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Different disciplines 
converge in Machine Learning

Minsky (TA’69), McCarthy (TA’71) & Solomonoff – AI/ML ∼ Hinton,
LeCun & Bengio (TA’18) – Deep Learning

1956 McCarthy (Stanford): "Artificial Intelligence is the science and
engineering of making intelligent machines, which can perceive their
environment and take actions to maximize their chances of success".
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Reinforcement learning

Neural Networks

Modern Machine Learning - intensively data driven

Different disciplines 
converge in Machine Learning

1956 Dartmouth Summer Research Workshop on AI - founding event of AI as a field.

1956 Ray Solomonoff first mentioning the term "Learning Machines"...

1980 ...but the first International Workshop on Machine Learning (currently ICML)
appears almost 25 years later.
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Modern Machine Learning - intensively data driven

Different disciplines 
converge in Machine Learning

Machine Learning (ML) is about computational approaches to learning: ML
aims to understand computational mechanisms by which experience can
lead to improved performance , traducing these into computer algorithms.
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ScienceMachine

Learning Genetic algorithms

Reinforcement learning

Neural Networks

Modern Machine Learning - intensively data driven

Different disciplines 
converge in Machine Learning

Mitchell (former Chair ML Dept. in Carnegie Mellon): "ML consists in com-
puter algorithms that improve their performance P on some task T through
the experience E...a well-defined learning task is given by < P,T,E >".
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Models

Computer
ScienceMachine

Learning Genetic algorithms

Reinforcement learning

Neural Networks

Modern Machine Learning - intensively data driven

Different disciplines 
converge in Machine Learning

ML in Traffic Analysis is mainly about Pattern Recognition (PR) ∗: learn to
automatically recognize complex patterns in data.

∗ C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
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Machine Learning and Pattern Recognition 4NETS

The ever increasing amount of networking data is a good reason to
believe that smart data analysis will become even more pervasive as
a necessary ingredient for technological progress :

Some good reasons for ML and PR 4NETS:
Proliferation of network traffic (apps, video streaming, VR/AR, web
re-loaded, social networking).
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Machine Learning and Pattern Recognition 4NETS

The ever increasing amount of networking data is a good reason to
believe that smart data analysis will become even more pervasive as
a necessary ingredient for technological progress :

Some good reasons for ML and PR 4NETS:
Proliferation of network traffic (apps, video streaming, VR/AR, web
re-loaded, social networking).

Increased complexity of network and traffic modeling and analysis.

Difficult to predict and to generalize applications’ behavior.

Too many sources of knowledge to process by humans.

Black-boxes: some tasks cannot be well defined except by
input/output examples.

ISPs need for aggregated value solutions: get the most out of
data.
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Machine Learning and Pattern Recognition 4NETS

So what is Pattern Recognition about?

Automatically assigning a label to a given pattern (classification).
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Machine Learning and Pattern Recognition 4NETS

So what is Pattern Recognition about?

Automatically assigning a label to a given pattern (classification).

Extracting a model from example data (generalization).

Predicting output values for unseen input cases (regression).

Recognizing representative groups and outliers (clustering).

Some relevant examples in Data Communication Networks:

T → Traffic-Flow Classification

P → Percentage of flows correctly classified

E → Set of labeled traffic flows: {flow descriptors, application}
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Machine Learning and Pattern Recognition 4NETS

So what is Pattern Recognition about?

Automatically assigning a label to a given pattern (classification).

Extracting a model from example data (generalization).

Predicting output values for unseen input cases (regression).

Recognizing representative groups and outliers (clustering).

Some relevant examples in Data Communication Networks:

T → 0-day Attacks Detection

P → Detection and false alarm rates

E → Set of traffic flows free of attacks: {flow descriptors for normal activity}
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Machine Learning and Pattern Recognition 4NETS

So what is Pattern Recognition about?

Automatically assigning a label to a given pattern (classification).

Extracting a model from example data (generalization).

Predicting output values for unseen input cases (regression).

Recognizing representative groups and outliers (clustering).

Some relevant examples in Data Communication Networks:

T → QoE Modeling and Prediction

P → Percentage of correctly predicted QoE levels

E → Set of subjective tests: {QoS/app. descriptors, QoE level}
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ML: discipline vs tool to solve complex problems

ML4NETS IS NOT about trying different algorithms to obtain better results.
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ML: discipline vs tool to solve complex problems

ML4NETS IS NOT about trying different algorithms to obtain better results.

To build a solid house on your own, you need to know about architecture, as
well as about the intrinsic characteristics of the construction toolbox. . .

Two commonly arising problems when coupling ML and Networking:

(I) You have to understand the problem:

Even a ML expert fails to achieve a good networking solution if he
neither knows the good descriptors nor understands the problem (e.g.,
try to classify flows using only port numbers).

Keep the scope narrow, to better understand the overall process (i.e.,
from selecting features to evaluation and conclusions).

The solution must be meaningful in practical terms (e.g., predicting QoE
from descriptors that can’t be controlled is pretty useless for QoE
management).
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ML: discipline vs tool to solve complex problems

ML4NETS IS NOT about trying different algorithms to obtain better results.

To build a solid house on your own, you need to know about architecture, as
well as about the intrinsic characteristics of the construction toolbox. . .

Two commonly arising problems when coupling ML and Networking:

(II) You have to understand the tool:

The broader overview you have about the particularities of each ML
approach, the better chances to apply the correct one (e.g., avoid killing
mosquitos with a hammer).

The research community does not benefit any further from yet another
untried ML approach (e.g., IDS based on KDD’99 dataset).

A good grasp of calculus, linear algebra, and probability is essential for a
clear understanding of ML and PR 4NETS.
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A General Machine Learning Taxonomy

This general taxonomy discriminates Machine Learning approaches by
the objectives of the learning task .

Pattern Recognition

Learning for
Classification and Prediction

Semi-Supervised
Learning

Supervised
Learning

Unsupervised
Learning

Stream (on-line) Learning

Batch (off-line) Learning

Learning for
Interpretation and Understanding

Constructive
Induction

Cognitive NetworkingNetwork Diagnosis

Explanatory approaches
based on domain

knowledge

Learning for
Acting and Planning

Reinforcement
Learning

Learn new CAC policiesCongestion Control

Machine Learning
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A General Machine Learning Taxonomy

This general taxonomy discriminates Machine Learning approaches by
the objectives of the learning task .
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Patterns and Features

Each pattern p is represented by a set of d descriptors or features , thus it
can be interpreted as a point in a d-dimensional feature space :

p → x = {x
1

, x
2

, x
3

, . . . , x
d

}

Features represent the most critical part of the overall analysis; their
accurate definition requires extensive domain knowledge.

Quantitative: discrete or continuous, and qualitative: ordinal or nominal.
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Patterns and Features

Each pattern p is represented by a set of d descriptors or features , thus it
can be interpreted as a point in a d-dimensional feature space :

p → x = {x
1

, x
2

, x
3

, . . . , x
d

}

Features represent the most critical part of the overall analysis; their
accurate definition requires extensive domain knowledge.

Quantitative: discrete or continuous, and qualitative: ordinal or nominal.

Some examples:

Flow descriptors: # pkts, average pkt size, flow size and duration,
average inter-pkts time, first 10 Fourier coefficients of pkt size, etc.

Traffic descriptors: # IP flows, # IP srcs and dsts, # dsts ports, in
time-slot t , etc.

Video Streaming descriptors: codec, video bit-rate, video content nature,
link bandwidth, loss rate, loss pattern, etc.
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Design of a Learning Classification/Prediction System

Steps in the design of a batch learning classifier/predictor :

Preprocessing

Feature Extraction
and/or Selection

Learning

Patterns

Measure/Computation
of descriptive features

Preprocessing

Evaluation

Feature
Measurement

Analysis of
Results

Learning or
Training set
of patterns

Evaluation or
Testing set
of patterns

Evaluation PhaseLearning Phase
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Supervised Learning

In supervised learning , there is a label associated to each pattern, which is
supposed to answer a particular question about it:

If the label is discrete, we talk about Classification

If the label is continue, we talk about Regression

We shall refer to these labels as the Ground Truth for our problem.
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Supervised Learning

In Classification, we consider 
 classes w
1

,w
2

, . . . ,w



, and assume:

Classes are complete: ∪


i=1

w

i

defines the problem space.

