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Unsupervised NIDS based on Clustering Analysis

We propose a NIDS based on clustering analysis and outliers detection.

The problem to tackle: current network security is based on an "acquired
knowledge" perspective:

Signatures-based: detect what I ALREADY KNOW

(+) highly effective to detect what it is programmed to alert on.

(−) can not defend the network against unknown attacks.

(−) signatures are expensive to produce: human manual inspection.

Anomaly detection: detect what DIFFERS from WHAT I KNOW

(+) it can detect new attacks out-of a baseline profile.

(−) requires some kind of training for profiling.

(−) robust and adaptive models are difficult to conceive, specially in an
evolving context.
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Unsupervised Detection of Network Attacks
Unsupervised Detection based on CLUSTERING

HYPOTHESIS: attacking flows are sparse and different from normal
traffic....in some representation (traffic aggregation)!!
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Unsupervised Detection of Network Attacks
Unsupervised Detection based on CLUSTERING

HYPOTHESIS: attacking flows are sparse and different from normal
traffic....in some representation (traffic aggregation)!!

Benefits of Unsupervised-based Detection

no previous knowledge: neither signatures nor labeled traffic.

no need for traffic modeling or profiling.

can detect unknown attacks.

a major step towards self-aware monitoring.

Clustering for Unsupervised Detection is CHALLENGING

lack of robustness: general clustering algorithms are sensitive to
initialization, specification of number of clusters, etc.

difficult to cluster high-dimensional data: structure-masking by irrelevant
features, sparse spaces (“the curse of dimensionality”).
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UNADA: Unsupervised Detection of Network Attacks

UNADA is a 3-steps detection algorithm:
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(1) Multi-resolution change-detection & features computation.
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(2) Sub-Space Clustering.
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(3) Evidence Accumulation and Flow Ranking.
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Change-detection in Multi-resolution Traffic Flows

Traffic Aggregation and Change-Detection

Traffic is captured and aggregated in IP flows (5-tuples) every ∆T

seconds, using a temporal sliding-window.
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Change-detection in Multi-resolution Traffic Flows

Traffic Aggregation and Change-Detection

Traffic is captured and aggregated in IP flows (5-tuples) every ∆T

seconds, using a temporal sliding-window.

Change-detection in simple traffic metrics to identify an anomalous
time-slot (e.g., #pkts , #bytes , #IP �ows).

Multi-Resolution Analysis

Analysis at different spacial resolutions, aggregating IP flows in
macro-flows: hash-key {IPaddress/netmask}.

Scan traffic from coarser to finer-grained macro-flows:
tra� per time-slot, IP/8, IP/16, IP/24.

Scan in both directions (IPsr and IPdst) permits to detect 1-to-1,
1-to-N , and N -to-1 attacks of different intensities.
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Clustering for Anomaly Detection

Let Y = {y
1

, . . . ,y
n

} be the set of n macro-flows in the flagged time slot,
aggregated at IP/32.
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Clustering for Anomaly Detection

Let Y = {y
1

, . . . ,y
n

} be the set of n macro-flows in the flagged time slot,
aggregated at IP/32.

Each macro-flow y
i

∈ Y is described by a set of m traffic features:
x

i

= (x
i

(1), .., x
i

(m)) ∈ R
m .

Number of sources & destinations (nSrs,nDsts), packet rate
(nPkts/se), fraction of SYN packets (nSYN/nPkts), etc.

X = {x
1

, ..,x
n

} is the complete matrix of features, referred to as the
feature space.
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Clustering for Anomaly Detection

PSfrag replacements
X is a blak box

How to detect an anomalous macro-flow in X via clustering?

“Simple idea”: cluster X, big-size clusters correspond to normal-flows,
outliers are anomalies.
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Clustering for Anomaly Detection

PSfrag replacements
IS NOT THAT SIMPLE!!!

How to detect an anomalous macro-flow in X via clustering?

“Simple idea”: cluster X, big-size clusters correspond to normal-flows,
outliers are anomalies.
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Sub-Space Clustering

How to Improve Robustness and Clustering Performance?

Idea: combine the information provided by multiple partitions of X to
“filter noise”, easing the discovery of outliers.
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Evidence Accumulation for Outliers Ranking

Evidence Accumulation to combine the results of SSC:

Build a new dissimilarity measure D = {d
1

, d
2

, . . . , d
n

}: d
i

measures how
different is flow i from the majority of the traffic.
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Attacks Detection in MAWI Traffic
MAWI: packet traces from link Japan-U.S.A. of the WIDE network.

Ex: worm scanning, ICMP flooding attack, IPsr/32 macro-flows.
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Ground-Truth (GT) Attacks in METROSEC & MAWI

METROSEC, DDoS attacks of different intensities (70% to 4%),
IPdst/32 macro-flows.
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Ground-Truth (GT) Attacks in METROSEC & MAWI

METROSEC, DDoS attacks of different intensities (70% to 4%),
IPdst/32 macro-flows.

MAWI, worm scanning (Sasser and Dabber), DoS/DDoS attacks, GT
attacks detected by signatures + Anomaly Detection.

Compared against traditional unsupervised approaches: DBSCAN
based, k -means based, and PCA based outliers detection.
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(a) MAWI, IPsr key. (b) MAWI, IPdst key. (c) METROSEC, IPdst key.
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Detectiong Attacks in KDD99

DARPA - KDD99 dataset, DoS (udp storm, pod, appache flooding, etc.),
scans (port, net), Remote-2-Local attacks (guess password, imap, http
tunnel, etc.), User-2-Root (buffer overflows).
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Thank You for Your Attention!!

Remarks & Questions?
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