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A Bit of Context — QoE Monitoring (ISP PoV)
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= Network KPIs:

* throughput, latency, = responsiveness, interactivity,

packet loss jitter availability, acceptability,
’ , engagement,

= User centric KPIs:

what really matters to the end-user



The Rise of End-2-End Encryption
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= QoE monitoring approach: with non-encrypted traffic, DPI-based approaches:

= “YOUQMON: A System for On-line Monitoring of YouTube QoE in Operational 3G Networks”

= “Monitoring YouTube QoE: Is Your Mobile Network Delivering the Right Experience to your
Customers?”

= “Passive YouTube QoE Monitoring for ISPs”



The Rise of End-2-End Encryption
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= HTTPS and QUIC turn previous approaches no longer applicable — lack of visibility for ISPs

= Solution | — monitoring directly at the end devices

[- Solution Il — monitoring at the core, relying on Machine Learning (ML) approaches ]




Why is QoE so Relevant?
Dimensioning & Operation
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| Impairment Perceivable |
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Non-linearities and saturation effects = typical for QoE




Why is QoE so Relevant?

User Engagement
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“Understanding the Impact of Video
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= Poor QOE significantly reduces user engagement

" Increase of the buffering ratio of only 1% can lead to more than
three minutes of reduction in the user engagement



Why is QoE so Relevant?

Customer Experience

= Marketing driver: intensifying competition in telecom markets

= Customer perception and judgement becoming increasingly relevant

= Avoid customer churn for quality dissatisfaction
= Attract new customers with better service provisioning (NPS vs. MOS)

= Understand what matters the most to customers



What Happens when QoE Degrades?

= An example: what happens when latency increases
too much in web browsing? ‘

Google
Ads

" Google - Inter-domain routing changes cause more than 40%
of the cases in which clients experienced a latency increase

of at least 100 ms am 320%

= Amazon - every additional 100 ms of page load time could
cost them 1% of their sales, and a page load slowdown of just
one second could turn into a $1.6 billion loss in sales each
year

" Google - slowing search results down by 400 ms, they could
loose 8 million searches per day - Google Ads!




What do we Need from the E2E Network?
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* Video Streaming

= 3602 Streaming = Web Browsing

= QoS — downlink bandwidth = QoS - latency

= User-perceived — re-buffers
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What do we Need from the E2E Network?

= Cloud Services

= QoS — downlink bandwidth/latency
= User-perceived — responsiveness
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The Context — Network Traffic Monitoring
Access Network
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Methodology — Data Generation, Model Training and Execution

= Fully controlled testbed:
generating and measuring all
relevant metrics at the YOU
different layers of the
communications stack.
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Different network emulation patterns, including
+ packet losses

+ different access delay (and jitter)

+ different bandwidth (dynamic) profiles

Il

Application-level
monitoring and controling
applications for ground-truth generation

Traffic
Monitoring

= Using the generated datasets to build, train and later on execute different machine learning based
models for VQM prediction and monitoring.
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Stream-based Prediction of YouTube QoE

v

= Video stream-based analysis, using multiple sliding windows, capturing different temporal
phenomena (current time, , session-aggregated)

= Analysis is done in real time: for every video session and for every new time slot of 1 second, we
consider the following sets of features (207 in total):
= Features extracted from current time slot (C) — 69 features
= Short-memory (trend) based features, extracted from
= Cumulative based features, extracted from all past traffic for this video session (CS) — 69

= Feature computation is done continually, in constant-memory boundaries, using sketches

= Machine learning models trained for prediction of re-buffering events,| video resolution|, video
bitrate




