Deep Learning Basics

Dr. Pedro Casas
Data Science @Digital Insight|¥]¢
AU IE Flnstitute of Technology @Vienna

IIE — FING — ARTES
December 2019

Deep Learning Basics

= Deep Learning 101

Definitions and main Components

* Training Deep Neural Networks

0

Artificial Intelligence

: &
= Convolutional Neural Networks (CNNs)

Ix

Deep Learning

Deep Learning (http://www.deeplearningbook.org), by I. Goodfellow, Y. Bengio, A. Courville

http://www.deeplearningbook.org/

Deep Learning — a bit of History §£ -

(1943: Neural networks
= 1957: Perceptron

RNN

\Bidirectional RNN

= 1974-86: Backpropagation, RBM,

= 1989-98: CNN, MNIST, LSTM,

\

1943 1957 1! 196
1940 1950 1960 1970 1980 1990

2000

—— oy —

" Y =N
‘ =) ' ' F Q p
/ » @ - ‘%h d ‘gh
F.Rosenblatt B. Widrow - M. Hoff M. Minsky - S. Papert
0 \ as
@
®| O @40
0 "l.@)
G)

/

(2016: AlphaGo

Networks (CapsNets)

= 2017: AlphaZero, Capsule

(2018: BERT transformerSJ

\

= 2009: ImageNet

= 2014: GANs

(2014: DeepFace

(2006: “Deep Learning”\

= 2012: AlexNet, Dropout

/

Deep Learning 101

= What is Deep Learning (DL)?

= Recall: a feedforward network with a single layer is sufficient to
represent (approximate) any function...

= _.but the layer may be infeasibly large and may fail to learn
and generalize correctly...

Simple Neural Network = Visualization of the

human brain:

= 3% of the human
brain neurons

= 0.0001% of neural
synapses

Deep Learning 101

= What is Deep Learning (DL)?

= |n simple terms: using a neural network with several layers of
nodes between input and output.

= Deep Neural Networks (DNNs): = exceptionally effective at
learning patterns.

= hierarchical structure...

= ..can learn the hierarchies of
knowledge that seem to be
useful in solving real-world
problems...

Deep Learning 101

hmmm...OK, but: multilayer neural networks have been around
for 25 years. What’s actually new?

We have always had good algorithms to learn the weights in

networks with 1 hidden layer... § E

...but these algorithms are not good at learning the weights for

networks with more hidden layers

What’s new is: algorithms to train many-later networks

Deep Learning 101

Performance

Why Deep Learning: Scalable Machine
Learning

The more the training data, the better
the performance

Why now: data, hardware, community,
tools, investment

A Deep

Learning

Most Learning
Algorithms

Amount of Data

Exciting progress:

Face recognition

Image classification

Speech recognition
Text-to-speech generation
Handwriting transcription
Machine translation

Medical diagnosis

Cars: drivable area, lane keeping
Digital assistants

Ads, search, social
recommendations

Gaming

Deep Learning 101

= One of the keys behind DL is the automatic learning of data
representations

= DL algorithms attempt to learn (multiple levels of)
representation by using a hierarchy of multiple layers

Deep
Learning

Representation
Learning

Machine Learning

G \&y 5T

Input Feature extraction Classification Output

Deep Learning

& — 327 - Il

Input Feature extraction + Classification Output

Machine
Learning

Artificial
Intelligence

Deep Learning — Why is it Useful?

Manually designed features are often over-specified, incomplete
and take a long time to design and validate.

Learned Features are easy to adapt, fast to learn.

Deep learning provides a very flexible, (almost?) universal,
learnable framework to represent world, visual and linguistic
information.

Can learn both unsupervised and supervised.

Effective end-to-end joint system learning.

Use massive amounts of training data.

Neural Networks — Neuron Model

= Artificial neurons are the computational building blocks for
Artificial Neural Networks (ANNSs)

= Inspired by natural brain neurons...

synapse _
Sigmoid l Leaky ReLU _m weights
(z) = 1 max 0 Iz, a: 2, .
T) 7, bias
tanh :
Maxout : (Wit +b>

tanh(z) I max(w{ « + by, w3 « + ba) W[5~ / Z.': o :

. . i activation
ReLU g - function

T X .

maX(O,HJ) .) {a(e“’—l) xzo) - " summing

= ...but natural neurons and the human brain have probably
nothing to do with ANNs!

