

VIENNA SCIENCE AND TECHNOLOGY FUND

Machine Learning based Approaches for Anomaly Detection and Classification in Cellular Networks

Pedro Casas (*), Pierdomenico Fiadino, Alessandro D'Alconzo (*) AIT Austrian Institute of Technology, Vienna

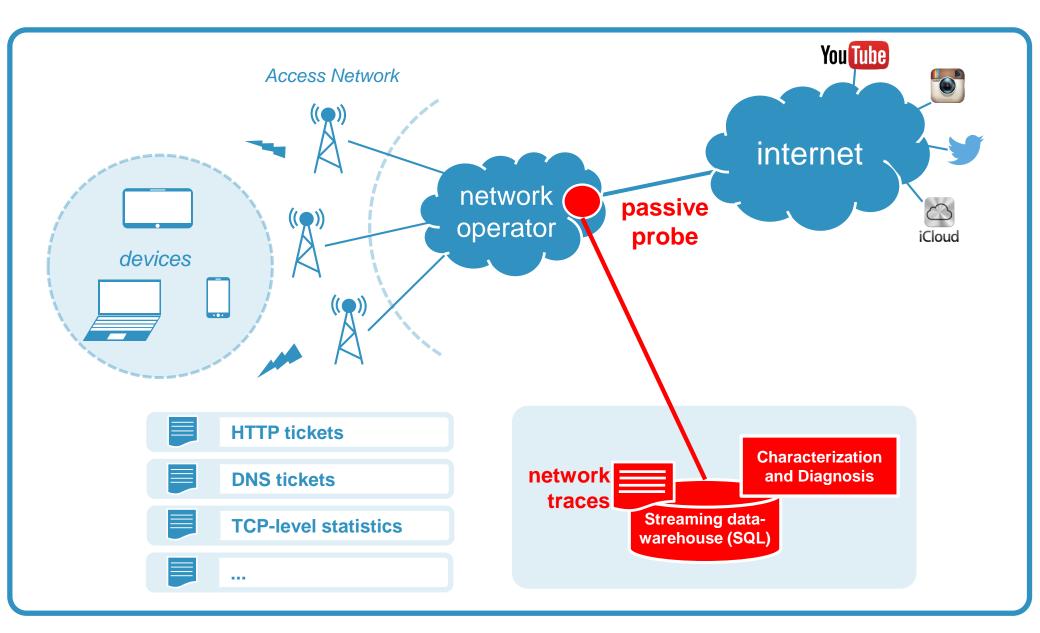
Anomaly Detection in Cellular Traffic

We study the problem of detecting and classifying certain types of network anomalies in cellular networks, relying on Machine Learning approaches

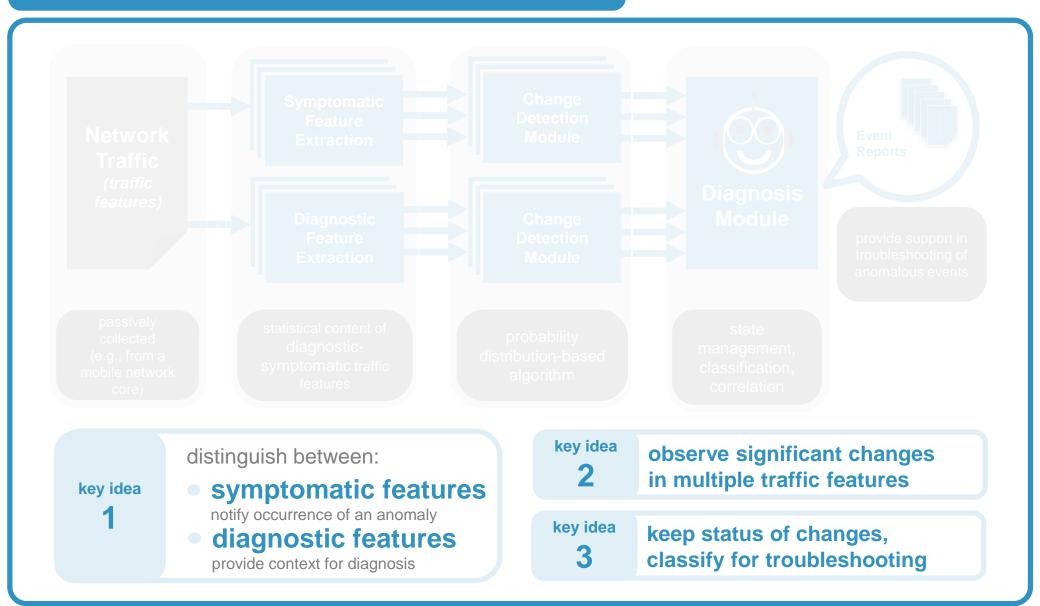
- Cellular Network Monitoring and Synthetic Datasets
- Anomaly Detection and Classification Approaches
- Evaluation Results
- Impact of Feature Selection and OOS Testing

