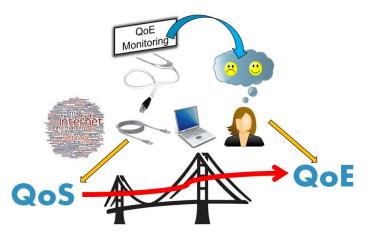


Predicting QoE in Cellular Networks using Machine Learning and in-Smartphone Measurements

P. Casas, A. D'Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind, P. Tran-Gia, R. Schatz

AIT Austrian Institute of Technology, Vienna University of Würzburg, Institute of Computer Science, Würzburg



AGENDA

Field Trial Description

- Monitoring Apps and Machine Learning Models
- QoE Assessment Results
- Relevant Features for QoE in Smartphones
- Concluding Remarks

Field Trial Overview

- 30 users (Vienna, 2 weeks in 2015) equipped with their own devices & connected to their own/preferred cellular ISPs.
- 3 apps evaluated:
 - YouTube \rightarrow task: watch short (~2 minutes) YouTube videos (free selection).
 - **Facebook** \rightarrow task: browse fake user timeline + photo albums
 - Google Maps → task: browse pre-defined city maps in satellite mode
- QoE feedback reported through customized QoE crowdsourcing app
 - Overall experience (ACR MOS 1 5)
 - Acceptability (Yes/No)
- Apps network traffic monitored by monitoring app installed in devices

Field Trial Description

Monitoring Apps and Machine Learning Models

- QoE Assessment Results
- Relevant Features for QoE in Smartphones
- Concluding Remarks

Network Traffic Monitoring & QoE Feedback Apps

- We implemented two Android apps to monitor participants' network traffic and to collect their QoE feedbacks
- Passive flow-level traffic monitor (13 features)
- Web-based QoE feedback (this paper: only overall MOS and ACC)
- Both data are merged at the session-level (time-synchronized)
- The resulting 10 session-level features are used to train several ML models

Metric ID	Metric Name	Units	Example
1	device id (IMEI)	_	352668049725157
2	flow start time	s	1430825689
3	flow direction (up/down)	_	downlink
4	flow duration	s	10,24
5	flow size	KB	4041,00
6	avg. flow throughput	kbps	3157
7	max. flow throughput	kbps	4320,15
8	app (Android API package)	_	com.android.browser
9	signal strength	dBm	-71
10	operator (MCC.MNC)	_	295.4
11	cell id	_	16815
12	cell location (lat-lon)	deg (°)	{40,198-12,347}
13	RAT	_	LTE

METRICS COLLECTED FOR EACH DATA FLOW.

SESSION-BASED KPIS. (U) INDICATES USER-REPORTED.

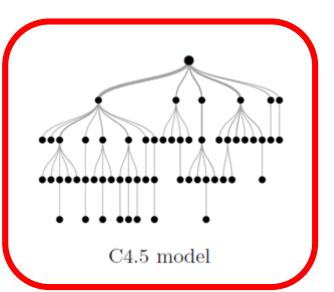
KPI Name	KPI Description (U – reported by user)		
MOS	overall user experience (U)		
ACC	service acceptability (U)		
ISP	cellular network operator		
RAT	radio access technology		
avg. signal strength			
max	max. session downlink flow throughput		
TH _{avg}	avg. session downlink flow throughput		
DUR	session duration		
VOL	session volume		
FLOW _{ratio}	ratio (# flows up)/(# flows down)		
CELL	cell id		
LOC	user location context (U)		

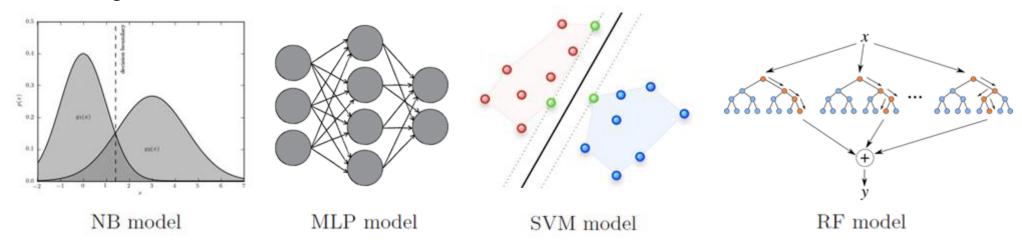
flow level features

session level features

Machine Learning Models

- Supervised ML models (classification) to predict MOS/ACC for each session
- Different algorithms trained on field-trial labelled dataset (10-fold cross validation)
- Benchmark **different learning models** (classifiers):
 - Bayesian Learning Naïve Bayes (NB)
 - Neural Networks (MLP)
 - Support Vector Machines (SVM)
 - Decision Trees (selected-model)/Random Forest
- WEKA used as ML library, with extensive trial/error testing for calibration