ANNs (DNNs) vs the Human Brain

®

Humans can learn from very few
examples (embedded past knowledge)

Human Brain

100 billion neurons, 1.000 trillion
synapses (DNNs x 10 M)

Human brain has no layers, brain
works asynchronously

No clue how it learns, certainly NOT
through backpropagation

Life-long learning (non-stop learning),
unsupervised and through exploration

Energy-efficient (very little power)

Hﬂﬂzﬁsz 3>
T@ﬁ[@%%%ﬁ DNNs
DNNs need thousands/millions of

examples, even to learn basic mappings

ResNet 152: 60 million connections
(weights)

DNNSs are synchronous

Learning by gradient-descent
(backpropagation)

Mostly on supervised learning

Get ready to pay the energy bill!

Deep Learning — Intuitive Example

= Automatic learning of data representations — how?

= Input raw data, connection weights learn to detect specific feature maps

— strong weight

— low/zero weight

= What is detected by this neuron?

= Strong activation for a horizontal line in the top row
of the input image, ignoring everywhere else

63

Deep Learning — Intuitive Example

= Automatic learning of data representations — how?

= Input raw data, connection weights learn to detect specific feature maps

— strong weight

— low/zero weight

= Strong activation for a dark area in the top left
corner of the input image, ignoring everywhere else

63

Deep Learning — Training | v

= Training a NN means setting/tuning all the free-parameters
(weights and bias)

= This is achieved by solving an optimization problem, minimizing a
certain loss function, which quantifies the gap between prediction
and ground truth:

= Regression = (lassification
= Mean Squared Error (MSE) = Cross Entropy Loss (CE)
FrenlStion Classes Prediction (p)
MSE = L3 5 &
TN Z(f_ si) CE = — Ztilog(si)
i\

Ground Truth binary {0,1} correct class

Optimization by Gradient Descent

= How to iteratively minimize the loss function?
= e.g.: Stochastic Gradient Descent (SGD), Adaptive Mome. ..
Estimation (Adam), RMSprop, etc.

= Update the weights and bias by moving in the negative direction of

the loss function derivate =5
& : hNdzchnentum
Initial) — Adagrad
G I:'/ Gradient Adadelta
I' Rmsprop

Weight \ ‘
Incremental '
;,:‘.‘ ’,

Minimum Cost
Derivative of Cost

> ' : 0.0
Weight - 15~10

= Gradient is computed for the loss function w.r.t. weights/bias (@)
* eg, for MSE> J (0)=[|6"z —y |} > V,J,0)=0"(0 x —y |=6"0x -0y,

Backpropagation

d
= Update each element of 8 > 6" = 67'¢ — a’dgpld](ﬁ’)
J

= Matrix notation for all parameters > 6" = 6°'% — al,](9)

learning rate

= Computing the analytical expression for the gradient is straightforward

= _.but numerically evaluating the gradient is computationally expensive

activations

= Solution: backpropagation Aoca.gradﬁ

%o TE
= Use the chain rule to sequentially -
compute the gradient through each f,/\ / L
node, re-using previous computations ~ &\~ @ . gradients

Batch Gradient Descent

= How often and based on which data do we update weights?
= Epoch: represents one iteration over the entire training data (size m)
= Batch: if data is too big, we split it in batches
= |teration: an epoch is composed of data-size/batch-size iterations

(1) Batch gradient descent: take all the training data to take one gradient decent
step. This is very slow if you have large data set.

(2) Online-training /stochastic gradient descent: each training example (or few
of them) is a batch in itself. Weights are updated for each training example.

(3) Mini-batch gradient descent: split the available data in batches of fixed size.
Each gradient descent step takes batch-size of data samples to take one
gradient decent step. Faster than batch gradient decent.

) (1),

1 m

[batch size] <

Batch Gradient Descent — Tradeoffs

= What's better, smaller or larger batch size?