cellular network monitoring

Passive Measurements at Core of EU Cellular ISP



Automatic Diagnosis Framework

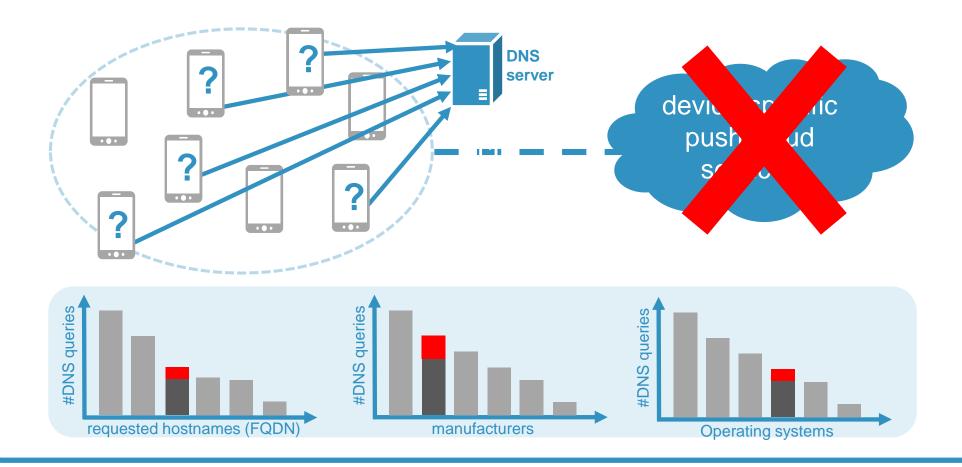


Service Anomalies Visible in DNS Traffic

Device-specific anomalies affecting sub-populations

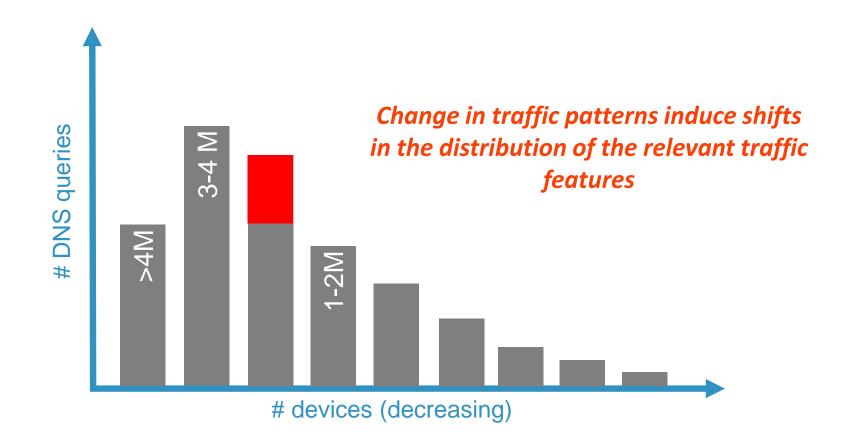
Observed multiple instances in few months

Impacting operatormanaged DNS servers and signaling plane



Traffic Feature Distributions for Change Detection

Empirical distribution of # devices across DNS query counts (binning)



Symptomatic and Diagnostic Features

- Symptomatic Feature (the trigger) → distribution of # devices across DNS query counts (10' time-bin basis)
 - counting of devices issuing a given number of DNS queries within each timebin.
- Diagnostic Features (troubleshooting-support) → distribution of # devices across field in Tab. I (10' time-bin basis)

Field Name	Description				
Manufacturer	Device manufacturer				
OS	Device operating system				
APN	Access Point Name				
FQDN Fully Qualified Domain Name of remote ser					
Error Flag	Error Flag Status of the DNS transaction				
Table I					

Table IFEATURES USED IN THE ANALYSIS.

