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Deep Learning Basics

▪ Deep Learning 101

▪ Definitions and main Components

▪ Training Deep Neural Networks

▪ Convolutional Neural Networks (CNNs)

Deep Learning (http://www.deeplearningbook.org), by I. Goodfellow, Y. Bengio, A. Courville

http://www.deeplearningbook.org/


Deep Learning – a bit of History

▪ 1943: Neural networks

▪ 1957: Perceptron

▪ 1974-86: Backpropagation, RBM, 

RNN

▪ 1989-98: CNN, MNIST, LSTM, 

Bidirectional RNN
▪ 2006: “Deep Learning”

▪ 2009: ImageNet

▪ 2012: AlexNet, Dropout

▪ 2014: GANs

▪ 2014: DeepFace

▪ 2016: AlphaGo

▪ 2017: AlphaZero, Capsule 

Networks (CapsNets)

▪ 2018: BERT transformers



Deep Learning 101

▪ What is Deep Learning (DL)?

▪ Recall: a feedforward network with a single layer is sufficient to 
represent (approximate) any function…

▪ …but the layer may be infeasibly large and may fail to learn 
and generalize correctly… 

▪ Visualization of the 
human brain:

▪ 3% of the human 
brain neurons

▪ 0.0001% of neural 
synapses



Deep Learning 101

▪ What is Deep Learning (DL)?

▪ In simple terms: using a neural network with several layers of 
nodes between input and output. 

▪ Deep Neural Networks (DNNs): ▪ exceptionally effective at 
learning patterns.

▪ hierarchical structure… 

▪ …can learn the hierarchies of 
knowledge that seem to be 
useful in solving real-world 
problems…



Deep Learning 101

▪ hmmm…OK, but: multilayer neural networks have been around 
for 25 years.  What’s actually new?

▪ We have always had good algorithms to learn the weights in 
networks with 1 hidden layer…

▪ …but these algorithms are not good at learning the weights for 
networks with more hidden layers 

▪ What’s new is: algorithms to train many-later networks



Deep Learning 101

▪ Why Deep Learning: Scalable Machine 
Learning

▪ The more the training data, the better
the performance

▪ Why now: data, hardware, community, 
tools, investment

Exciting progress:

▪ Face recognition

▪ Image classification

▪ Speech recognition

▪ Text-to-speech generation

▪ Handwriting transcription

▪ Machine translation

▪ Medical diagnosis

▪ Cars: drivable area, lane keeping

▪ Digital assistants

▪ Ads, search, social 
recommendations

▪ Gaming



Deep Learning 101

▪ One of the keys behind DL is the automatic learning of data 
representations

▪ DL algorithms attempt to learn (multiple levels of) 
representation by using a hierarchy of multiple layers



Deep Learning – Why is it Useful?

▪ Manually designed features are often over-specified, incomplete 
and take a long time to design and validate.

▪ Learned Features are easy to adapt, fast to learn.

▪ Deep learning provides a very flexible, (almost?) universal, 
learnable framework to represent world, visual and linguistic 
information.

▪ Can learn both unsupervised and supervised.

▪ Effective end-to-end joint system learning.

▪ Use massive amounts of training data.



Neural Networks – Neuron Model

▪ Artificial neurons are the computational building blocks for 
Artificial Neural Networks (ANNs)

▪ Inspired by natural brain neurons…

▪ …but natural neurons and the human brain have probably 
nothing to do with ANNs!

weights

bias

summing

connections

activation
function

synapse



ANNs (DNNs) vs the Human Brain

▪ DNNs need thousands/millions of 
examples, even to learn basic mappings

▪ ResNet 152: 60 million connections
(weights)

▪ DNNs are synchronous 

▪ Learning by gradient-descent 
(backpropagation)

▪ Mostly on supervised learning

▪ Get ready to pay the energy bill!

▪ Humans can learn from very few 
examples (embedded past knowledge)

▪ 100 billion neurons, 1.000 trillion 
synapses (DNNs x 10 M)

▪ Human brain has no layers, brain 
works asynchronously

▪ No clue how it learns, certainly NOT 
through backpropagation

▪ Life-long learning (non-stop learning), 
unsupervised and through exploration

▪ Energy-efficient (very little power)

Human Brain DNNs



Deep Learning – Intuitive Example

▪ Automatic learning of data representations – how?

▪ Input raw data, connection weights learn to detect specific feature maps

1
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7

9

strong weight

low/zero weight

▪ What is detected by this neuron?

▪ Strong activation for a horizontal line in the top row 
of the input image, ignoring everywhere else



Deep Learning – Intuitive Example

▪ Automatic learning of data representations – how?

▪ Input raw data, connection weights learn to detect specific feature maps

1

63

7

9

strong weight

low/zero weight

▪ What is detected by this neuron?

▪ Strong activation for a dark area in the top left 
corner of the input image, ignoring everywhere else



Deep Learning – Training

▪ Training a NN means setting/tuning all the free-parameters 
(weights and bias)

▪ This is achieved by solving an optimization problem, minimizing a 
certain loss function, which quantifies the gap between prediction 
and ground truth:

▪ Regression
▪ Mean Squared Error (MSE)

▪ Classification
▪ Cross Entropy Loss (CE)

(p)

binary {0,1} correct class



▪ How to iteratively minimize the loss function?
▪ e.g.: Stochastic Gradient Descent (SGD), Adaptive Moment 

Estimation (Adam), RMSprop, etc.