Computational resource per epoch = Larger batch size = needs more
computational resources

-------------------------------------- > = Smaller batch size = (empirically)

Number of datapoints

Stochastic Mini-batch Batch better generalization

' Yann LeCun

Training with large minibatches is
Batch gradient descent Mini-batch gradient descqlisEIsRTe]@YeINI @ -E i s}

A A

More importantly, it's bad for your
test error.

Friends dont let friends use
minibatches larger than 32.

cost
cost

\/

»

iterations mini batch # (t)

Regularization — fighting overfitting P

Most important part of learning: generalize to unseen data

(1) Early stopping: stop the training when the algorithm stops learning

the underlying model

(2) Dropout: randomly drop units (along with their connections) during training.
At each iteration, each unit is retained with fixed probability p (usually p >
0.5), independent of other units

full dataset
ermar — (3) Weight penalty/decay (e.g., L2): prevent
big weights. Results in smoother models.
o validation test e.g., (w/2; w/2) is better than (w; 0)

validation error (4) |1 weight decay: allows for a few weights

to remain large
training error

>
underfitting # parameters m.fEFfittin.g
(high bias) (high variance)

Data Normalization

= Data normalization helps to speed up the learning process, by
keeping activations from going too high/too low.

= |nput normalization: normalize network inputs, e.g.: normalize to
[0,1], or according to mean & var., etc.

= Batch normalization (BN): normalize hidden layer inputs to mini-
batch mean & var. During training, the distribution of each layer’s
inputs changes as the parameters of the previous layers change. BN
reduces impact of earlier layers on later layers.

= Many other alternatives:
= Layer normalization (LN) — conceived for RNNs
= |nstance normalization (IN) — conceived for Style Transfer
= Group normalization (GN) — conceived for CNNs

Convolutional Networks (CNN)

Convolutional Neural Networks: build spatial features, reducing the number of
parameters needed for image processing

CNNs are specially conceived for image processing tasks, their success is the primary
reason why deep learning is so popular

Convolutional neural networks are composed by a set of layers with specific
functionality

"
1 (S = rmex

— VAN

TN

s —
-
L. ¥] [] — BicYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COLUJéITED SOFTMAX

FEATURE LEARNING CLASSIFICATION

Convolutional Networks (CNN)

= CNNs detect features in images and learn how to recognize objects with them
= Layers near the start detect simple features like edges

= Deeper layers can detect more complex features like eyes, noses, or an entire face

Elephants Chairs

. _'4.” .J._'".‘ '

<A SN |

-\ \4. IH\\\

Convolutional Layer @

Key idea: we change weights by feature detectors or filters, and drastically reduce
connections

Learning in CNNs is about calibrating the feature detector values
In a nutshell: we learn new filters, which discover specific characteristics of the image

Convolutional layers work as feature detectors, generating the so-called activation
maps

olololo|o|o]o

0 1 Oj0]| O 1 0 0 0 1 1><l 1><I'.'.I 1x1 0 0
olololo|o|o]|o Qu 1><1 1xu 110 4
ololo|1]oflo]o0 1 0 0 01011111

0 1|10|0]O0 1|10 ® 01 OU 11 1 0
olo|1|1]1|0]o0 9 . t ol1l1l0l0

i L L L L Convolved

Image
Input Image Feature Detector Feature

Convolutional Layer + RelLU _-_-_-

L

-
-~ -

-
-
-~ -

N

K
'\ = Hyper-parameters :

= the number of filters K
= the size of the filters F
= the stride §

The convolutional step is combined with an activation layer, usually

ReLU — Rectifier Linear Unit \ . ReLU
R(z) =max(0, z)‘

Used to increase non-linearity of the network without
affecting receptive fields of convolutional layers

Prefer RelLU, results in faster training

LeakyReLU addresses the vanishing gradient problem

B

6

Pooling Layer

The main goal of the pooling function is to progressively reduce the spatial size of the
representation to reduce the amount of parameters and computation in the network

Hence, it also controls overfitting

A pooling function replaces the output of the network at a certain location with a

summary statistic of the nearby outputs

Pooling layers apply non-linear down-
sampling on activation maps

Pooling is very aggressive (discard info)