Anomaly Templates and Synthetic Datasets

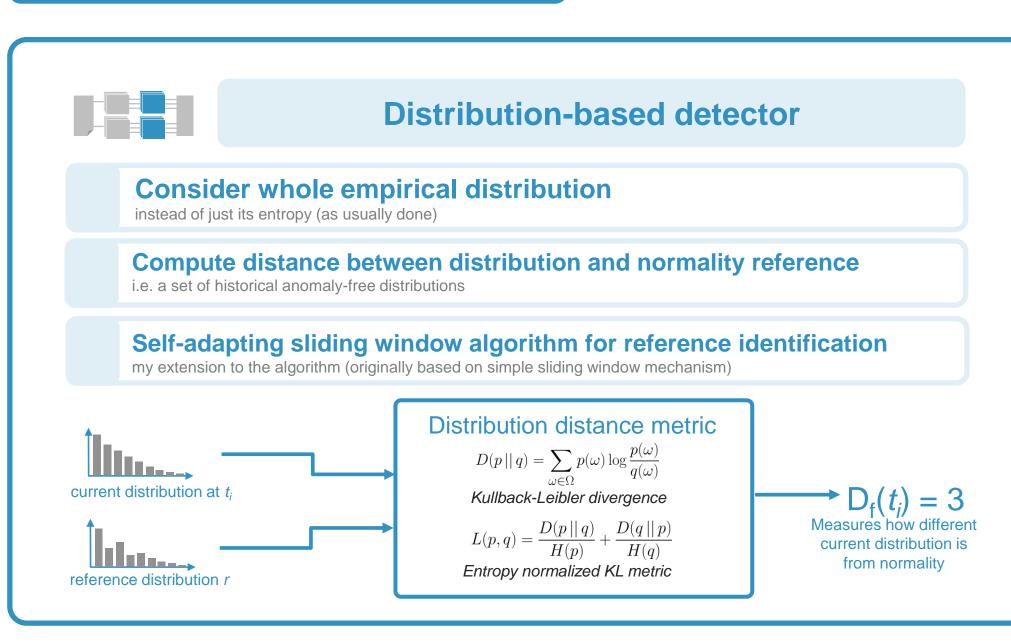
- Privacy: we use synthetically generated datasets, derived from the real celular ISP measurements (details in the paper)
- Anomaly Templates, derived from the real anomalies observed in the celular traffic → in this paper, anomaly types E1, E2 and E3

	and 16	Type mensurements co	lected durina	E ₂	<i>E</i> ₃ in 2014	
		Start time t_1	9:00	13:00	18:00	
•		ion labelled datas Involved devices D different anomaly			peration	with
			er of involved of single popular		20 sec ries from multiple	
	2070)	OS	single	single	multiple	
		Error flag	+5% timeout			
		FQDN	top-2LD	top-2LD	top-2LD	
			Table III			

