
but the average among the 30 experiments for each network-tightness configuration).
Finally, the last row presents an overall average of the speedups over the whole testbed.

The results presented in Table 2 show that the pulse consistently outperforms
LC/Java in 23 out of 24 midsized real-road network instances and through all val-
ues of the tightness factor α. The acceleration strategies lead to average speedups of
up to 58 and an average speedup of roughly 10, proving that these strategies really
pay back on real-road networks.

Table 3 shows that the pulse also outperforms LC/Java in all the experiments made
on large sized instances and across all values of the tightness factor α. Note that the
average speedups in these networks are larger than those obtained in the midsized

123

Acceleration strategies for the WCSPP-R 2165

networks, thus showing a good sign of scalability of the pulse algorithm. In fact, the
average speedups increase up to 219 times; and the overall speedup by the pulse is
roughly 40.

5 Sensitivity analysis

We conducted additional experiments to measure the effect of the proposed accelera-
tion strategies on the performance of the pulse algorithm. For this purpose, we picked
a medium-size (New Jersey) and a large-size (California and Nevada) road network
with their 30 random instances (with different start and end nodes) and four tight-
ness factors for α, namely, 0.1, 0.5, 0.9, and 1 (where small values represent loosely
constrained instances).

5.1 Marginal analysis

We measured the marginal effect of each acceleration strategy on the algorithm’s
performance. Let Δi := ti−tp

ti
× 100 % be the time reduction (in percentage) due to

the acceleration strategy i , where ti is the runtime of the pulse algorithm without the
acceleration strategy i , and tp is the runtime including all the acceleration strategies.
The marginal contribution of the path completion strategy was isolated by completely
removing the strategy from the algorithm and comparing against the benchmark pulse
which includes it. Similarly, the marginal effect of the pulse queue was isolated by
setting a depth limit δ to a very large value (δ = 100) and comparing against the
default value (δ = 2). On the other hand, the effect of the best-promise exploration
order is inherently tied to the use of the pulse queue, so we defer this discussion until
Sect. 5.2.2.

Table 4 summarizes the results of this marginal-analysis experiment. Column 1
identifies the network; column 2 presents the tightness factor α for the resource con-
straint; and columns 3 and 4 show the time reduction �i (in percentage) for the path
completion (i = PC) and pulse queue strategies (i = PQ), respectively. Finally, the
last row shows the overall time reduction due to each strategy over the whole testbed
comprised of 240 (=2× 4× 30) runs.

Table 4 shows that including the path completion strategy speeds up the pulse
algorithm on average by 9.2 %; also, this strategy is responsible for average time
reductions of up to 28.6 % (for CAL road network with α = 0.5). Note, however, that
in the specific case of the tightly-constrained CAL road network (with α = 1), the
path completion strategy has a negative effect on the algorithm’s runtime. In this case
of a tight resource constraint over a large-size network, the path completion strategy
turns out to be overly expensive, because the chances of succeeding (i.e., completing
the path) are low. Regarding the pulse queue strategy, Table 4 shows an overall average
time reduction of 65.8 %. Moreover, this strategy seems to consistently reach average
time reductions of over 96 % for the tighter instances (with α = 0.9 and α = 1)
for both networks, suggesting that the contribution of the pulse queue is essential for
the pulse performance while solving the WCSPP-R. In the next subsections we delve

123

2166 M. A. Bolívar et al.

Table 4 Average time reduction
due to each acceleration strategy

Network α Path completion
(�PC) (%)

Pulse queue
(�P Q) (%)

NJ 0.1 2.1 2.1

New Jersey 0.5 10.0 43.7

0.9 9.9 96.1

1 6.3 97.7

CAL 0.1 18.8 13.7

California and Nevada 0.5 28.6 76.0

0.9 2.7 98.7

1 −4.9 98.6

Overall avg. 9.2 65.8

deeper into the two main components of the pulse queue, namely, the depth limit and
the queue discipline (exploration order).