The trend now is to use smaller filter size
and abandon pooling

Max Pooling

29

15

28

184

0

100

70

38

2X2

100

184

12

12

7

2

12

12

45

6

Average Pool

ing

31

15

28

184

0

100

70

2X2

12

45

36

80

12

12

7

12

12

45

12

15

Flattening Layer _.____ - E

Flattening is converting the data into a 1-dimensional array

We flatten the output of the pooling layers to create a single long feature vector

And it is connected to the final classification model, which is called a fully-connected
layer

1({1|0

Flattening
4 (211 .
0|21

Pooled Feature Map

OO0000

Input layer of a future ANN

Fully-Connected Layer

Fully connected layer = Regular neural network

It corresponds to the final learning phase, which maps extracted visual features to

desired outputs (e.g., classification)

Common output is a vector, which is then passed through a softmax function to

represent confidence of classification

Convolutior:

o|lo|jojo|o|Oo|©
C|lO|=|O|O|=]|O

o|»|OojlOo|Oo|OD O
o|=|lOo|=|O|O|O
o|=|OjO|O|O|O
c|lo|=|O|O|=|O

olojojo|ojo |

Input Image

Pooling ‘ ‘ 1

Flattening
—_

Convolutional Layer

1

Pooling Layer

Softmax Layer

A special kind of activation layer, usually used at the end of FC layer outputs
= Can be viewed as a normalizer, producing a discrete probability distribution vector

= The Softmax is used as the activation function in the output layer of the FC Layer, and
ensures that the sum of the outputs is 1.

= The Softmax function takes a vector of arbitrary real-valued scores and squashes it to
a vector of values between zero and one that sum to one

Ply=j|x)=
Zszl = i

Given sample vector input x and weight
vectors {w}, the predicted probability of y = j

ImageNet Large Scale Visual Recognition Challenge

Classification Error

0.3

0.25

0.2

0.15

0.1

0.05

2010

2011

2012

2013

16.7% 1 23.3% |
1 3

2015 2016 2017

1

Human error (5.1%)
surpassed in 2015

2014

AlexNet (2012): First CNN (15.4%)
*+ 8layers

* 61 million parameters

ZFNet (2013): 15.4% to 11.2%
* 8layers

* More filters. Denser stride.

VGGNet (2014): 11.2% to 7.3%

* Beautifully uniform:
3x3 cony, stride 1, pad 1, 2x2 max pool

* 16 layers

* 138 million parameters

GoogleNet (2014): 11.2% to 6.7%
* Inception modules
*» 22 layers
* 5 million parameters
(throw away fully connected layers)
ResNet (2015): 6.7% to 3.57%
* More layers = better performance

* 152 layers

CUlImage (2016): 3.57% to 2.99%

* Ensemble of 6 models

SENet (2017): 2.99% to 2.251%

* Sqgueeze and excitation block: network
is allowed to adaptively adjust the
weighting of each feature map in the
convolutional block.

CNN Quiz

= What would this CNN detect?

| & —~ '
(~|
\ oD =

At N

Vg Y

Leir” //

= CNNs have drawbacks in their basic

0.95 architecture...

= ..causing them to not work very well

O O for some tasks
= there is no spatial location
0.7 0.9 0.9 0.7 0.9

information in a CNN!

Capsule Networks (CapsNets)

" In a nutshell: why not adding such information within the network?

= Capsule networks: encode not only probability of an object being present, but also
spatial information

= (Capsules: groups of neurons that encode spatial information (object position and
orientation) as well as the probability of an object being present.

s " = 16
/ @\ o ReLU Convi /256 DigitCaps IIL " O (1 0, 4)
. 2

\ N k
~ = ﬁ j = [Sx 16]
\ , ///‘ ’ 6 e 6

(7.0,04) (9,0,.4) (9,0,.8) (7.0..4) (9,2

= Capsule nets are still in a research and development phase and not reliable enough to
be used in commercial tasks

AI I AUSTRIAN INSTITUTE
OF TECHNOLOGY

TOMORROW TODAY

Thanks

Dr. Pedro Casas
Data Science @Digital Insight Lab
AIT Austrian Institute of Technology @Vienna

pedro.casas@ait.ac.at

S http://pcasas.info