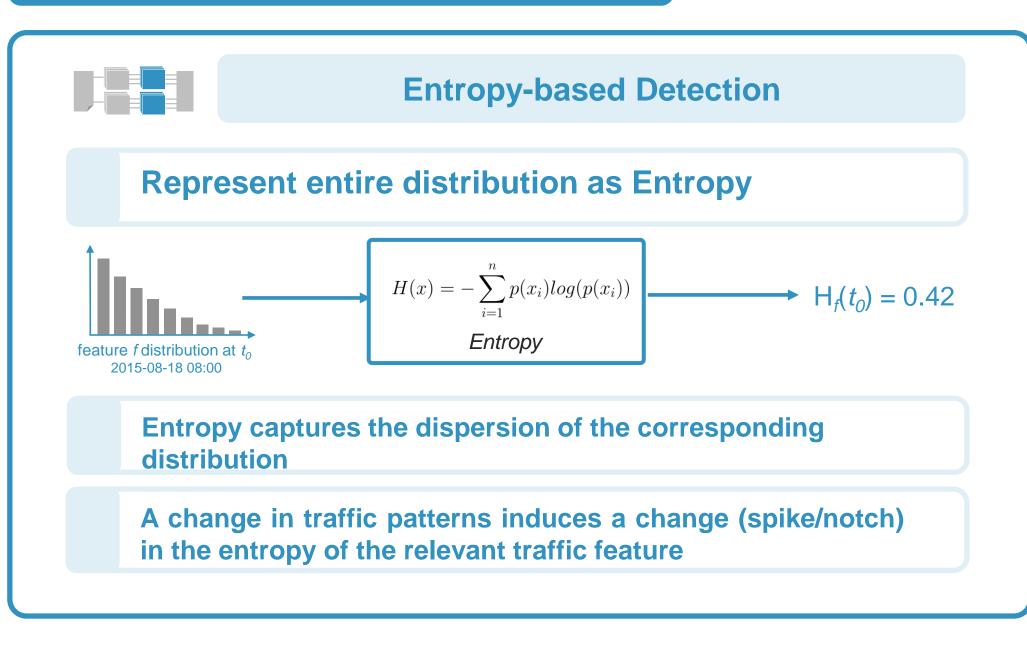
Anomalous DNS traffic features for types E_1, E_2, E_3 .

anomaly detection & classification

Statistical Anomaly Detection



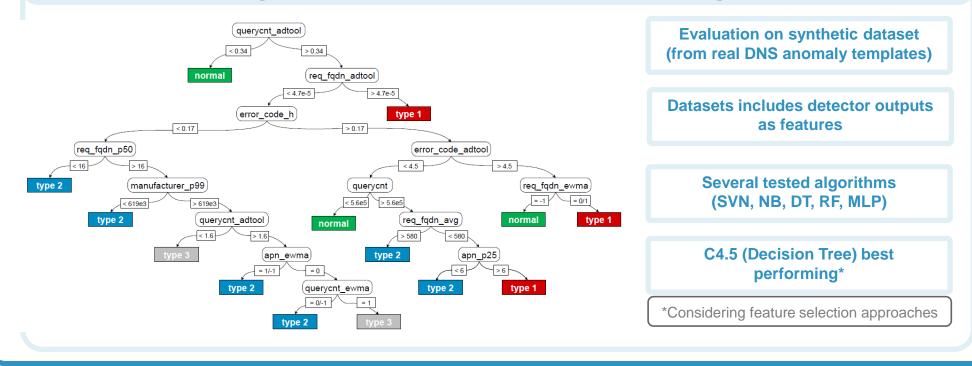
Entropy-based Anomaly Detection



Machine – Learning based Anomaly Detection and Classification

- Classify detected anomalies (assign event lable)
- Enrich final event reporting and support troubleshooting

Supervised classification techniques



C4.5 Decision Tree-based Detection and Classification

A decisic	Field	Feature	Description	<i>instances</i>	
	DNS_query	querycnt	total num of DNS requests	a tree	
by repe	APN	apn_h	H(APN)		
with lea		apn_avg	APN	2.	
		apn_p{99,75,50,25,05}	percentiles		
They are		error_code_h	$H(\text{Error}_flag)$	speed is	
-	Error_flag	error_code_avg	Error_flag		
paramo		error_code_p{99,75,50,25,05}	percentiles		
		manufacturer_h	H(Manufacturer)		
They are	Manufacturer	manufacturer_avg	Manufacturer	g rules.	
They are		manufacturer_p{99,75,50,25,05}	percentiles		
		os_h	H(OS)		
They exp	OS	os_avg	OS	זs the	
learning		os_p{99,75,50,25,05}	percentiles	lon.	
		req_fqdn_h	H(FQDN)		
- The sector	FQDN	req_fqdn_avg	FQDN		
Iney ter		req_fqdn_p{99,75,50,25,05}	percentiles	oisy or	
 They ter loosely (Table III			

