

Some Applications of ML to Adaptive Network Security

Adaptive/Stream Learning Models for NetSec

Adaptive learning algorithms trained on labelled data, using ADWIN

Stream-based Learning Models Performance

- Multiple stream machine learning models, using ADWIN
- Detection accuracy, normalized to batch-based algorithms performance

Detected changes are marked with dashed lines.

Stream-based Learning Models Performance

- Multiple stream machine learning models, using *fixed windowing*
- AUC (ROC curve), normalized to batch-based algorithms performance
- Different window sizes tested

Improving Stream-based Active Learning by Reinforcement (RAL)

- How do we deal with the limited amount of labeled data?
- Active Learning (AL): aims at labelling only the most informative samples
- AL can be applied to the streaming scenario, to complement previous approaches and reduce the amount of labeled data

- AL bases its decisions based EXCLUSUVELY on model uncertainty
- RAL permits to additionally learn in a feedback loop, based on the effectiveness of the requested labels
- Reward in case asking oracle was informative (models would have predicted wrong label)

FEEDBACK

Penalty otherwise

RAL Principles and Components

- RAL is based on an ensemble of models
- RAL makes use of contextual-bandit algorithms (EXP4) to tune the decision powers of the different models depending on their behavior
- RAL uses a ε-greedy approach to handle concept drift and improve the exploration/exploitation trade-off

RAL Principles and Components

- The querying decision (ask or not for a label) is taken
 based on model prediction uncertainty and a threshold
- Each algorithm in the ensemble (committee) gives its advice, based on its prediction uncertainty
- RAL takes into account the decisions of the members + their decision power
- Obtained feedback influences the querying threshold:
 - In case of penalty, the threshold decreases.....otherwise, it slightly increases

RAL Evaluation vs. State of the Art

- RAL vs RVU (Randomized Variable Uncertainty) and simple random sampling (RS)
- Evaluation on data extracted from MAWILab in the wild network security
- We divide each dataset into three consecutive parts:
 - Initial training set (variable size)
 - Validation set (last 30%), to evaluate the classifiers
 - Streaming set (remaining part of the dataset), for picking samples to learn from

RAL Evaluation vs. State of the Art – Prediction Accuracy

RAL Evaluation vs. State of the Art – Querying Cost

So What's Next?

- We're still far from making AI immediately applicable
 - Limitations of learning process, data, models
 - Lack of generalization
 - Continual learning challenges catastrophic forgetting and transfer
 - Lack of real knowledge generation building simple mappings is *easy*
 - Portability of models to real deployments plug & play?

• *Effective Machine Learning* – a mix of interesting challenges:

- Transfer learning
- Explainable AI (XAI)
- Multi-task learning
- Meta learning
- Hierarchical learning
- And back right to the start: the successful application of AI to network measurement problems is still on an early stage

http://mobiqoe.ait.ac.at/

Thanks

Dr. Pedro Casas Data Science @Digital Insight Lab AIT Austrian Institute of Technology @Vienna

> pedro.casas@ait.ac.at http://pcasas.info