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Today’s Approach of Operating Networks?

Network
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Performance
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With more complex networks need for automation!




What Self-Driving Networks Should Do




What Self-Driving Networks Should Do

Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do TUTI

Network

Self-Monitoring Problem

Self-Optimizing Solution

Source: https://www.pinterest.at/pin/318137161149129652/

Performance
Evaluation

NetBOA (NetAl'19)

Self-Benchmarking



Benchmarking Network Algorithms, Architectures etc...
The Traditional Way .
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Benchmarking Network Algorithms, Architectures etc... TUTI
The Traditional Way ...
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This Talk: Use Machine Learning to Benchmark Networks




Towards Automated Network Optimization and Design
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Network Algorithm,
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The Traditional Way!
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Towards Automated Network Optimization and Design TUTI

Benchmark )
Problem Network Algorithm, Problem
Instance Function Solution
Generator

Solution
Information O’zapftis [BIG DAMA17]

Empowerement [SelfDN’18]

Machine
Learning

Our ML/Al Way!

ISMAEL [TNSM’19]



Towards Automated Network Optimization and Design TUTI

Receive training signal — learn from solution quality
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Machine Instance Problem Network Algorithm, Problem
Learning I Function Solution
Generator Instance
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Our ML/Al Way!
ML/AI vs ML/AI

NetBOA [NetAl'19]
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Example: Benchmark Open vSwitch

Host 1 Host 2

Traffic - Forward

Generator DROP

Host 3
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Packets over time

Goal: Find Network Traffic Configuration that Maximizes CPU/Latency




Network Benchmarking is Challenging: Complex and Huge M
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

[ ]
&—

> > >
Number of Network Batch Size Packet Inter Arrival Time VLANS
Packets [1000 — 5000] [1-5] [Ims — 13mSs] [1-5]

||| N

Human still
Involved!

&




NetBOA: A Bayesian Optimization-based Approach

Traffic

Source: https://de.kisspng.com/png-pc3d06/preview.html
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Source: https://de.kisspng.com/png-pc3d06/preview.html

NetBOA: A Bayesian Optimization-based Approach
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How NetBOA Explores the Performance Model TLTI
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Grid Search for Two Parameters (Num. Packets and Inter Arrival Time) TLUTI]
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Grid Search for Two Parameters (Num. Packets and Inter Arrival Time) TLUTI]
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= Performance models are non-trivial
= Surprising: Sending less network packets over time can lead to significantly higher CPU

» But: Can we find such weak-spots automatically?
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Why? Let Us Look At OvS Behavior! TLTI
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OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled
= For instance for 5000 packets: We trigger roughly every >2 ms a flow insertion + removal

-> Forcing OvS to continuously run through the array + resizing it
11



Why? Let Us Look At OvS Behavior! TLTI
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NetBOA vs Random Search TLUTI]

NetBOA Random Search
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Conclusion T|.|T|

= Adversarial input generation to find weak spots, security holes ... to make your systems
bullet-proof? - Use concepts like NetBOA to receive continuous feedback about
your solutions/implementations

= Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate
network traffic configurations for benchmarking network function implementations

- NetBOA can efficiently find challenging network traffic configurations (maximize
CPU/Latency)
—->NetBOA can also be used to minimize, e.g., CPU or Latency

= Open questions and problems:
= Does beating the machine means it generalizes?
= Does it scale?
= Alternatives?
= Bayesian Optimization needs also tuning!
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