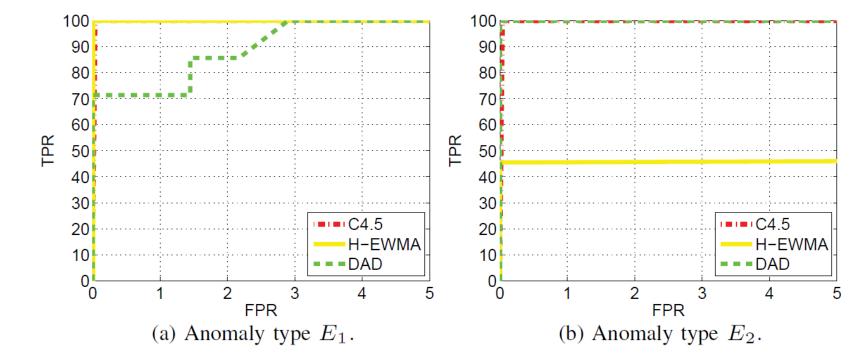
Table IIIINPUT FEATURES FOR THE C4.5 DT-BASED DETECTOR/CLASSIFIER.

 We additionally use the output of the statistical and entropybased detectors as input for anomaly classification purposes

Evaluation Results

Anomaly Detection: C4.5 vs Statistical & Entropy

- First evaluation: C4.5 with full-input features (Tab. III) vs Distributionbased AD (DAD) and Entropy-based (H-EWMA) for E1 and E2 anomalies
- DAD and H-EWMA working only on symptomatic feature



Take away: the C4.5 has comparable detection capabilities to SotA ADs

Figure 1. ROC curves for the detection of anomalies type E_1 and E_2 .

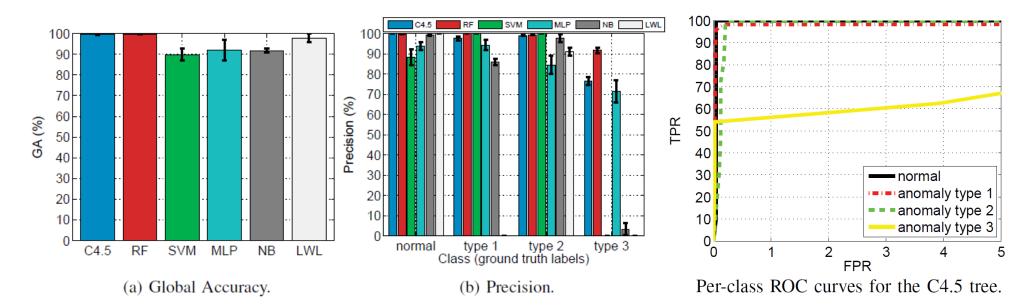
Performance of DAD and H-EWMA with other Features

- We also evaluate DAD and H-EWMA with other input features, to be closer to the C4.5 inout space
- Conclusions remain the same
- Note that H-EWMA completely fails to detect the E2 anomalies (supremacy of DAD-like approaches) Figure 2. R