Classes are mutually exclusive: w
i

∩ w

j

= ⊘.

Then, each label l
i

corresponds to one single class w
i

.
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Supervised Learning

In Classification, we consider 
 classes w
1

,w
2

, . . . ,w



, and assume:

Classes are complete: ∪


i=1

w

i

defines the problem space.

Classes are mutually exclusive: w
i

∩ w

j

= ⊘.

Then, each label l
i

corresponds to one single class w
i

.

The Classification Problem:

Given a pattern p described by x = {x
1

, . . . , x
d

}, decide which of the 
 classes
the pattern belongs to, i.e., decide which is its label l .

The Supervised Classification Problem:

Take a better decision by relying on a training ground truth set of patterns
correctly classified:

S = {p
i

, l
i

}
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Classification: a Probabilistic Approach

We assume that x belonging to class w
i

is an observation drawn randomly
from the class-conditional probability density function p(x |w

i

).

Imagine we know the prior probabilities of the classes P(w
i

) (

∑

i=1

P(w
i

) = 1).

Based only on P(w
i

), one would
✞
✝

☎
✆decide label l

i

if P(w
i

) > P(w
j

), ∀j 6= i .
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Classification: a Probabilistic Approach

We assume that x belonging to class w
i

is an observation drawn randomly
from the class-conditional probability density function p(x |w

i

).

Imagine we know the prior probabilities of the classes P(w
i

) (

∑

i=1

P(w
i

) = 1).

Based only on P(w
i

), one would
✞
✝

☎
✆decide label l

i

if P(w
i

) > P(w
j

), ∀j 6= i .

If we now consider the conditional densities p(x |w
i

), we can refine our deci-
sion, using a Bayesian approach to get the posterior class probability:

P(w
i

|x) =
p(x|w

i

)P(w
i

)

p(x)

p(x) =


∑

i=1

p(x|w
i

)P(w
i

)
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Classification: Optimal Bayes Decision Rule

A decision problem has a loss function associating a cost to the decision.

L(w
i

|w
j

) is the loss incurred in deciding w

i

when the correct class is w
j

.

The expected loss of deciding w

i

, known as the risk of deciding w

i

, is:

R(w
i

|x) =


∑

i=1

L(w
i

|w
j

)P(w
j

|x)

The optimal Bayes decision rule is the one that minimizes the risk:
✞
✝

☎
✆decide w

i

if R(w
i

|x) < R(w
j

|x), ∀j 6= i

In classification, we use a binary loss function (0 correct, 1 otherwise).

The optimal decision becomes then a Maximum A Posteriori (MAP) rule:
✞
✝

☎
✆decide w

i

if P(w
i

|x) > P(w
j

|x), ∀j 6= i
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The Naïve Bayes Classifier

Using Bayes decision rule we can build a simple classifier.

P(w
i

|x) ∝ p(x|w
i

)P(w
i

)

P(w
i

) can be estimated from the training data set S (P(w
i

) = #w

i

/#S ).
Regarding p(x|w

i

), we can take the naïve approach (independent features):

✓

✒

✏

✑
P(w

i

|x) ∝ P(w
i

)

d∏

j=1

p(x
j

|w
i

)
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The Naïve Bayes Classifier

Using Bayes decision rule we can build a simple classifier.

P(w
i

|x) ∝ p(x|w
i

)P(w
i

)

P(w
i

) can be estimated from the training data set S (P(w
i

) = #w

i

/#S ).
Regarding p(x|w

i

), we can take the naïve approach (independent features):

✓

✒

✏

✑
P(w

i

|x) ∝ P(w
i

)

d∏

j=1

p(x
j

|w
i

)

The class-conditional probabilities p(x
j

|w
i

) can be estimated in multiple ways:

Discretizing the values of x
j

(e.g. histogram).

Parametric estimation (maximum-likelihood estimation, using for
example Gaussian distributions - Central Limit Theorem).

Non-parametric estimation (e.g. kernel density estimation).
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Discriminant Analysis

One common way to classify patterns is by defining a set of discriminant
functions g

i

(x), i = 1, . . . , 
.

✞
✝

☎
✆

l(x) = arg max

i=1,...,

g

i

(x)

The set of 
 discriminant functions divides the feature space into 
 decision
regions R

i

, separated by decision boundaries:
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Discriminant Analysis

A 0/1-loss Bayes classifier (MAP classifier) is easily represented in this way,
taking g

i

(x) ∝ P(w
i

|x) ∝ p(x|w
i

)P(w
i

).

For practical reasons, we usually take a logarithmic transformation of the
discriminant functions:

g

i

(x) = ln(p(x|w
i

)) + ln(P(w
i

))
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Discriminant Analysis

A 0/1-loss Bayes classifier (MAP classifier) is easily represented in this way,
taking g

i

(x) ∝ P(w
i

|x) ∝ p(x|w
i

)P(w
i

).

For practical reasons, we usually take a logarithmic transformation of the
discriminant functions:

g

i

(x) = ln(p(x|w
i

)) + ln(P(w
i

))

Let us assume that class-conditional probabilities are multivariate normal:
p(x|w

i

) ∼ N (µ
i

,Σ
i

). In this case, we can write g

i

(x) as:

g

i

(x) = −
1

2

(x − µ
i

)T Σ
−1

i

(x − µ
i

) −
1

2

ln|Σ
i

|+ lnP(w
i

) + cte

g

i

(x) = x

T
W

−1

i

x +wT
i

x+ λ
i

−→ a hyperquadric

W

i

= −
1

2

Σ−1

i

, w

i

= Σ−1

i

µ
i

, λ
i

= −
1

2

µT
i

Σ−1

i

µ
i

−
1

2

ln|Σ
i

|+ lnP(w
i

)
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Linear Discriminant Analysis

A particularly interesting case arises when the covariance matrices are
identical, Σ

i

= Σ, ∀i = 1, . . . , 
.

In this case, the hyperquadric becomes an hyperplane (i.e. the term W

i

is
the same ∀g

i

(x)):✎

✍

☞

✌
g

i

(x) =
(

Σ
−1

µ
i

)T
x −

(

1

2

µT
i

Σ
−1

µ
i

− lnP(w
i

)

)
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A Non-Probabilistic Approach: Support Vector Machines

Let us return to a two-class classification problem with labels l

1

= 1 and
l

2

= −1, using a linear discriminant function:

g(x) = w

T
x + λ

if g(x) > 0 → decide l = 1

if g(x) < 0 → decide l = −1

Let us assume that the training patterns are linearly separable in the feature
space. We want to find the hyperplane {wT

0

, λ
0

} that maximizes the margin M :

support vectors

PSfrag replacements

M

g(x) > 0

g(x) < 0
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Support Vector Machines

In this case, the n training patterns verify l

i

g(x
i

) > 0, i = 1, . . . ,n . The
margin M is the minimum distance from g(x

i

) to a training pattern.

Using a proper change of variables, it can be shown that maximizing
M is equal to the following quadratic optimization problem:

min

1

2

||w||2

subje
t to l

i

g(x
i

) > 1, ∀i = 1, . . . ,n
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Support Vector Machines

In this case, the n training patterns verify l

i

g(x
i

) > 0, i = 1, . . . ,n . The
margin M is the minimum distance from g(x

i

) to a training pattern.

Using a proper change of variables, it can be shown that maximizing
M is equal to the following quadratic optimization problem:

min

1

2

||w||2

subje
t to l

i

g(x
i

) > 1, ∀i = 1, . . . ,n

Using Lagrange multipliers α
i

, we compute the Lagrangian function:

L(w, λ,α) =
1

2

||w||2 −

n∑

i=1

α
i

(

l

i

(wT
x

i

+ λ) − 1

)

The solution to
(

min

w,λ
max

α
L(w, λ,α)

)

gives w
0

=
n∑

i=1

α
i

l

i

x

i

and λ
0

.
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Support Vector Machines

In the sum w

0

=
n∑

i=1

α
i

l

i

x

i

, it can be shown that α
i

> 0 only for the Support

Vectors (SV): the patterns at the max M hyperplanes, i.e., l
i

(wT
0

x

i

+ λ
0

) = 1.