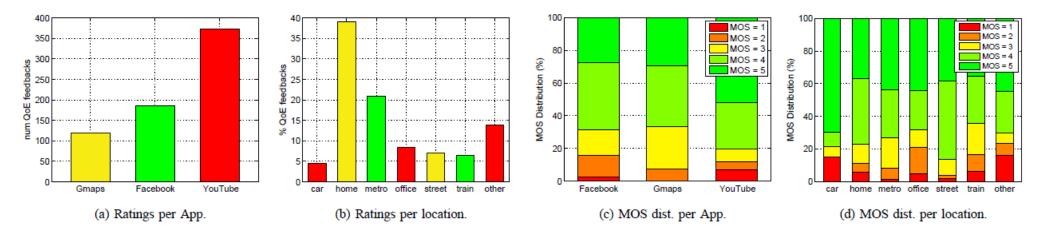
Field Trial Description

Monitoring Apps and Machine Learning Models

QoE Assessment Results

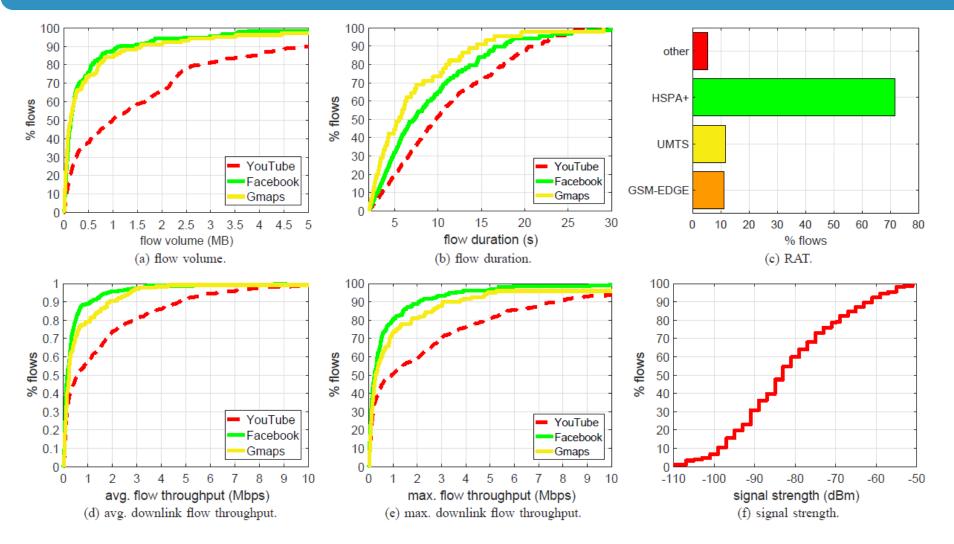
- Relevant Features for QoE in Smartphones
- Concluding Remarks

QoE Feedback Overview



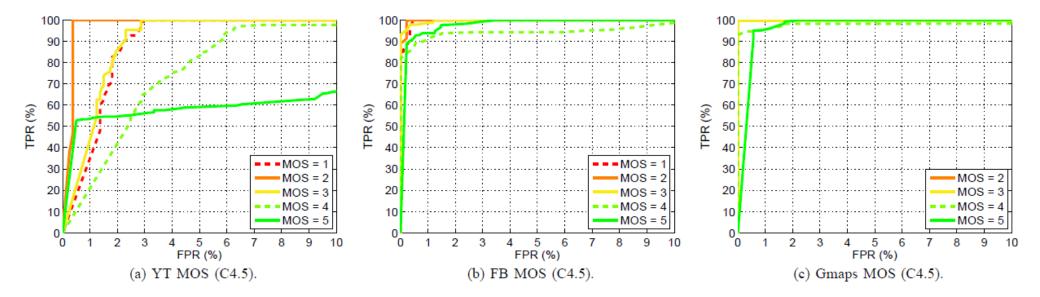
- The biggest share of ratings were done for YouTube.
- The preferred location was home, follow by underground (not surprising)
- MOS distributions are rather similar for the tested apps and selected locations...
- ...suggesting that network performance was rather stable during the span of the study (Vienna cellular connectivity is excellent).