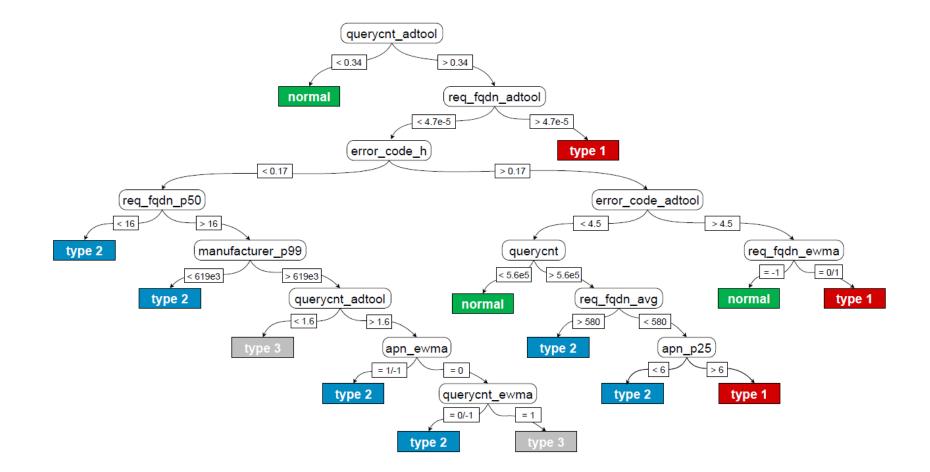
Figure 2. ROC curves for the detection of anomalies type E_1 and E_2 for DAD and H-EWMA anomaly detectors, considering all the impacted features.

Machine-learning based Classification Benchmarking



- Compare C4.5 to different ML-based classifiers (SVM, ANN, Random Forrest, Naïbe Bayes, LWL)
- Classification Accuracy, Precision, and Recall for normal operation instances and anomaly-types E1, E2, E3.
- The performance of C4.5 DT is almost perfect for normal traffic and anomalies of type E1 and E2, but quality significantly drops for the anomalies of type E3 (also the RF fails)

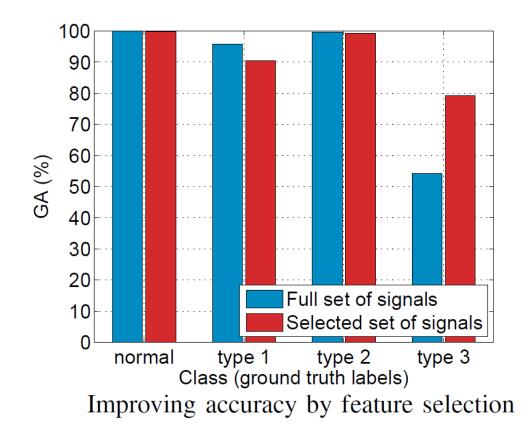
C4.5 Decision Tree-based Detection and Classification



- Pruned C4.5 DT model for anomaly diagnosis (classification).
- The tree fails to track E3 anomalies → the issue can be solved by performing pre-filtering on the input features, by feature selection

impact of feature selection and OOS testing

Improving Performance for E3 type Anomalies

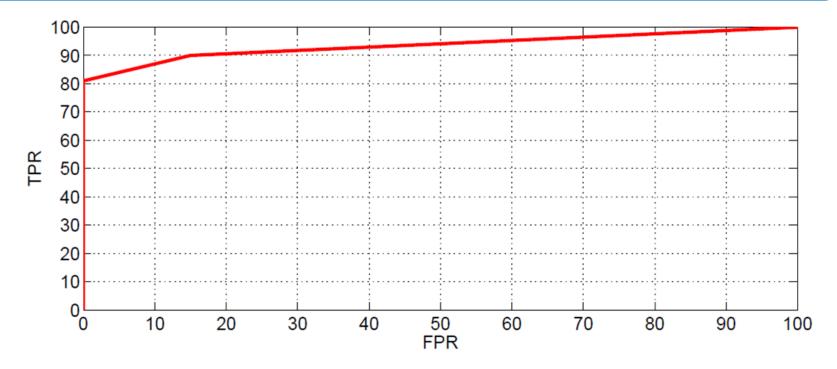


- Irrelevant features introduce noise in the classification process
- Select the most relevant ones by correlation-based approaches
- Using Best-First search: greedy exploration with back-tracking

Selected features are highly correlated to E3 anomalies

Performance increases for E3 type, with a slight reduction in E1

Generalization of Results – Out of Sample Testing



- OOS testing with anomalies of type E4 (flashcrowd-generated)
- The C4.5 model is trained with instances of E1, E2, and E3 only
- Performance slightly degrades, but the underlying characteristics of the DNS anomaly class are captured

 trees are powerful for generalization

Thanks for Your Attention!

Pedro Casas pedro.casas@ait.ac.at