5.2 Pulse queue strategy

5.2.1 Depth limit

We conducted a sensitivity analysis to evaluate the impact on the algorithm’s perfor-
mance by changing the depth limit δ of the pulse queue. We defined a performance
degradation metric as the ratio between the average time achieved with a given value
of δ and the minimum average time achieved among all values of δ. For a given value
of δ, a performance degradation of 1 means that this value of δ achieved the minimum
average time. Figure 1 shows the results of this experiment over different values of
the tightness factor α of the resource constraint.

For the medium-size road network (see Fig. 1a), the algorithm achieved its best
performance with a depth limit of δ = 2, independently of the tightness factor α. In

(a) (b)

Fig. 1 Sensitivity analysis on the pulse depth limit (δ)

123

Acceleration strategies for the WCSPP-R 2167

general, as the depth limit δ grows, the algorithm’s performance degrades, except for
α = 0.1 (i.e., the loose resource scenario). With respect to the large-size road network
(see Fig. 1b), when the resource constraint is tight (α = 0.9 and α = 1) the best value
for δ is 3, while for other levels of tightness (α = 0.1 and α = 0.5), the best value for δ
turns out to be 2. For δ ≥ 3, the performance degradation follows a similar increasing
trend over all values of α as in the medium-size network. In conclusion, it follows that
for these real road network topologies, small depth limits (δ = 2 or δ = 3) seem to
achieve a good performance, regardless of the tightness factor.

5.2.2 Exploration order

The graph exploration order is critical not only for the proposed pulse algorithm
(embedded in its queue discipline), but also for the LC algorithm. We conducted
an experiment to measure the effect of using best promise (BP) against minimum
cost (MC) exploration order in both the LC and pulse algorithms. Table 5 shows
the results for this experiment, where column 1 identifies the network; column 2
shows the tightness factor for the resource constraint; columns 3 and 6 present the
average time in seconds using the MC exploration order for LC/Java and pulse,
respectively; columns 4 and 7 present the average time in seconds using the BP
exploration order for LC/Java and pulse, respectively; and finally, columns 5 and
8 show the average speedups calculated as the average of the ratios between the times
using the MC and BP exploration orders (for each instance) for LC/Java and pulse,
respectively.

Table 5 shows that BP outperforms MC over all algorithms, instances, and tightness
factors. Furthermore, BP leads to average speedups of up to 107 in the LC/Java algo-
rithm and up to 48 in the pulse algorithm, when compared against the MC exploration
order. Moreover, BP is on average 24 and 8 times faster than MC in LC/Java and
pulse, respectively. Hence, the experiment suggests that the proposed best promise
exploration order significantly improves the performance for both algorithms.

Table 5 Comparison between minimum cost (MC) and best promise (BP) exploration order in LC/Java
and pulse algorithms

Network α LC/Java Pulse

MC (s) BP (s) Avg. speedup MC (s) BP (s) Avg. speedup

NJ 0.1 <0.01 <0.01 1.02 <0.01 <0.01 1.06

New Jersey 0.5 0.20 0.03 49.63 0.08 0.03 10.69

0.9 0.75 0.50 6.74 0.38 0.42 1.82

1 0.50 0.37 2.11 0.30 0.34 0.99

CAL 0.1 0.07 <0.01 18.14 <0.01 <0.01 2.26

California and Nevada 0.5 1.38 0.05 107.28 0.53 0.04 48.37

0.9 2.04 1.31 6.34 1.16 1.10 1.84

1 3.76 1.51 2.58 1.19 1.39 1.03

Overall avg. 24.23 8.51

123

2168 M. A. Bolívar et al.

(a)

(b)

Fig. 2 LC/Java (a) and pulse (b) performance over different fractions of replenishment arcs in the New
Jersey (NJ) road-network

5.3 Replenishment arcs

We conducted an experiment to measure the impact on the algorithms’ performance by
varying the fraction of replenishment arcs. For each network, we randomly selected
replenishment arcs with probability μ = 0.05, 0.10, ..., 0.50; and we generated 30
instances with the same start and end node across all values of μ.

Figures 2 and 3 illustrate the average runtimes (including preprocessing time) for
the pulse and LC/Java algorithms while increasing the value of μ from 0.05 to 0.5
with different values for the tightness factor α.