The only important patterns for the classification are the SV. The final

classifier is given by
☛

✡

✟

✠
g(x) = (

∑

i∈SV
α
i

l

i

x

i

)T x + λ
0

.
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Support Vector Machines

In the sum w

0

=
n∑

i=1

α
i

l

i

x

i

, it can be shown that α
i

> 0 only for the Support

Vectors (SV): the patterns at the max M hyperplanes, i.e., l
i

(wT
0

x

i

+ λ
0

) = 1.

The only important patterns for the classification are the SV. The final

classifier is given by
☛

✡

✟

✠
g(x) = (

∑

i∈SV
α
i

l

i

x

i

)T x + λ
0

.

SVM can be slightly modified to consider misclassifications, adding some
penalization ǫ

i

for a misclassified pattern i :

support vectorsPSfrag replacements
M

g(x) > 0

g(x) < 0

ǫ
1

ǫ
2

ǫ
3
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Support Vector Machines

In this case, the optimization problem is the following:

minC

n∑

i=1

ǫ
i

+ 1

2

||w||2

subje
t to l

i

g(x
i

) > 1− ǫ
i

, ǫ
i

> 0, ∀i = 1, . . . ,n

where C > 0 is a controls the tradeoff between penalty and the margin.
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Support Vector Machines

In this case, the optimization problem is the following:

minC

n∑

i=1

ǫ
i

+ 1

2

||w||2

subje
t to l

i

g(x
i

) > 1− ǫ
i

, ǫ
i

> 0, ∀i = 1, . . . ,n

where C > 0 is a controls the tradeoff between penalty and the margin.

So far we have considered a linear SVM classifier, but what about this case:

PSfrag replacements

φ
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Non-linear SVM and the Kernel Trick

In a general case, the linear classifier can be rewritten as:

g(x) = wT φ(x) + λ

where φ(x) : Rd → F is a feature space transformation. The corresponding
SVM solution is exactly the same as before:

g(x) =

(

∑

i∈SV

α
i

l

i

φ(x
i

)

)T

φ(x
i

) + λ
0

To apply the SVM solution in any general mapped feature space F , it is only
neccesary to know the inner product φ(x

i

)T φ(x).
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Non-linear SVM and the Kernel Trick

g(x) =

(

∑

i∈SV

α
i

l

i

φ(x
i

)

)T

φ(x
i

) + λ
0

To apply the SVM solution in any general mapped feature space F , it is only
neccesary to know the inner product φ(x

i

)T φ(x).

Patterns in higher dimensional spaces becomes separated, thus the linear
SVM solution provides proper solution if the mapping is done to a much higher
feature space F ∈ R

m , with m >> d :

Original feature space Mapped feature spacePSfrag replacements

φ
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Non-linear SVM and the Kernel Trick

But as we saw, we don’t need to explicitly do the mapping, as we only need
the inner product in F .

The kernel trick permits to map the feature space into a high dimensional
space with better structural properties, without actually doing the mapping.

We define the inner product in terms of a kernel function
k (x,x

i

) = φ(x
i

)T φ(x): ✎

✍

☞

✌
g(x) =

∑

i∈SV

α
i

l

i

k (x,x
i

) + λ
0

Some standard kernel functions:

Linear: k (x,x
i

) = xT
i

x

Polynomial: k (x,x
i

) = (1 + xT
i

x)p

Gaussian radial basis function: k (x,x
i

) = e

−γ ||x−x
i

||2
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Non-linear SVM and the Kernel Trick

The kernel trick permits to map the feature space into a high dimensional
space with better structural properties, without actually doing the mapping.

✎

✍

☞

✌
g(x) =

∑

i∈SV

α
i

l

i

k (x,x
i

) + λ
0

In a Multiclass SVM problem, we can take two simple procedures to general-
ize the above classifier:

one-vs-all : 
 different SVMs, the classifier with the highest output
assigns the class (classifiers must be scaled for comparison):

l(x) = arg max

i=1,...,

g

i

(x)

one-vs-one : 
(
 − 1)/2 different 2-class SVMs, then every classifier
assigns a class, and the class with more votes is chosen.

∗ Note: SVM can also be used for regression.
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A Metric-based Classifier: K -Nearest Neighbors

The simplest and most intuitive classifier is based on the concept of
similarity : similar patterns should be assigned to the same class:

PSfrag replacements

d

1

d

2

d

4

d

3

K = 1

In K -NN, we decide the class of a new pattern by a majority vote of its k

neighbors, given a similarity measure (e.g. Euclidean distance).

K -NN assumes no knowledge on the underlying classes; it is based on the
training patterns alone. Note that K -NN has no training phase.
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A Metric-based Classifier: K -Nearest Neighbors

The simplest and most intuitive classifier is based on the concept of
similarity : similar patterns should be assigned to the same class:

PSfrag replacements
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1

d

2

d

4

d

3

K = 2

In K -NN, we decide the class of a new pattern by a majority vote of its k

neighbors, given a similarity measure (e.g. Euclidean distance).

K -NN assumes no knowledge on the underlying classes; it is based on the
training patterns alone. Note that K -NN has no training phase.
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A Metric-based Classifier: K -Nearest Neighbors

The simplest and most intuitive classifier is based on the concept of
similarity : similar patterns should be assigned to the same class:

PSfrag replacements
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K = 3

In K -NN, we decide the class of a new pattern by a majority vote of its k

neighbors, given a similarity measure (e.g. Euclidean distance).

K -NN assumes no knowledge on the underlying classes; it is based on the
training patterns alone. Note that K -NN has no training phase.
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A Metric-based Classifier: K -Nearest Neighbors

The simplest and most intuitive classifier is based on the concept of
similarity : similar patterns should be assigned to the same class:

PSfrag replacements

d

1

d

2

d

4

d

3

K = 4

In K -NN, we decide the class of a new pattern by a majority vote of its k

neighbors, given a similarity measure (e.g. Euclidean distance).

K -NN assumes no knowledge on the underlying classes; it is based on the
training patterns alone. Note that K -NN has no training phase.
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A Metric-based Classifier: K -Nearest Neighbors

An interesting case is obtained for K = 1, where we get a decomposition of
the feature space in n convex regions called Voronoi cells :

Note: if the number of training samples n is very large, then the error rate of
1-NN is never worse than twice the Bayes (minimum) error rate, awesome for
such a simple algorithm!
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A Metric-based Classifier: K -Nearest Neighbors

An interesting case is obtained for K = 1, where we get a decomposition of
the feature space in n convex regions called Voronoi cells :

Some limitations of K -NN:

Computationally expensive in both time and memory.

Classes with more frequent examples tend to dominate the classification.
∗ Note: K -NN can also be used for regression.
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A Non-Metric Classifier: Decision Trees

Consider a feature space with no similarity metric, e.g., nominal features (for
continuous features, we do not consider any distance among them).

How to construct a classifier with no-metric features?

We can build a partition of the feature space by asking multiple questions.

The next question depends on the previous answer; questions do not repeat.

These questions build a decision tree ; we use only binary questions.

yes no

no yesyes no

no yes

SPAM MAIL

SPAMMAIL

node

leaf
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A Non-Metric Classifier: Decision Trees

How do we build such a tree?
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A Non-Metric Classifier: Decision Trees

How do we build such a tree?

At each node N , we make the question that minimizes the impurity in
the immediate descendant nodes.

The most popular impurity measure is the entropy impurity :

i(N ) = −


∑

j=1

P(w
j

) log
2

P(w
j

), i(N ) ∈ [0, log
2

(
)]

P(w
j

) = % patterns at N ∈ w

j
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A Non-Metric Classifier: Decision Trees

How do we build such a tree?

At each node N , we make the question that minimizes the impurity in
the immediate descendant nodes.

The most popular impurity measure is the entropy impurity :

i(N ) = −


∑

j=1

P(w
j

) log
2

P(w
j

), i(N ) ∈ [0, log
2

(
)]

P(w
j

) = % patterns at N ∈ w

j

At node N , a question on feature x

i

reduces the impurity by ∆i(N ):

∆i(N ) = i(N ) − P

L

i(N
L

) − P

R

i(N
R

), P
L

% patterns ∈ left node N

L
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A Non-Metric Classifier: Decision Trees

How do we build such a tree?

