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Today’s Approach of Operating Networks?
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What Self-Driving Networks Should Do
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Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do
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NetBOA (NetAI’19)



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …
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Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …
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This Talk: Use Machine Learning to Benchmark Networks 
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Towards Automated Network Optimization and Design
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Towards Automated Network Optimization and Design
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Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning

Adversarial

Problem 

Instance

Receive training signal – learn from solution quality
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ML/AI vs ML/AI



Host 3Host 2Host 1

Example: Benchmark Open vSwitch
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How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

7

Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]
Packet Inter Arrival Time 

[1ms – 13ms]

VLANs

[1-5]

Human still

Involved!



NetBOA: A Bayesian Optimization-based Approach
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Source: https://de.kisspng.com/png-pc3d06/preview.html



NetBOA: A Bayesian Optimization-based Approach
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How NetBOA Explores the Performance Model
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Grid Search for Two Parameters (Num. Packets and Inter Arrival Time)
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Grid Search for Two Parameters (Num. Packets and Inter Arrival Time)
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▪ Performance models are non-trivial

▪ Surprising: Sending less network packets over time can lead to significantly higher CPU

▪ But: Can we find such weak-spots automatically?

0-1 % CPU

20 % CPU4000 packets, 

IAT 3 ms

5000 packets, 

IAT 1 ms



▪ We are using the OvS switch with the Megaflow Cache enabled

▪ For instance for 5000 packets: We trigger roughly every >2 ms a flow insertion + removal

 Forcing OvS to continuously run through the array + resizing it

Why? Let Us Look At OvS Behavior!
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▪ We are using the OvS switch with the Megaflow Cache enabled
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NetBOA vs Random Search
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NetBOA Random Search

24 % higher CPU utilization



▪ Adversarial input generation to find weak spots, security holes … to make your systems 

bullet-proof?  Use concepts like NetBOA to receive continuous feedback about 

your solutions/implementations

▪ Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate 

network traffic configurations for benchmarking network function implementations

NetBOA can efficiently find challenging network traffic configurations (maximize 

CPU/Latency)

NetBOA can also be used to minimize, e.g., CPU or Latency

▪ Open questions and problems:
▪ Does beating the machine means it generalizes?

▪ Does it scale?

▪ Alternatives?

▪ Bayesian Optimization needs also tuning!

Conclusion
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