As the fraction of replenishment arcs increases, both algorithms tend to perform
better. We believe that this trend can be explained by noting that for higher values
of μ the resource constraint is easier to satisfy due to the large amount of replenish-
ment arcs in the network. Therefore, for larger values of μ the problem resembles an
unconstrained shortest path problem which is easier to solve.

6 Accelerating the pulse algorithm for the CSP

Given that the CSP is a particular case of the WCSPP-R, we measured the effect of
incorporating the proposed acceleration strategies in the pulse algorithm to solve the
CSP.

123

Acceleration strategies for the WCSPP-R 2169

(a)

(b)

Fig. 3 LC/Java (a) and pulse (b) performance over different fractions of replenishment arcs in the California
and Nevada (CAL) road-network

In this special case, the preprocessing procedure does not require the complex
features to deal with replenishment arcs and instead it can rely on one-to-all shortest
paths to compute the minimum cost path and the minimum weight path between all
nodes vi ∈ N and the end node ve [8]. Likewise, the pulse algorithm was fine-tuned
fixing the depth limit to δ = 3, for the CSP.

As for the testbed for the CSP, we used the 180 networks proposed by San-
tos et al. [10] and also used by Lozano and Medaglia [8]. The testbed is orga-
nized in three groups: (1) the (relatively) small networks with |N | = 10,000 and
|A| = 15,000, 25,000, 50,000, 100,000, 150,000 and 200,000; (2) the middle-sized
networks with |N | = 20,000 and |A| = 30,000, 50,000, 100,000, 200,000, 300,000
and 400,000; and (3) the large-sized instances with |N | = 40,000 and |A| =
60,000, 100,000, 200,000, 400,000, 600,000 and 800,000. For each combination of
|N | − |A| in each size group, there are 10 different instances. Additionally, we used
five values for the constraint tightness factor α : 0.2, 0.4, 0.6, 0.8 and 0.9, where small
(large) values mean loosely (tightly) constrained instances.

Table 6 compares the performance of the original pulse algorithm (Pulse-O) against
the version that includes the acceleration strategies (Pulse-A). The rows are organized
in three categories, namely, small, medium and large-sized networks. Columns 1 and 2
show the number of nodes and arcs in each network. The remaining columns show for
different values of α, the average runtime for Pulse-O in seconds, the average runtime
for Pulse-A in seconds, and the arithmetic mean of the individual speedups calculated

123

2170 M. A. Bolívar et al.

Ta
bl

e
6

M
ea

su
ri

ng
th

e
ef

fe
ct

of
th

e
ac

ce
le

ra
tio

n
st

ra
te

gi
es

ov
er

th
e

Sa
nt

os
et

al
.[

10
]

te
st

be
d

fo
r

th
e

C
SP

N
od

es
A

rc
s
α
=

0.
2

α
=

0.
4

α
=

0.
6

α
=

0.
8

α
=

0.
9

Pu
ls

e-
O

Pu
ls

e-
A

Sp
ee

du
p

Pu
ls

e-
O

Pu
ls

e-
A

Sp
ee

du
p

Pu
ls

e-
O

Pu
ls

e-
A

Sp
ee

du
p

Pu
ls

e-
O

Pu
ls

e-
A

Sp
ee

du
p

Pu
ls

e-
O

Pu
ls

e-
A

Sp
ee

du
p

10
,0

00
15

,0
00

<
0.

01
<

0.
01

1.
03

<
0.

01
<

0.
01

1.
02

0.
01

0.
01

1.
02

<
0.

01
<

0.
01

1.
02

0.
02

0.
01

1.
02

10
,0

00
25

,0
00

0.
01

0.
01

1.
02

0.
01

0.
01

1.
02

0.
01

0.
01

1.
02

0.
01

0.
01

1.
01

0.
01

0.
01

1.
01

10
,0

00
50

,0
00

0.
02

0.
02

1.
01

0.
02

0.
02

1.
00

0.
02

0.
02

1.
01

0.
02

0.
02

1.
00

0.
02

0.
02

1.
00

10
,0

00
10

0,
00

0
0.

03
0.

03
1.

02
0.

03
0.

03
1.