▪ Update the weights and bias by moving in the negative direction of 
the loss function derivate

▪ Gradient is computed for the loss function w.r.t. weights/bias ( ) 

▪ e.g., for MSE  

Optimization by Gradient Descent



▪ Update each element of θ 

▪ Matrix notation for all parameters 

▪ Computing the analytical expression for the gradient is straightforward

▪ …but numerically evaluating the gradient is computationally expensive  

Backpropagation

learning rate

▪ Solution: backpropagation

▪ Use the chain rule to sequentially 
compute the gradient through each 
node, re-using previous computations



Batch Gradient Descent

▪ How often and based on which data do we update weights?
▪ Epoch: represents one iteration over the entire training data (size m)
▪ Batch: if data is too big, we split it in batches
▪ Iteration: an epoch is composed of data-size/batch-size iterations

(1) Batch gradient descent: take all the training data to take one gradient decent 
step. This is very slow if you have large data set.

(2) Online-training /stochastic gradient descent: each training example (or few 
of them) is a batch in itself. Weights are updated for each training example.

(3) Mini-batch gradient descent: split the available data in batches of fixed size. 
Each gradient descent step takes batch-size of data samples to take one 
gradient decent step. Faster than batch gradient decent.

batch size
m1

(1)(2) (3)



Batch Gradient Descent – Tradeoffs

▪ Larger batch size = needs more 
computational resources

▪ Smaller batch size = (empirically) 
better generalization

▪ What’s better, smaller or larger batch size?



Regularization – fighting overfitting

Most important part of learning: generalize to unseen data

(1) Early stopping: stop the training when the algorithm stops learning               
the underlying model

(2) Dropout: randomly drop units (along with their connections) during training. 
At each iteration, each unit is retained with fixed probability p (usually p > 
0.5), independent of other units

validation error

training error

full dataset

train validation test

(3) Weight penalty/decay (e.g., L2): prevent 
big weights. Results in smoother models. 
e.g., (w/2; w/2) is better than (w; 0) 

(4) L1 weight decay: allows for a few weights 
to remain large



Data Normalization

▪ Data normalization helps to speed up the learning process, by 
keeping activations from going too high/too low.

▪ Input normalization: normalize network inputs, e.g.: normalize to 
[0,1], or according to mean & var., etc.

▪ Batch normalization (BN): normalize hidden layer inputs to mini-
batch mean & var. During training, the distribution of each layer’s 
inputs changes as the parameters of the previous layers change. BN 
reduces impact of earlier layers on later layers.

▪ Many other alternatives:
▪ Layer normalization (LN) – conceived for RNNs
▪ Instance normalization (IN) – conceived for Style Transfer
▪ Group normalization (GN) – conceived for CNNs



Convolutional Networks (CNN)

▪ Convolutional Neural Networks: build spatial features, reducing the number of 
parameters needed for image processing

▪ CNNs are specially conceived for image processing tasks, their success is the primary 
reason why deep learning is so popular

▪ Convolutional neural networks are composed by a set of layers with specific 
functionality



Convolutional Networks (CNN)

▪ CNNs detect features in images and learn how to recognize objects with them

▪ Layers near the start detect simple features like edges

▪ Deeper layers can detect more complex features like eyes, noses, or an entire face 



Convolutional Layer

▪ Key idea: we change weights by feature detectors or filters, and drastically reduce 
connections

▪ Learning in CNNs is about calibrating the feature detector values

▪ In a nutshell: we learn new filters, which discover specific characteristics of the image

▪ Convolutional layers work as feature detectors, generating the so-called activation
maps



Convolutional Layer + ReLU

▪ Hyper-parameters : 

▪ the number of filters K

▪ the size of the filters F

▪ the stride S

K

S

F

▪ Used to increase non-linearity of the network without 
affecting receptive fields of convolutional layers

▪ Prefer ReLU, results in faster training

▪ LeakyReLU addresses the vanishing gradient problem 

▪ The convolutional step is combined with an activation layer, usually
ReLU – Rectifier Linear Unit



Pooling Layer

▪ The main goal of the pooling function is to progressively reduce the spatial size of the 
representation to reduce the amount of parameters and computation in the network

▪ Hence, it also controls overfitting

▪ A pooling function replaces the output of the network at a certain location with a 
summary statistic of the nearby outputs

2x2

2x2

▪ Pooling layers apply non-linear down-
sampling on activation maps

▪ Pooling is very aggressive (discard info)

▪ The trend now is to use smaller filter size 
and abandon pooling



Flattening Layer

▪ Flattening is converting the data into a 1-dimensional array 

▪ We flatten the output of the pooling layers to create a single long feature vector

▪ And it is connected to the final classification model, which is called a fully-connected 
layer



Fully-Connected Layer

▪ Fully connected layer = Regular neural network

▪ It corresponds to the final learning phase, which maps extracted visual features to 
desired outputs (e.g., classification)

▪ Common output is a vector, which is then passed through a softmax function to 
represent confidence of classification



Softmax Layer

▪ A special kind of activation layer, usually used at the end of FC layer outputs

▪ Can be viewed as a normalizer, producing a discrete probability distribution vector

▪ The Softmax is used as the activation function in the output layer of the FC Layer, and 
ensures that the sum of the outputs is 1.

▪ The Softmax function takes a vector of arbitrary real-valued scores and squashes it to 
a vector of values between zero and one that sum to one



ImageNet Large Scale Visual Recognition Challenge



CNN Quiz 

▪ What would this CNN detect?

▪ CNNs have drawbacks in their basic 
architecture…

▪ …causing them to not work very well 
for some tasks

▪ there is no spatial location 
information in a CNN!

face



Capsule Networks (CapsNets)

▪ In a nutshell: why not adding such information within the network?

▪ Capsule networks: encode not only probability of an object being present, but also 
spatial information

▪ Capsules: groups of neurons that encode spatial information (object position and 
orientation) as well as the probability of an object being present.

▪ Capsule nets are still in a research and development phase and not reliable enough to 
be used in commercial tasks
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