Dataset Description 100

90
15.000+ YouTube video sessions streamed o 80
and recorded in summer 2018 o 70y
@ 60 |
. . : o 50}
JavaScript-based monitoring script to g 40
measure ground truth 2 30f
20t
Home and corporate WiFi networks, LTE 107
mobile networks % 1 2345678 910112
Session duration (minutes)
QUIC and TCP sessions 100 —
90 f
Bandwidth limitations: 20Mbps, 5Mbps, 80 |
3Mbps, 1Mbps, 300kbps + fluctuations 2 gg'
S 6ol
Different ISPs, different geographic locations § ig:
(Italy, Austria, Germany) = 30l
20 f
Prediction task: per second video resolution, 0 —
6-classes classification — 144p, 240p, 360p, 0 44240 360 480 20 1080

480p, 720p, 1080p Video resolution



On-line Prediction of Video Resolution

= More than 4.6M individual, 1 second slots for training (5-fold cross validation)

= Benchmarking of 9 ML models: decision trees (DT), random forests with 10 trees (RF10),
Adaboost using 50 trees (ADA), an ensemble with 10 extremely randomized trees (ERT10),
bagging with 10 trees (BAGGING), Naive Bayes (BAYES), k-nearest neighbors with k=5 (KNN),

feed forward neural networks with 3 hidden layers (NN), and SVM.

Training time (min) | Accurac

DT 43 92
RF10 2 92
ADA 125 68
ERT10 1 90
BAGGING 37 95
BAYES 1 42
KNN 9 73
NN 507 58
SVM 194 54

Benchmarking of different ML models

= For the sake of speed, we use RF10
as underlying model
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On-line Prediction of Video Bit-Rate

Regression task: estimation of per second average video bitrate

|
5-CV time (minutes) | MAE (kbps) | RMSE (kbps) | MRE (%) | PLCC
DT 31 94 246 18 (.88
RF10 36 890 179 18 0.93
ADA 126 492 573 130 0.59
ERT10 7 93 182 19 0.93
BAGGING 22 89 179 17 0.93
BAYES 3 2.540 6,530 545 -0.14
KNN 6 229 353 42 0.70
NN 305 333 489 70 0.20
SVM 143 1023 2103 2108 0.12
= ERT10 & BAGGING realize MAE below 100kbps,
and RMSE below 190kbps (penalizes larger errors)
= 80% of the slots are estimated with errors below
100kbps
|

Predictions are highly correlated with the target
(PLCC =0.93)
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On-line Prediction of Video Stalling

= Binary classification task: playback stalled/not-stalled at every new slot

Accuracy (%) | Recall (%) | Precision (%) | 5-CV time (minutes)
DT 96 64 68 57
RF10 97 55 88 3
ADA 95 29 61 154
ERT10 97 54 88 I
BAGGING 97 65 87 63
BAYES 50 86 9 I
KNN 96 48 71 10
NN 94 0 0 600
SVM 84 62 21 36
ISO10 86 13 3 4
LOF 86 I 6 46

= per-slot re-buffering estimation errors
are high, stalling slots under-estimated...

= _..but estimation of re-buffering ratio is

perfect for almost 90% of the videos
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Impact of Feature Selection

Impact of different feature sets on classification performance

F.— features in current slot, F.— last T (3) slots, Fs— cumulative session slots
Foownyup— all features downstream/upstream

F:op20— top-20 features by feature selection

Features | # Features | Accuracy (%) All features 207 92 %
Fe 69 70
Fr 69 73
Fs 69 06 " The top-20 features provide
Fpoww 81 00 the best trade-off
Fup 81 90

= The longer the memory for feature computation, the higher the accuracy

= Cumulative session-based features (Fs) are the most relevant feature set, improving
by 4% the performance obtained by all 207 features



Computational Time Analysis — RF10 Real Time
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Evaluation of full feature set update time (done for every new incoming packet) and
prediction time (done for every 1s slot), using an upper bound with all 207 features.

Laptop (i5 CPU, 8GB RAM) vs. Server (Xeon Silver, 48 cores, 128GB RAM)

On server, average duration of full feature set update is 13 pus, prediction time below

1.Ams

On laptop, average feature update duration takes 37 pus, prediction time below 16ms

ViCrypt can perform video-resolution predictions in real time, with an end-to-end
computational delay way below the time slot length of 1 s
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