Collected Flow Measurements Overview



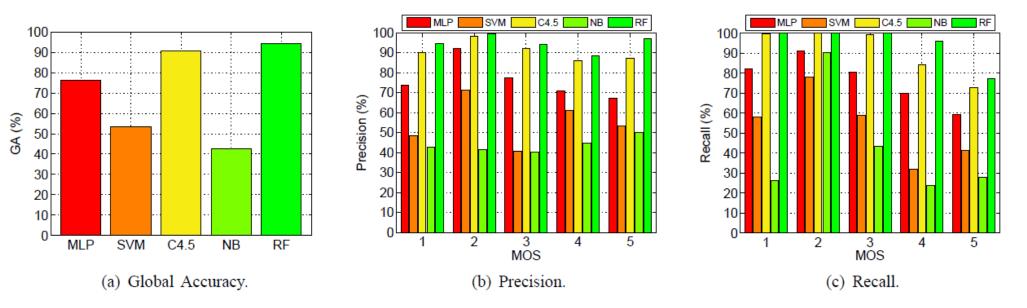
- Distributions of multiple flow-level measurements
- Most of the flows were transmitted with high signal strength on HSPA+

MOS Prediction – TPR vs. FPR



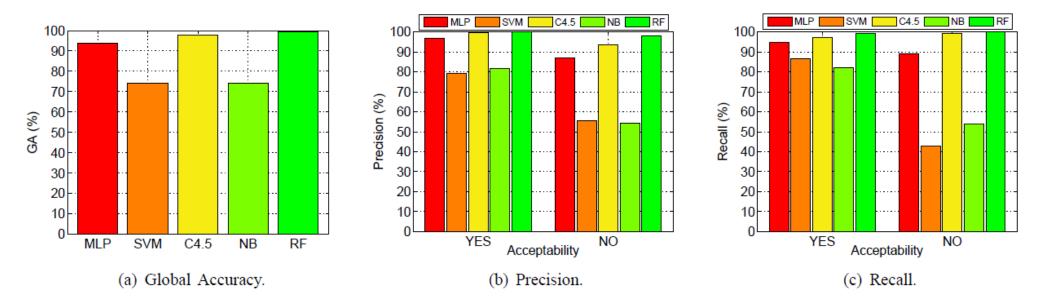
- The ROC curves present the TPR vs. FPR trade-offs for the MOS prediction on the three apps
- Prediction results are excellent for both Facebook and Gmaps → easier to predict QoE for these apps (at least for the considered tasks)
- YouTube results are less promising, which is expected as network-level measurements are not enough to fully predict YouTube QoE (e.g., buffering)
- Confusion Matrix → MOS = 5 is mainly misclassified as MOS = 4 (but also MOS = 1 and MOS = 3)

Benchmarking Different ML Models: MOS



- Accuracy, Precision and Recall for the three apps merged (classes are balanced by bootstrapping to avoid biased evaluations)
- Decision Tree (DT)-based models achieve the best results
- DTs are fast and provide clear information on the inputs leading to a particular output
- DTs are more robust than other models to noisy inputs (e.g., much better than MLPs), as they perform embedded feature selection
- A single DT can correctly predict more than 90% of the session QoE MOS scores

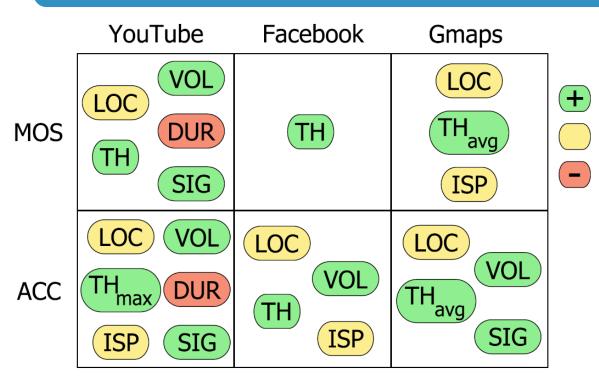
Benchmarking Different ML Models: ACC



- Similar results are obtained for the prediction of service acceptability
- For this metric, the model can correctly predict more than 98% of the ACC feedbacks

- Field Trial Description
- Monitoring Apps and Machine Learning Models
- QoE Assessment Results
- Relevant Features for QoE in Smartphones
- Concluding Remarks