At each node N , we make the question that minimizes the impurity in
the immediate descendant nodes.

The most popular impurity measure is the entropy impurity :

i(N ) = −


∑

j=1

P(w
j

) log
2

P(w
j

), i(N ) ∈ [0, log
2

(
)]

P(w
j

) = % patterns at N ∈ w

j

At node N , a question on feature x

i

reduces the impurity by ∆i(N ):

∆i(N ) = i(N ) − P

L

i(N
L

) − P

R

i(N
R

), P
L

% patterns ∈ left node N

L

So at each step, we create a new node by taking the feature that
maximizes ∆i(N ).

This recursive-growing approach is the one used in ID3 and its
successor C4.5 trees.
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A Non-Metric Classifier: Decision Trees

Stopping Criterion:

Growing the tree to the minimum impurity may cause overfitting .

In the practice, there is a post-pruning of the tree to reduce overfitting.

Occam’s razor principle: prefer compact trees with few nodes.
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A Non-Metric Classifier: Decision Trees

Stopping Criterion:

Growing the tree to the minimum impurity may cause overfitting .

In the practice, there is a post-pruning of the tree to reduce overfitting.

Occam’s razor principle: prefer compact trees with few nodes.

Properties of Decision Trees:

Very easy to interpret, provide basic filtering rules.

Very fast classification.

It is simple to include domain knowledge from experts.

Explicitly shows the importance of different features.
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Multilayer Feed-forward Neural Networks

Neural networks provide a powerful model for classification and regression.
We describe a particular model: 3-layers feed-forward neural network :

input layer with    neurons

hidden layer with       neurons

output layer with    neurons

PSfrag replacements
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
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Multilayer Feed-forward Neural Networks

In this 3-layers model:

Neurons in one layer connect to the next through neural weights w

ji

.

Each input neuron i just copies its input x
i

at the output.

The output of hidden neuron j is a non-linear function f applied to the
weighted sum of input layer outputs.

The output of output neuron k is a non-linear function f applied to the
weighted sum of hidden layer outputs.
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Multilayer Feed-forward Neural Networks

The neural network training (i.e., estimating the neural weights w) is done
from the set of training patterns, minimizing the squared estimation error:

J (w) =
1

2


∑

k=1

(g
k

(x) − z

k

(x)) , z

k

(x) is the ground truth output

which is generally achieved by gradient descent. Backpropagation is the
simplest method for doing this supervised learning of the weights w.

NOTE: the number of input and output neurons is defined by the problem itself,
but for n

H

we are free to choose; n
H

generally has an important influence on
the performance of the network (i.e., overfitting, input/output mapping, etc).
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Multilayer Feed-forward Neural Networks

The neural network training (i.e., estimating the neural weights w) is done
from the set of training patterns, minimizing the squared estimation error:

J (w) =
1

2


∑

k=1

(g
k

(x) − z

k

(x)) , z

k

(x) is the ground truth output

which is generally achieved by gradient descent. Backpropagation is the
simplest method for doing this supervised learning of the weights w.

NOTE: the number of input and output neurons is defined by the problem itself,
but for n

H

we are free to choose; n
H

generally has an important influence on
the performance of the network (i.e., overfitting, input/output mapping, etc).

Universal approximation theorem :
Any continuous input/output function can be implemented in a 3-layer-ff-net,
given sufficient number of hidden neurons, proper non-linearities, and weights.
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Outline

1 What is AI/ML and Why AI4NETS makes Sense?

2 General overview on (core) Machine Learning techniques:
Supervised Learning
Unsupervised Learning
Semi-Supervised Learning
Ensemble Learning

3 Features Extraction and Features Selection
Feature Extraction
Feature Selection

4 Final Remarks: Overfitting and Learning Evaluation

5 Machine Learning in Networking:
PSQA: Neural Networks for QoE Assessment
Sub-Space Clustering for Self Network Defense
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Unsupervised Learning

In unsupervised learning , the set of patterns for training has no labels .

This is the case in many (or most) real life applications, where labeling is a
very expensive and difficult (sometimes even impossible) to achieve task.

Therefore, unsupervised learning is about finding relevant structures in the
data (overlapping with data-mining).
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Unsupervised Learning

In unsupervised learning , the set of patterns for training has no labels .

This is the case in many (or most) real life applications, where labeling is a
very expensive and difficult (sometimes even impossible) to achieve task.

Therefore, unsupervised learning is about finding relevant structures in the
data (overlapping with data-mining).

Standard approaches to unsupervised learning include:

Parametric: mixture-resolving or identifying modals in data.✞
✝

☎
✆Non-Parametric: find natural groupings or clusters .
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So what is Clustering about?

The objective of clustering is to divide a set of unlabeled patterns into
homogeneous groups of similar characteristics , based on some
measure of similarity.

The Clustering Problem:
Given a set of n d-dimensional unlabeled patterns X = {x

1

, ..,x
n

}

and given some measure of similarity among these patterns,

divide this set into homogeneous groups of similar characteristics or clusters .
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So what is Clustering about?

The objective of clustering is to divide a set of unlabeled patterns into
homogeneous groups of similar characteristics , based on some
measure of similarity.

The Clustering Problem:
Given a set of n d-dimensional unlabeled patterns X = {x

1

, ..,x
n

}

and given some measure of similarity among these patterns,

divide this set into homogeneous groups of similar characteristics or clusters .

Clustering is the first step when analyzing unknown data (i.e. unlabeled data).

Clustering is a natural classification process: degree of similarity among forms.

Clustering is about data exploration: discover underlying structure in the data, generate
hypotheses, detect anomalies.

Cluster analysis is an exploratory tool .
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Clustering Algorithms

Clustering analysis first appeared in the title of a paper analyzing anthropological data
back in 1954.

Today, we have hundreds of clustering algorithms to choose from.
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Clustering Algorithms

Clustering analysis first appeared in the title of a paper analyzing anthropological data
back in 1954.

Today, we have hundreds of clustering algorithms to choose from.

Most clustering algorithms are divided in two groups:

Partitional clustering : produce a single partition of the patterns in k clusters, optimizing
some performance criterion.

Hierarchical clustering : produce multiple "nested" partitions in a hierarchical structure.

Pedro CASAS AI4NETS IIE-ARTES



Clustering Algorithms

Clustering analysis first appeared in the title of a paper analyzing anthropological data
back in 1954.

Today, we have hundreds of clustering algorithms to choose from.

Most clustering algorithms are divided in two groups:

Partitional clustering : produce a single partition of the patterns in k clusters, optimizing
some performance criterion.

Hierarchical clustering : produce multiple "nested" partitions in a hierarchical structure.

A bit of history in Clustering developments:

1957 Hierarchical Clustering
1967 k -Means
1970 Mixture models
1971 Graph-theoretic methods
1973 Fuzzy Clustering (soft clustering)
1982 Self Organization Maps (based on ANN)
1992 Vector Quantization (density

identification of High Dimensional data)
1996 Density-based Clustering (DBSCAN)

1998 Sub-Space Clustering (High
Dimensional data)

2000 Spectral Clustering (dimensionality
reduction)

2002 Ensemble Clustering (combine weak
partitions)

2004 Semi-Supervised Clustering

... and the list goes on
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The User’s Dilemma

Clustering involves taking many decisions:

What is a cluster?
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Which features to use?
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The User’s Dilemma

Clustering involves taking many decisions:

What is a cluster?

Which features to use?

How to define pair-wise similarity?

Which clustering algorithm?

How many clusters?
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The User’s Dilemma

Clustering involves taking many decisions:

What is a cluster?

Which features to use?

How to define pair-wise similarity?

Which clustering algorithm?

How many clusters?

Does the data has a clustering tendency/underlying structure?
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The User’s Dilemma

Clustering involves taking many decisions:

What is a cluster?

Which features to use?

How to define pair-wise similarity?

Which clustering algorithm?

How many clusters?

Does the data has a clustering tendency/underlying structure?

Are the discovered clusters and partition valid?
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What is a Cluster?

Our notions of cluster comes from a 3-D world: compact and isolated regions ...

...but cluster’s definition depends on how we define similarity:
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What is a Cluster?

