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Users start leaving if video doesn’t play in 2 seconds

https://gigaom.com/2012/11/09/online-viewers-start-leaving-if-video-doesnt-play-in-2-seconds-says-study/
Video: La Luna (Pixar 2011)



Dynamic Streaming over HTTP (DASH)
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Video Client

Adaptive Bitrate (ABR)
Algorithms

Animation borrowe d from Te-Yuan Huang (SIGCOMM ‘14) http://conferences.sigcomm.org/sigcomm/2014/doc/slides/38.pdf
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Why is ABR Challenging?

40

80
Time (sec)

120

Network throughput
is variable & uncertain

Conflicting QoE goals
* Bitrate

* Rebuffering time
* Smoothness

Cascading effects
of decisions



Our Contribution: Pensieve
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Previous Fixed ABR Algorithms

* Rate-based: pick bitrate based on predicted throughput
* FESTIVE [CONEXT’12], PANDA [JSAC’14], CS2P [SIGCOMM’16]

» Buffer-based: pick bitrate based on buffer occupancy
* BBA [SIGCOMM’14], BOLA [INFOCOM’16]

* Hybrid: use both throughput prediction & buffer occupancy
* PBA [HotMobile’15], MPC [SIGCOMM’15]

Simplified inaccurate model leads to suboptimal performance




Solution: learn from video streaming sessions
in actual network conditions



Reinforcement Learning
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Pensieve Design
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Observe state s

How to Train the ABR Agent

ABR agent
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Collect experience data: trajectory of [state, action, reward]
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What Pensieve is good at

* Learn the dynamics directly from experience
* Optimize the high level QoE objective end-to-end

 Extract control rules from raw high-dimensional signals
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Pensieve Training System

Large corpus of Video playback Model update
network traces ' Fast chunk-level simulator TensorFlow
cellular, broadband, synthetic
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Trace-driven Evaluation

* Dataset: Two datasets, each dataset consists of 1000 traces, each trace 320 seconds.
* Video: 193 seconds. encoded at bitrates: {300, 750, 1200, 1850, 2850, 4300} kbps.
* Video player: Google Chrome browser Video server: Apache server
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FCC broadband dataset
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Pensieve improves the best previous scheme by 12-25%

and is within 9-14% of the offline optimal




QoE Breakdown
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Pensieve reduces rebuffering by 10-32% over second best algorithm




Does Pensieve Generalize?

3G network trace
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Trace generated
from a Hidden
Markov model

Covers a wide
range of average
throughput and
network variation
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Does Pensieve Generalize?

Train on synthetic
traces then test on
real 3G network trace
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Other Evaluations

* Experiments in the wild (LTE, public WiFi, international link)

* Controlled experiment for testing optimality

 Multi-video extension

 Sensitivity analysis



Lessons We Learned

1. Build a fast experimentation/simulation platform  coarse-grain chunk simulator

e Pensieve
n L %4 agent

2. Data diversity is more important than “accuracy”

3. Think carefully about controller state space (observation signals)
* Too large a state space — slow & difficult learning Past chunk throughput
* Too small a state space — loss of information Xe | Xe1|®®®Xeper
« — When in doubt, include rather than cut the signal |Past chunk download time
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Summary

* Pensieve uses Reinforcement Learning to generate ABR algorithms
* Pensieve optimizes different network conditions through experience

* Pensieve outperforms existing approaches across a wide range of
network environments and QoE preferences

* Policies generated by Pensieve have strong ability to generalize

http://web.mit.edu/pensieve/



http://web.mit.edu/pensieve/