Contribution of Relevant Features to QoE

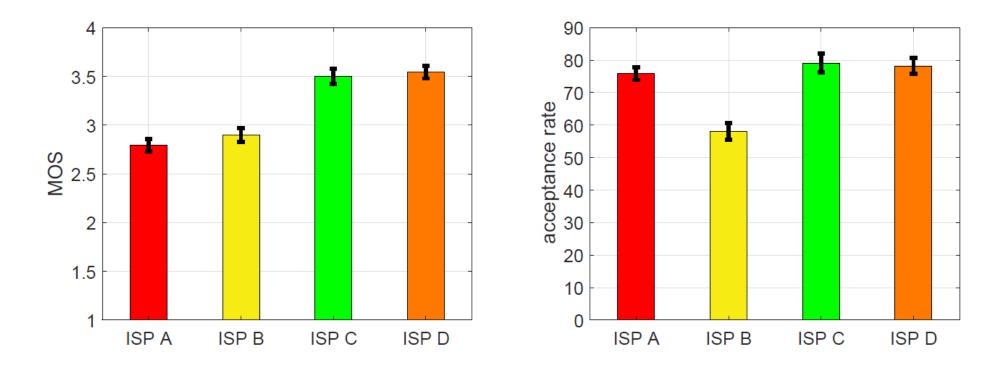


 We apply feature selection to understand the contribution of the most relevant features

 Correlation-based group testing, using Best First search

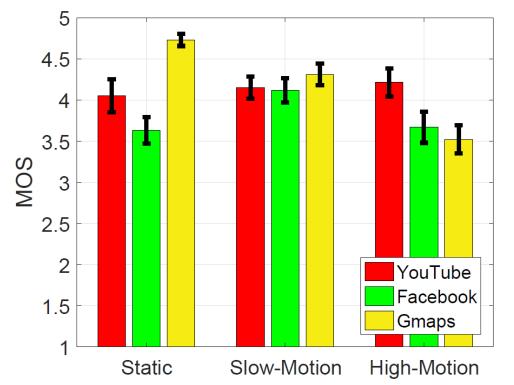
- Features flagged in green/red are positively/negatively correlated to the target metric (nominal features are marked in yellow)
- TH (avg/max) are the most relevant features
- Interestingly, longer YouTube sessions experience a worse QoE (stalling)
- The ISP is also relevant, specially for acceptability
 → different ISP performance and user expectations?

ISPs Benchmarking from a QoE Perspective



- 4 cellular ISPs operate in Vienna, we compare them in terms of MOS and ACC
- There is a relevant different in terms of QoE among ISPs
- Interestingly, ISP A has similar acceptability rate than the best ISPs, with a poorer overall perceived QoE → expectations?

Impact of Mobility on Smartphone QoE



- Does mobility impact QoE?
- We construct mobility profiles from user location as follows:
 - static: home and office
 - slow-motion: street
 - high-motion: car, train, metro
- There is no apparent impact of the mobility profiles on both YouTube and Facebook QoE (apps are not highly interactive)
- However, Google Maps QoE is strongly correlated to mobility, and the faster one moves, the worse QoE to be expect
- Gmaps task is tested in a very interactive manner, browsing through satellite-view maps to locate specific areas → network QoS stability has a relevant impact on interactive sessions

- Field Trial Description
- Monitoring Apps and Machine Learning Models
- QoE Assessment Results
- Relevant Features for QoE in Smartphones
- Concluding Remarks

Conclusions

- QoE is highly relevant to cellular ISPs, and has even the potential to become a core guiding paradigm for 5G network management (see 5G PPP)
- Our study is the first one addressing the problem of QoE monitoring, assessment and prediction in cellular networks, relying exclusively on in-smartphone QoS passive traffic measurements and QoE crowdsourced feedback
- We have conceived a **two-phase system** which is capable of:
 - generating a rich dataset of QoS/QoE measurements, which can be used to train the operational model
 - predicting QoE in smartphones for popular apps in a distributed fashion, using only insmartphone passive traffic measurements (GENERALIZATION and APP-independence)
- Using a DT model, evaluations show that the proposed session features and model can correctly forecast the individual, per-user overall experience and service acceptability of popular apps in 91%/98% of the monitored sessions
- The preliminary analysis on the impact of the selected input features on QoE should be extended to potentially enhance future applications for network diagnosis issues

Thanks for Your Attention!