Our notions of cluster comes from a 3-D world: compact and isolated regions ...

...but cluster’s definition depends on how we define similarity:

Compact clusters: intra-cluster distance < inter-cluster distance
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What is a Cluster?

Our notions of cluster comes from a 3-D world: compact and isolated regions ...

...but cluster’s definition depends on how we define similarity:

Compact clusters: intra-cluster distance < inter-cluster distance

Connected clusters: intra-cluster connectivity > inter-cluster connectivity
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What is a Cluster?

Our notions of cluster comes from a 3-D world: compact and isolated regions ...

...but cluster’s definition depends on how we define similarity:

Compact clusters: intra-cluster distance < inter-cluster distance

Connected clusters: intra-cluster connectivity > inter-cluster connectivity

Different algorithms use different notions of cluster −→ they provide different identification
results.

Domain specific knowledge is useful in determining the most useful cluster shape.
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Which Features to Use?

A good representation leads to compact and isolated clusters.

Using the best and least features is paramount in Clustering.

Feature Engineering is the key in any machine learning algorithm.

We talk about Dimensionality Reduction .
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Which Features to Use?

A good representation leads to compact and isolated clusters.

Using the best and least features is paramount in Clustering.

Feature Engineering is the key in any machine learning algorithm.

We talk about Dimensionality Reduction .

And what for?

Improving accuracy of the analysis.

Reduce measurement costs.

Create faster systems with less memory constraints.

Simplify the interpretation of results.

Pedro CASAS AI4NETS IIE-ARTES



Dimensionality Reduction

Naive approach : adding more features does not hurt, since at worst they
provide no new information −→ WRONG!
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Dimensionality Reduction

Naive approach : adding more features does not hurt, since at worst they
provide no new information −→ WRONG!

original 3-D dataset projection on subspace {x, y}

projection on subspace {x, z} projection on subspace {y, z}

Irrelevant features mask real clusters and complicates clu stering.
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Feature Extraction and Feature Selection

Patterns are generally located in low dimensional manifolds embeded in
the input space. How to find them?
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Feature Extraction and Feature Selection

Patterns are generally located in low dimensional manifolds embeded in
the input space. How to find them?

Feature extraction

Transform the input space into a new space of smaller dimensions.

Eliminating redundancy and extracting relevant information.

New features may not have a clear physical meaning.

2D Space Representation based on eigenvectors
of RBF kernel

PSfrag replacements
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Feature Extraction and Feature Selection

Patterns are generally located in low dimensional manifolds embeded in
the input space. How to find them?

Feature selection

Identify a sub-set of m out of the d original features.

Optimizing some performance criterion (e.g. max correlation).

Heuristics to search for optimal sub-sets.
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Feature Extraction and Feature Selection

Patterns are generally located in low dimensional manifolds embeded in
the input space. How to find them?

Feature selection

Identify a sub-set of m out of the d original features.

Optimizing some performance criterion (e.g. max correlation).

Heuristics to search for optimal sub-sets.

Problem of feature extraction and selection in Clustering: we do not
have the ground truth .

The very nature of clustering means that in many cases, we know little
about the clusters to uncover .
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Which Algorithm?

Each algorithm imposes a structure on data.

Good fit between model and data −→ success.

2 Semi-Rings Spherical-based Clustering Density-based Clustering
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Which Algorithm?

Each algorithm imposes a structure on data.

Good fit between model and data −→ success.

2 Semi-Rings Spherical-based Clustering Density-based Clustering

There is no silver bullet in Clustering.
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How Many Clusters?

Some algorithms need the number of clusters as input.

Difficult to know, requires knowledge on the structure of data.

2 Clusters

5 Clusters 7 Clusters
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The most well-known partitioning algorithm: k -means

The k -means algorithm separates the n patterns p

j

∈ S in k clusters (prede-
fined number), iteratively assigning p

j

to the closest cluster.

The algorithm:

1 Select an initial random partition in k clusters.

2 Compute the centroids µ
i

, i = 1, . . . , k of each cluster.

3 For each p

j

, (re)assign it to the cluster which minimizes distance to µ
i

.

4 Continue until no re-assignations are possible.
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.
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The most well-known partitioning algorithm: k -means

The algorithm:

1 Select an initial random partition in k clusters.

2 Compute the centroids µ
i

, i = 1, . . . , k of each cluster.

3 For each p

j

, (re)assign it to the cluster which minimizes distance to µ
i

.

4 Continue until no re-assignations are possible.
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DBSCAN: a density-based notion of clusters

DBSCAN identifies clusters using a notion of density: clusters are high-density
regions separated by low-density regions.
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DBSCAN: a density-based notion of clusters
The notion of density in DBSCAN:

1 Two parameters: search distance ǫ and minimum cluster size m .

2 The ǫ-neighborhood of pattern p, Nǫ(p) is the set of q
i

closer than ǫ.

3
p is directly density reachable from q if p ∈ Nǫ(q) and #Nǫ(q) > m .

4
p is density reachable (dr) from q if there is a chain of inter-directly
density reachable patterns between them.

5
p and q are density connected (d
) is there is s such that both p and q

are (dr) from s .

PSfrag replacements
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DBSCAN: a density-based notion of clusters

PSfrag replacements

p

q

s

o

ǫ

A DBSCAN cluster C
i

is a sub-set of S satisfying the following conditions:

∀ p, q : if p ∈ C

i

and q is dr from p → q ∈ C

i

.

∀ p, q ∈ C

i

, p and q are d
.

Any pattern o

j

not belonging to any cluster C
i

is defined as noise
(outliers ).
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k -means vs DBSCAN

Which is “better”?
k -means is faster than DBSCAN (multiple implementations of both
algorithms improve computational time).
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k -means vs DBSCAN

Which is “better”?
k -means is faster than DBSCAN (multiple implementations of both
algorithms improve computational time).

k -means works well only for spherical-like clusters.

DBSCAN finds clusters of arbitrary shapes and sizes.
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k -means vs DBSCAN

Which is “better”?
The number of clases k must be defined a-priori (heuristics).

DBSCAN does not need to know the number of classes.
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k -means vs DBSCAN

Which is “better”?
The number of clases k must be defined a-priori (heuristics).

DBSCAN does not need to know the number of classes.

k -means is very sensitive to the initial conditions (heuristics).

DBSCAN is very sensitive to ǫ in data sets with large differences
in densities.
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DBSCAN is very sensitive to ǫ in data sets with large differences
in densities.

DBSCAN is deterministic, k -means depends on the initial
conditions.
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k -means vs DBSCAN

Which is “better”?
The number of clases k must be defined a-priori (heuristics).

DBSCAN does not need to know the number of classes.

k -means is very sensitive to the initial conditions (heuristics).

DBSCAN is very sensitive to ǫ in data sets with large differences
in densities.

DBSCAN is deterministic, k -means depends on the initial
conditions.

DBSCAN uses the notion of outliers (heuristics in k -means).
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Clustering High Dimensional Data

High Dimensional Data

In multiple data analysis problems, we have to deal with high
dimensional and massive datasets .
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High Dimensional Data

In multiple data analysis problems, we have to deal with high
dimensional and massive datasets .

Heuristics to scale-up with the size of the datasets.

High dimensional data is more and more common in Networking.
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Clustering High Dimensional Data

High Dimensional Data

In multiple data analysis problems, we have to deal with high
dimensional and massive datasets .

Heuristics to scale-up with the size of the datasets.

High dimensional data is more and more common in Networking.

Clustering high dimensional data is challenging:

Structure-masking by irrelevant features (i.e., noise).

The Curse of Dimensionality
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The Curse of Dimensionality

The term was first coined by Bellman in 1961 to refer to multiple problems associated with
high-dimensional data analysis.

When dimensionality increases , the volume of the space increases so fast that the
available data becomes sparse .
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The Curse of Dimensionality

The term was first coined by Bellman in 1961 to refer to multiple problems associated with
high-dimensional data analysis.

When dimensionality increases , the volume of the space increases so fast that the
available data becomes sparse .

The notion of cluster in high-dimensional data vanishes:

Inter-pattern distance becomes increasingly meaningless .

Data becomes sparse and patterns tend to be equidistant .