03
0.

03
0.

03
1.

02
0.

03
0.

03
1.

01
0.

03
0.

03
1.

00

10
,0

00
15

0,
00

0
0.

05
0.

05
1.

05
0.

06
0.

05
1.

12
0.

05
0.

05
1.

10
0 .

05
0.

05
1.

06
0.

05
0.

05
1.

02

10
,0

00
20

0,
00

0
0.

07
0.

06
1.

06
0.

07
0.

07
1.

14
0.

08
0.

07
1.

16
0.

08
0.

07
1.

14
0.

06
0.

06
1.

02

20
,0

00
30

,0
00

0.
02

0.
02

1.
00

0.
02

0.
02

1.
00

0.
02

0.
02

1.
00

0.
02

0.
02

1.
00

0.
02

0.
02

1.
00

20
,0

00
50

,0
00

0.
03

0.
03

1.
00

0.
03

0.
03

1.
00

0.
03

0.
03

1.
00

0.
03

0.
03

1.
00

0.
03

0.
03

1.
00

20
,0

00
10

0,
00

0
0.

04
0.

04
1.

01
0.

04
0.

04
1.

01
0.

04
0.

04
1.

01
0.

04
0.

04
1.

00
0.

04
0.

04
1.

00

20
,0

00
20

0,
00

0
0.

07
0.

07
1.

01
0.

07
0.

07
1.

02
0.

07
0.

07
1.

02
0.

07
0.

07
1.

01
0.

07
0.

07
1.

00

20
,0

00
30

0,
00

0
0.

12
0.

11
1.

10
0.

11
0.

11
1.

08
0.

12
0.

11
1.

10
0.

11
0.

11
1.

06
0.

10
0.

10
1.

01

20
,0

00
40

0,
00

0
0.

14
0.

14
1.

05
0.

16
0.

14
1.

20
0.

17
0.

14
1.

23
0.

15
0.

14
1.

10
0.

14
0.

13
1.

04

40
,0

00
60

,0
00

0.
04

0.
04

1.
00

0.
04

0.
04

1.
00

0.
04

0.
04

1.
00

0.
04

0.
04

1.
00

0.
04

0.
04

1.
00

40
,0

00
10

0,
00

0
0.

06
0.

06
1.

00
0.

06
0.

06
1.

00
0.

06
0.

06
1.

00
0.

06
0.

06
1.

00
0.

06
0.

06
1.

00

40
,0

00
20

0,
00

0
0.

10
0.

09
1.

00
0.

10
0.

09
1.

00
0.

09
0.

09
1.

00
0.

09
0.

09
1.

00
0.

10
0.

10
1.

00

40
,0

00
40

0,
00

0
0.

17
0.

16
1.

01
0.

17
0.

16
1.

01
0.

17
0.

17
1.

01
0.

17
0.

17
1.

00
0.

17
0.

17
1.

00

40
,0

00
60

0,
00

0
0.

25
0.

24
1.

06
0.

25
0.

24
1.

06
0.

25
0.

24
1.

04
0.

24
0.

23
1.

04
0.

23
0.

23
1.

01

40
,0

00
80

0,
00

0
0.

35
0.

32
1.

12
0.

38
0.

32
1.

18
0.

39
0.

34
1.

16
0.

37
0.

34
1.

09
0.

33
0.

32
1.

03

O
ve

ra
ll

av
g.

1.
03

1.
05

1.
05

1.
03

1.
01

123

Acceleration strategies for the WCSPP-R 2171

as the ratio between the runtimes of both versions of the algorithm. Finally, the last
row presents an overall average of speedups for each value of α.

Table 6 shows that on average, the acceleration strategies slightly improve (yet
never degrade) the performance of the (already fast) pulse algorithm on the CSP. The
Pulse-A achieves speedups of up to 23 % and the overall average of speedups ranges
between 1 and 5 % for different values of α. It is noteworthy that the greater speedups
occur when the constraint is not too tight (loose), i.e., α = 0.4 and α = 0.6.

