

Improving QoE Prediction in Mobile Video through Machine Learning

P. Casas, S. Wassermann

AIT Austrian Institute of Technology, Vienna University of Würzburg, Institute of Computer Science, Würzburg

- Brief State of the Art in Mobile Video Modeling
- Data Description
- Machine Learning Models for QoE Prediction
- QoE Modeling Results
- Concluding Remarks

QoE in Video Streaming for Smartphones

- Video Streaming QoE is mainly affected by stalling (i.e., re-buffering events) and video quality switches (HAS – HTTP Adaptive Streaming)
- Initial playback delay has a limited impact on QoE
- In smartphones, where displays are rather small w.r.t standard devices, video quality switches do not have an important impact on the perception of the user [*]

[*] Exploring QoE in Cellular Networks: How Much Bandwidth do you Need for Popular Smartphone Apps? P. Casas et al., ACM SIGCOMM All Things Cellular Workshop 2015

- Brief State of the Art in Mobile Video Modeling
- Data Description
- Machine Learning Models for QoE Prediction
- QoE Modeling Results
- Concluding Remarks

- Train and test different regression models mapping video stalling patterns into QoE (MOS)
- Publicly available subjective QoE measurements dataset → LIVE-Avvasi Mobile Video database (University of Texas @Austin):
 - 174 distorted videos generated from 24 reference videos with 26 unique stalling events
 - 4830 ratings obtained from 54 subjects who viewed the videos in smartphones
 - Ratings correspond to MOS scores in ACR scale (1 – bad quality to 5 – excellent quality)
 - reference videos: HD YouTube and Vimeo, with a duration range 30s to 2min
 - different contents: sports, documentaries, advertisement, music clips

Dataset Overview (2/3)

- We extract 19 different features characterizing the stalling patterns undergone by the videos, including:
 - number and frequency of stalling events
 - initial playback delay
 - duration of stallings
 - location of stallings within
 the video stream
 - particular video contents (e.g., frames per second)

	feature	description
f_1	num_stalls	total number of stallings
f_2	freq_stalls	frequency of stallings
f_3	tst	total stalling time
f_4	rel_tst	tst, relative to video duration
f_5	ini_delay	initial playback delay
f_6	rel_ini_delay	ini_delay, relative to video duration
f_7	asd	average stalling duration
f_8	rel_asd	asd, relative to video duration
f_9	t_last_stall_end	elapsed time between end of last
		stalling and end of the video
f_{10}	sd_last	duration of last stalling
f_{11}	rel_sd_last	sd_last, relative to video duration
f_{12}	loc_last_stall	elapsed time between start of the
		video and start of last stalling
f_{13}	rel_loc_last_stall	loc_last_stall, relative to video duration
f_{14}	min_sd	minimum stalling duration
f_{15}	median_sd	50%-percentile of stalling duration
f_{16}	max_sd	maximum stalling duration
f_{17}	fps	video frames per second
f_{18}	content_type	video category (e.g., sports, news, etc.)
f_{19}	video_duration	total length of the video
	MOS	average video MOS score

Dataset Overview (3/3)

■ Temporal features → both absolute and relative (to video length) values

0.2

-0.6

-1

-0.2

PLCC

5

- Brief State of the Art in Mobile Video Modeling
- Data Description
- Machine Learning Models for QoE Prediction
- *QoE Modeling Results*
- Concluding Remarks

Machine Learning Models

- Supervised ML models (regression) to predict MOS for each video
- Different algorithms trained on subjective test dataset (10-fold cross validation)
- Benchmark 11 different learning models:
 - Support Vector Machines (SVM)
 - Multiple classes of Decision Trees: random tree, Random Forest (RF), bagging, continuous tree (M5P), Decision Stump (DS), discrete tree
 - Neural Networks (MLP)
 - Locally Weighted Learning (LWL)
 - Linear and Pace Regression
- WEKA used as ML library, grid search for parameter configuration

MLP model

RF model

 $\rm C4.5\ model$

SVM model

- Brief State of the Art in Mobile Video Modeling
- Data Description
- Machine Learning Models for QoE Prediction
- QoE Modeling Results
- Concluding Remarks

Machine Learning Models Benchmarking

- **ML models benchmarking** using 3 performance metrics: linear correlation between predicted and real MOS (PLCC), root mean squared error (RMSE) and mean absolute error (MAE)
- Top 5 models include SVM, **RF**, bagging tree, pace regression, and M5P
- Very high correlation between predicted and real MOS (~0.95) and limited prediction errors (below 0.2 in a 5-points MOS scale)

Overview of M5P Model

- The trained M5P model selects 5 out of the 19 input features, including:
 - number of stallings num_stalls

- total stalling time (relative to video duration) rel_tst
- initial playback delay (absolute and relative) ini_delay and rel_ini_delay
- Iocation of last stalling event (relative to video duration) rel_loc_last_stalling
- Approximated M5P decision tree (based on discretization)

M5P vs. State of the Art Models

- We compare our M5P model with three state-of-the-art models for video streaming QoE prediction:
 - exponential model, using original parameters (exp. original) and those fitted to evaluation dataset (exp. fit)
 - non-linear, filter-based model with memory (HW*) → model from group generating current dataset under study
 - state machine-based model (DQS**)
- M5P clearly outperforms stateof-the-art models
- much higher correlation and smaller errors
- exponential model @2nd place, after a careful re-calibration of its underlying parameters

[*] D. Ghadiyaram et al., "A Time-varying Subjective Quality Model for Mobile Streaming Videos with Stalling Events", in *SPIE Optical Engineering Applications*, 2015.

[**] H. Yeganeh et al., "Delivery Quality Score Model for Internet Video", in IEEE International Conf. on Image Proc., 2014.

- Brief State of the Art in Mobile Video Modeling
- Data Description
- Machine Learning Models for QoE Prediction
- *QoE Modeling Results*
- Concluding Remarks

Conclusions

- We have introduced a novel machine learning based model for multidimensional QoE prediction in mobile video streaming.
- Based on decision trees, the proposed model outperforms previously proposed state-of-the-art models by reducing prediction errors between 25% and almost 50%.
- The proposed M5P model shows that there is a clear influence of other stalling pattern descriptors generally neglected in previous work...
- ...in particular those linked to the occurrence of the last stalling event.
- The M5P model could enhance current measurement tools and systems for video streaming QoE prediction, suggesting novel metrics to measure in the future.
- We're currently working on the generalization of the presented results, considering other datasets

Thanks for Your Attention!