Intuition fails in high dimensions : the volume of an hyper-sphere is in the shell!
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Subspace Clustering - A Graphical Example

The key to find clusters is to identify the correct subspaces:
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Subspace Clustering - A Graphical Example

The key to find clusters is to identify the correct subspaces:
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Subspace Clustering (SSC)

SSC: automatically find clusters in different subspaces

SSC is an approach to do clustering in high-dimensional data.

An unsupervised extension for feature selection .

SSC algorithms search for relevant dimensions , finding clusters in
multiple, possibly overlapping subspaces.

SSC algorithms find low-dimensional clusters in high-dimensional
data .

SSC algorithms are distinguished by their search strategy .
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Subspace Clustering (SSC)

SSC: automatically find clusters in different subspaces

SSC is an approach to do clustering in high-dimensional data.

An unsupervised extension for feature selection .

SSC algorithms search for relevant dimensions , finding clusters in
multiple, possibly overlapping subspaces.

SSC algorithms find low-dimensional clusters in high-dimensional
data .

SSC algorithms are distinguished by their search strategy .

Two major branches of SSC algorithms:

Bottom-Up search SSC algorithms

Iterative Top-Down search SSC algorithms
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SSC Taxonomy

Search heuristics are optimized for working in massive datasests.

Different measures of locality to recognize clusters in subspaces.

Subspace Clustering
Algorithms

COSAPROCLUS
ORCLUS
FINDIT
delta-Clusters

CLIQUE
ENCLUS

MAFIA
CBF
CLTREE
DOC

Bottom-Up Search
Algorithms

Static Grid Adaptive Grid

Top-Down Search
Iterative Algorithms

Per Cluster
Weighting

Per Pattern
Weighting
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Bottom-Up search SSC

Bottom-Up search

CLIQUE
ENCLUS

MAFIA
CBF
CLTREE
DOC

Bottom-Up Search
Algorithms

Static Grid Adaptive Grid

Downward closure property to reduce the search space:
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Bottom-Up search SSC

Bottom-Up search

CLIQUE
ENCLUS

MAFIA
CBF
CLTREE
DOC

Bottom-Up Search
Algorithms

Static Grid Adaptive Grid

Downward closure property to reduce the search space:

Density in k -dimensional space → density in all k − 1 dimensional projections .
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Bottom-Up search SSC

Bottom-Up search

CLIQUE
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DOC

Bottom-Up Search
Algorithms

Static Grid Adaptive Grid

Downward closure property to reduce the search space:

Density in k -dimensional space → density in all k − 1 dimensional projections .

Each dimension is discretized into bins using a grid .
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Bottom-Up search SSC

Bottom-Up search

CLIQUE
ENCLUS

MAFIA
CBF
CLTREE
DOC

Bottom-Up Search
Algorithms

Static Grid Adaptive Grid

Downward closure property to reduce the search space:

Density in k -dimensional space → density in all k − 1 dimensional projections .

Each dimension is discretized into bins using a grid .

Start in 1-d spaces: histogram on each dimension to select the most dense bins
(threshold).
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Bottom-Up search SSC

Bottom-Up search

CLIQUE
ENCLUS

MAFIA
CBF
CLTREE
DOC

Bottom-Up Search
Algorithms

Static Grid Adaptive Grid

Downward closure property to reduce the search space:

Density in k -dimensional space → density in all k − 1 dimensional projections .

Each dimension is discretized into bins using a grid .

Start in 1-d spaces: histogram on each dimension to select the most dense bins
(threshold).

Build candidate 2-d spaces using only the dimensions with dense bins.
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Bottom-Up search SSC

Bottom-Up search

CLIQUE
ENCLUS

MAFIA
CBF
CLTREE
DOC

Bottom-Up Search
Algorithms

Static Grid Adaptive Grid

Downward closure property to reduce the search space:

Density in k -dimensional space → density in all k − 1 dimensional projections .

Each dimension is discretized into bins using a grid .

Start in 1-d spaces: histogram on each dimension to select the most dense bins
(threshold).

Build candidate 2-d spaces using only the dimensions with dense bins.

Stop when no new higher-dimensional spaces can be added .
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Bottom-Up search SSC

Bottom-Up search

CLIQUE
ENCLUS

MAFIA
CBF
CLTREE
DOC

Bottom-Up Search
Algorithms

Static Grid Adaptive Grid

Downward closure property to reduce the search space:

Density in k -dimensional space → density in all k − 1 dimensional projections .

Each dimension is discretized into bins using a grid .

Start in 1-d spaces: histogram on each dimension to select the most dense bins
(threshold).

Build candidate 2-d spaces using only the dimensions with dense bins.

Stop when no new higher-dimensional spaces can be added .

Different heuristics to combine and prune dense regions and form clusters.
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Bottom-Up search SSC

Bottom-Up search

CLIQUE
ENCLUS

MAFIA
CBF
CLTREE
DOC

Bottom-Up Search
Algorithms

Static Grid Adaptive Grid

Some observations:

Bottom-Up algorithms leads to overlapping clusters .

Grids can be of fixed or dinamic , data-based size .

Clusters can be of arbitrary shape and size.

No need to specify the number of clusters to identify.
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Iterative Top-Down search SSC

Iterative Top-Down search

COSAPROCLUS
ORCLUS
FINDIT
delta-Clusters

Top-Down Search
Iterative Algorithms

Per Cluster
Weighting

Per Pattern
Weighting

Different algorithms use different heuristics and clustering techniques .
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Iterative Top-Down search SSC

Iterative Top-Down search

COSAPROCLUS
ORCLUS
FINDIT
delta-Clusters

Top-Down Search
Iterative Algorithms

Per Cluster
Weighting

Per Pattern
Weighting

Different algorithms use different heuristics and clustering techniques .

Starts by finding an initial approximation of the clusters considering ALL dimensions
(generally using sampling).

Pedro CASAS AI4NETS IIE-ARTES



Iterative Top-Down search SSC

Iterative Top-Down search

COSAPROCLUS
ORCLUS
FINDIT
delta-Clusters

Top-Down Search
Iterative Algorithms

Per Cluster
Weighting

Per Pattern
Weighting

Different algorithms use different heuristics and clustering techniques .

Starts by finding an initial approximation of the clusters considering ALL dimensions
(generally using sampling).

Different dimensions are weighted differently according to the quality of the clusters
(different locality measures).
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Iterative Top-Down search SSC

Iterative Top-Down search

COSAPROCLUS
ORCLUS
FINDIT
delta-Clusters

Top-Down Search
Iterative Algorithms

Per Cluster
Weighting

Per Pattern
Weighting

Different algorithms use different heuristics and clustering techniques .

Starts by finding an initial approximation of the clusters considering ALL dimensions
(generally using sampling).

Different dimensions are weighted differently according to the quality of the clusters
(different locality measures).

Pruning: clusters are refined by selecting the top-weighted dimensions .
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Iterative Top-Down search SSC

Iterative Top-Down search

COSAPROCLUS
ORCLUS
FINDIT
delta-Clusters

Top-Down Search
Iterative Algorithms

Per Cluster
Weighting

Per Pattern
Weighting

Different algorithms use different heuristics and clustering techniques .

Starts by finding an initial approximation of the clusters considering ALL dimensions
(generally using sampling).

Different dimensions are weighted differently according to the quality of the clusters
(different locality measures).

Pruning: clusters are refined by selecting the top-weighted dimensions .

Different stopping conditions , but relative to the stability of the obtained results (i.e.,
no more changes between iterations)
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Iterative Top-Down search SSC

Iterative Top-Down search

COSAPROCLUS
ORCLUS
FINDIT
delta-Clusters

Top-Down Search
Iterative Algorithms

Per Cluster
Weighting

Per Pattern
Weighting

Some observations:

Top-Down algorithms require to specify the number of clusters .

Tend to find spherical clusters in the same or similar sized
subspaces .

Sampling is fundamental to scale-up in massive datasets.
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Which SSC Approach to Use?
Low-dimensional clusters (k = 2, ..., 7) embeded in d-dimensional data.

Evaluate the number of correctly detected dimensions when d increase.

Evaluate computational time when N = no patterns and d increase.
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Semi-Supervised Learning: between Supervised and Unsupervised

In some supervised learning applications we would like to reduce as
much as possible the size of labeled data.