7 Concluding remarks

We extended the pulse algorithm by Lozano and Medaglia [8] integrating ideas from
Smith et al. [11] and presenting a set of acceleration strategies for the WCSPP-R.
First, we provided a path completion strategy that avoids unnecessary exploration of
suboptimal regions of the solution space (i.e., paths in the network) and strengthens the
primal bound (incumbent). Second, we combined the ideas of performing breadth- and
depth-first search via a pulse queue that controls the depth of the exploration. Finally,
we proposed a best-promise graph exploration order based on an optimistic assessment
drawn from lower bounds.

From a computational perspective, we adapted and characterized in terms of the
resource consumption a vast set of 390 real-road networks that now comprises a com-
prehensive publicly available testbed for the WCSPP-R. We conducted several compu-
tational experiments that demonstrate the positive effects of the proposed acceleration
strategies. In the midsized networks, the pulse algorithm reached average speedups of
up to 58 and was on average 10 times faster than the state-of-the-art algorithm. In the
larger networks, the effect of the acceleration strategies is even more noticeable: the
pulse algorithm achieved overall speedups of roughly 40 times; and reached average
speedups of up to 219 times on networks with up to 6 million nodes and 15 million
arcs.

We conducted a comprehensive sensitivity analysis that provides an in-depth view
of the acceleration strategies and its positive effect on the pulse performance. We also
observed how the computational runtime of the pulse algorithm decreases when the
fraction of replenishment arcs increases. In addition, we implemented the accelera-
tion strategies in the pulse algorithm for the CSP achieving speedups of up to 23 %
compared to the original pulse algorithm.

Finally, our acceleration strategies are easy to understand and to implement and
could be applied both on the pulse algorithm or other label-based algorithms like LC.
Work currently underway includes extending the algorithm to incorporate replenish-
ment under uncertainty.

References

1. Corneil, D.: Lexicographic breadth first search: A survey. Graph-Theoretic Concepts in Computer
Science. Lecture Notes in Computer Science, vol. 3353, pp. 1–19. Springer, Berlin, Heidelberg (2005)

2. Demetrescu, C., Goldberg, A., Johnson, D.: 9th DIMACS implementation challenge-shortest paths
(2006). www.dis.uniroma1.it/challenge9/

123

www.dis.uniroma1.it/ challenge9/

2172 M. A. Bolívar et al.

3. Dongarra, J.J.: Performance of various computers using standard linear equations software. Technical
report CS-89-85, University of Tennessee, USA (2013)

4. Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight-
constrained shortest path problem. Networks 42(3), 135–153 (2003)

5. Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Networks 10(4),
293–309 (1980)

6. Joksch, H.C.: The shortest route problem with constraints (shortest route problem with constraint,
using set of nodes). J. Math. Anal. Appl. 14(2), 191–197 (1966)

7. Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27(1), 97–
109 (1985)

8. Lozano, L., Medaglia, A.L.: On an exact method for the constrained shortest path problem. Comput.
Oper. Res. 40(1), 378–384 (2013)

9. Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest path problems.
Comput. Oper. Res. 36(4), 1299–1331 (2009)

10. Santos, L., Coutinho-Rodrigues, J., Current, J.R.: An improved solution algorithm for the constrained
shortest path problem. Transp. Res. Part B: Methodol. 41(7), 756–771 (2007)

11. Smith, O.J., Boland, N., Waterer, H.: Solving shortest path problems with a weight constraint and
replenishment arcs. Comput. Oper. Res. 39(5), 964–984 (2012)

123

	Acceleration strategies for the weight constrained shortest path problem with replenishment
	Abstract
	1 Introduction
	2 An overview of the proposed algorithm
	3 Acceleration strategies
	3.1 Core pruning strategies
	3.2 Path completion
	3.3 Pulse queueing
	3.4 Best-promise exploration order

	4 Computational experiments
	4.1 The testbed
	4.2 Validation experiment
	4.3 Pulse vs. LC/Java

	5 Sensitivity analysis
	5.1 Marginal analysis
	5.2 Pulse queue strategy
	5.2.1 Depth limit
	5.2.2 Exploration order

	5.3 Replenishment arcs

	6 Accelerating the pulse algorithm for the CSP
	7 Concluding remarks
	References