Some applications may provide little information for training issues, but
still we would like to use it to improve the analysis.
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Semi-Supervised Learning: between Supervised and Unsupervised

In some supervised learning applications we would like to reduce as
much as possible the size of labeled data.

Some applications may provide little information for training issues, but
still we would like to use it to improve the analysis.

In semi-supervised learning , we combine a small amount of labeled data
with a large amount of unlabeled data for training.

When used in conjunction with a small amount of labeled data, and under
certain assumptions , unlabeled data can produce considerable improvement
in the learning accuracy!

The semi-supervised literature is extensive and there is a whole spectrum of
interesting ideas on how to learn from combining labeled and unlabeled data.

Pedro CASAS AI4NETS IIE-ARTES



Semi-Supervised Learning: between Supervised and Unsupervised

A very intuitive and basic example: build a classifier using clustering and a
maximum-likelihood labeling with a small set of labeled flows:

We first cluster a set of unlabeled patterns.
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Semi-Supervised Learning: between Supervised and Unsupervised

A very intuitive and basic example: build a classifier using clustering and a
maximum-likelihood labeling with a small set of labeled flows:

We first cluster a set of unlabeled patterns.

Then we consider the labels of a small fraction λ of patterns.
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Semi-Supervised Learning: between Supervised and Unsupervised

A very intuitive and basic example: build a classifier using clustering and a
maximum-likelihood labeling with a small set of labeled flows:

We first cluster a set of unlabeled patterns.

Then we consider the labels of a small fraction λ of patterns.

Maximum-Likelihood Labeling: label each cluster with the most present
label among the λ patterns.
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Semi-Supervised Learning: between Supervised and Unsupervised

A very intuitive and basic example: build a classifier using clustering and a
maximum-likelihood labeling with a small set of labeled flows:

We first cluster a set of unlabeled patterns.
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Ensemble Learning: Combining Multiple Algorithms

Union and diversity provide strength - combining multiple (independent)
learnings can be useful in many situations:

Use different algorithms on the same data to improve performance
through diversity.

Different descriptions of the same problem with different kinds of data
(i.e., identify botnets by analyzing flow descriptors, geographical data,
dns-based features, etc.).

Multiple training sets available, collected at different time and different
environment (i.e., build a flow classifier with traffic from different ISPs).

Use the same algorithm with different parametrizations and/or initial
conditions (multiple attempts to learn).
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Ensemble Learning: Combining Multiple Algorithms

Union and diversity provide strength - combining multiple (independent)
learnings can be useful in many situations:

A typical combination scheme consists of an ensemble of individual algorithms
and a combiner which merges the results of the individual approaches.

Architecture of combining schemes:

Parallel combination - individual algorithms are used independently.

Serial combination - from simple to more complex algorithms.

Hierarchical combination - refined algorithms for particular data
characteristics.

A very large number of ensemble approaches are proposed in the literature.
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Dimensionality Reduction

Using the best and the least features to describe a learning problem is ex-
tremely important in Machine Learning. In the feature space terminology, we
talk about Dimensionality Reduction . And what for?
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Dimensionality Reduction

Using the best and the least features to describe a learning problem is ex-
tremely important in Machine Learning. In the feature space terminology, we
talk about Dimensionality Reduction . And what for?

✞
✝

☎
✆Improving accuracy of the analysis.

Reduce measurement costs.

Create faster systems with less memory constraints.

Simplify the interpretation of results.
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Dimensionality Reduction

Reducing the number of features may lead to a loss in discrimination power,
so why performance would degrade when using more features?

In clustering: working in higher dimensions makes feature spaces
become sparser, blurring the notions of similarity.

In supervised learning: tradeoff between number of features, size of the
training set, and algorithm complexity (degrees of freedom).

The Curse of Dimensionality : as the number of features increases, the
training set has to increase exponentially to avoid degradations. The more
complex the algorithm, the worse it gets.
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Feature Extraction

Feature extraction uses a (non)-linear transformation of the feature space into
a new space of smaller dimensions, eliminating redundancy and extracting
particular information. New features may not have a clear physical meaning.

Principal Components Analysis (PCA) - standard linear mapping: simple
rotation of axes to capture the most of the “energy” of the data.

Other approaches : ICA (linear, assumes independence of sources), kernel
PCA (non-linear), SOM (non-linear, based on grids of neurons), etc.
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Feature Selection

Feature selection identifies a sub-set of m out of the d original features, opti-
mizing some performance criterion.

Feature selection consists in two tasks:

Defining the evaluation criterion used to assess the quality of a sub-set.

Defining the search strategy to look for the candidate sub-set
(heuristic-based search, using graph exploration; optimal exhaustive
search is prohibitive!).

Three different approaches for Feature Selection (FS):
✞
✝

☎
✆Filter FS: the evaluation criterion is independent of the ML algorithm.

Wrapper FS: the evaluation criterion is the performance of a certain ML
algorithm (i.e., depends o the ML algorithm to be used).

Embedded FS: the feature selection is part of the ML algorithm itself
(e.g., decision trees, ).
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Feature Selection

Three different approaches for Feature Selection (FS):
✞
✝

☎
✆Filter FS: the evaluation criterion is independent of the ML algorithm.

Wrapper FS: the evaluation criterion is the performance of a certain ML
algorithm (i.e., depends o the ML algorithm to be used).

Embedded FS: the feature selection is part of the ML algorithm itself
(e.g., decision trees, ).

An example of heuristic-search and filter FS:

Evaluation criterion - Correlation-based FS (CFS): selects sub-sets with
small inter-pattern correlation but highly correlated with the classes.

Search strategy - Best First search (BF): explores a tree-like graph of
features, adding or removing features to improve the criterion; BF
permits backtracking to avoid local minima.

Note : “FS can also be done” in clustering → Sub-Space Clustering.
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Some Practical Concepts in Machine Learning

A usual problem in learning is overfitting : “learn to remember the training
patterns but fail to predict for unseen ones”.

Why overfitting occurs?

The training set is small w.r.t. the number of parameters to estimate
(excessively complex models).

The number of features is big w.r.t. the size of the training set (curse of
dimensionality).

The training procedure is not stopped at the right moment (“learn” the
training set).
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Avoiding overfitting

Early stopping : stop the training when the algorithm stops learning the
underlying model.

Train in a sub-set of the training set S , evaluate the predictive expression
with the rest of the patterns.

Estimation error

stop training

Training steps

training set

independent validation set

overfitting
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Avoiding overfitting

k -fold cross validation : split the training set in k separated sub-sets.

Learn from k − 1 sub-sets, evaluate in the remaining set.

Rotate sub-sets until covering all of them.

Training Evaluation
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Avoiding overfitting

k -fold cross validation : split the training set in k separated sub-sets.

Learn from k − 1 sub-sets, evaluate in the remaining set.

Rotate sub-sets until covering all of them.

Training Evaluation

Rule of thumb : use at least 10 times as many training patterns per class n

i

as the number of features d :
n

i

/d > 10

The more complex the machine learning model, the larger this ratio should be.

Pedro CASAS AI4NETS IIE-ARTES



Evaluation of a Machine Learning algorithm

The evaluation of a machine learning algorithm depends on the particular
learning approach and on the specific application:

Classification : true positives, false positives, global accuracy, recall,
precision, ROC curves.

Regression : estimation/prediction error.

Clustering : cluster homogeneity, number of clusters, outliers analysis.

Always favor proper and focused evaluations (less is more).

Don’t forget sensitivity analysis : it is easy to find particular cases, but
if you want to get useful results, provide robust analysis.
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PSQA: Neural Networks for QoE Assessment

The Pseudo-Subjective Quality Assessment approach (Gerardo Rubino,
INRIA/IRISA, France) relies on Neural Networks (NN) to build an estimation
model for QoE in multimedia services:

I
n
p
u
t
s

PSfrag replacements

DMOS

PSQA uses a particular NN model:
Random Neural Networks (RNN).

Inputs: QoS network features {x
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The Random Neuron ModelPSfrag replacements
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The Random Neural Network Model
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Using the RNN for QoE Estimation

3-layer Feed Forward RNN Model:
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Evaluation Testbed

ClientServer

Data Forwarding

Routing
Manipulation

dummy packets

no
loss

loss

Intermediate router generates losses and jitter (simple Bernoulli loss
model, losses in bursts).

Short video and audio sequences transmitted from the endpoints.

Complete Dataset for audio and video, after subjective tests.
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QoE analysis through PSQA

DMOS vs loss rate (Mean Loss Burst Length = 5 packets).

5 10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

4

4.5

Loss Rate (%)

D
M

O
S

GSM
G.723
G.711

1 2 3 4 5 6 7 8 9 10 11 12
1

1.5

2

2.5

3

3.5

4

4.5

5

Loss Rate (%)
D

M
O

S

High Motion Level
Medium Motion Level
Low Motion Level

(a) Audio Codecs (G.711, G.723, GSM-LPC) (b) Different video motion levels

Audio results are as expected, less impacted by losses than video.

Video motion level may impact QoE.
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QoE analysis through PSQA

DMOS vs loss rate and mean loss burst length.
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(a) Audio Evaluation (G.711 coding) (b) Video Evaluation (MPEG4 coding)

QoE in audio is less sensitive to losses than in video (visual system is
more developed than the auditory system).

For the same loss rate, QoE increases with the Mean Loss Burst Length
(we prefer concentrated to spread losses).
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Outline

1 What is AI/ML and Why AI4NETS makes Sense?

2 General overview on (core) Machine Learning techniques:
Supervised Learning
Unsupervised Learning
Semi-Supervised Learning
Ensemble Learning

3 Features Extraction and Features Selection
Feature Extraction
Feature Selection

4 Final Remarks: Overfitting and Learning Evaluation

5 Machine Learning in Networking:
PSQA: Neural Networks for QoE Assessment
Sub-Space Clustering for Self Network Defense
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Unsupervised NIDS based on Clustering Analysis

We propose a NIDS based on clustering analysis and outliers detection.

The problem to tackle: current network security is based on an "acquired
knowledge" perspective:
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We propose a NIDS based on clustering analysis and outliers detection.

The problem to tackle: current network security is based on an "acquired
knowledge" perspective:

Signatures-based: detect what I ALREADY KNOW

(+) highly effective to detect what it is programmed to alert on.

(−) can not defend the network against unknown attacks.

(−) signatures are expensive to produce: human manual inspection.
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Unsupervised NIDS based on Clustering Analysis

We propose a NIDS based on clustering analysis and outliers detection.

The problem to tackle: current network security is based on an "acquired
knowledge" perspective:

Signatures-based: detect what I ALREADY KNOW

(+) highly effective to detect what it is programmed to alert on.

(−) can not defend the network against unknown attacks.

(−) signatures are expensive to produce: human manual inspection.

Anomaly detection: detect what DIFFERS from WHAT I KNOW

(+) it can detect new attacks out-of a baseline profile.

(−) requires some kind of training for profiling.

(−) robust and adaptive models are difficult to conceive, specially in an
evolving context.
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Unsupervised Detection of Network Attacks
Unsupervised Detection based on CLUSTERING

HYPOTHESIS: attacking flows are sparse and different from normal
traffic....in some representation (traffic aggregation)!!
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Unsupervised Detection of Network Attacks
Unsupervised Detection based on CLUSTERING

HYPOTHESIS: attacking flows are sparse and different from normal
traffic....in some representation (traffic aggregation)!!

Benefits of Unsupervised-based Detection

no previous knowledge: neither signatures nor labeled traffic.

no need for traffic modeling or profiling.

can detect unknown attacks.

a major step towards self-aware monitoring.
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Unsupervised Detection of Network Attacks
Unsupervised Detection based on CLUSTERING

HYPOTHESIS: attacking flows are sparse and different from normal
traffic....in some representation (traffic aggregation)!!

Benefits of Unsupervised-based Detection

no previous knowledge: neither signatures nor labeled traffic.

no need for traffic modeling or profiling.

can detect unknown attacks.

a major step towards self-aware monitoring.

Clustering for Unsupervised Detection is CHALLENGING

lack of robustness: general clustering algorithms are sensitive to
initialization, specification of number of clusters, etc.

difficult to cluster high-dimensional data: structure-masking by irrelevant
features, sparse spaces (“the curse of dimensionality”).
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UNADA: Unsupervised Detection of Network Attacks

UNADA is a 3-steps detection algorithm:
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(1) Multi-resolution change-detection & features computation.
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UNADA: Unsupervised Detection of Network Attacks

UNADA is a 3-steps detection algorithm:
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(2) Sub-Space Clustering.
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(3) Evidence Accumulation and Flow Ranking.
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Change-detection in Multi-resolution Traffic Flows

Traffic Aggregation and Change-Detection

Traffic is captured and aggregated in IP flows (5-tuples) every ∆T

seconds, using a temporal sliding-window.
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Change-detection in Multi-resolution Traffic Flows

Traffic Aggregation and Change-Detection

Traffic is captured and aggregated in IP flows (5-tuples) every ∆T

seconds, using a temporal sliding-window.

Change-detection in simple traffic metrics to identify an anomalous
time-slot (e.g., #pkts , #bytes , #IP �ows).
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Change-detection in Multi-resolution Traffic Flows

Traffic Aggregation and Change-Detection

Traffic is captured and aggregated in IP flows (5-tuples) every ∆T

seconds, using a temporal sliding-window.

Change-detection in simple traffic metrics to identify an anomalous
time-slot (e.g., #pkts , #bytes , #IP �ows).

Multi-Resolution Analysis

Analysis at different spacial resolutions, aggregating IP flows in
macro-flows: hash-key {IPaddress/netmask}.
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Change-detection in Multi-resolution Traffic Flows

Traffic Aggregation and Change-Detection

Traffic is captured and aggregated in IP flows (5-tuples) every ∆T

seconds, using a temporal sliding-window.

Change-detection in simple traffic metrics to identify an anomalous
time-slot (e.g., #pkts , #bytes , #IP �ows).

Multi-Resolution Analysis

Analysis at different spacial resolutions, aggregating IP flows in
macro-flows: hash-key {IPaddress/netmask}.

Scan traffic from coarser to finer-grained macro-flows:
tra�
 per time-slot, IP/8, IP/16, IP/24.
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Change-detection in Multi-resolution Traffic Flows

Traffic Aggregation and Change-Detection

Traffic is captured and aggregated in IP flows (5-tuples) every ∆T

seconds, using a temporal sliding-window.

Change-detection in simple traffic metrics to identify an anomalous
time-slot (e.g., #pkts , #bytes , #IP �ows).

Multi-Resolution Analysis

Analysis at different spacial resolutions, aggregating IP flows in
macro-flows: hash-key {IPaddress/netmask}.

Scan traffic from coarser to finer-grained macro-flows:
tra�
 per time-slot, IP/8, IP/16, IP/24.

Scan in both directions (IPsr
 and IPdst) permits to detect 1-to-1,
1-to-N , and N -to-1 attacks of different intensities.
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Clustering for Anomaly Detection

Let Y = {y
1

, . . . ,y
n

} be the set of n macro-flows in the flagged time slot,
aggregated at IP/32.
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Clustering for Anomaly Detection

Let Y = {y
1

, . . . ,y
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} be the set of n macro-flows in the flagged time slot,
aggregated at IP/32.

Each macro-flow y
i

∈ Y is described by a set of m traffic features:
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(m)) ∈ R
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Clustering for Anomaly Detection

Let Y = {y
1

, . . . ,y
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} be the set of n macro-flows in the flagged time slot,
aggregated at IP/32.

Each macro-flow y
i

∈ Y is described by a set of m traffic features:
x

i

= (x
i

(1), .., x
i

(m)) ∈ R
m .

Number of sources & destinations (nSr
s,nDsts), packet rate
(nPkts/se
), fraction of SYN packets (nSYN/nPkts), etc.
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Clustering for Anomaly Detection

Let Y = {y
1

, . . . ,y
n

} be the set of n macro-flows in the flagged time slot,
aggregated at IP/32.

Each macro-flow y
i

∈ Y is described by a set of m traffic features:
x

i

= (x
i

(1), .., x
i

(m)) ∈ R
m .

Number of sources & destinations (nSr
s,nDsts), packet rate
(nPkts/se
), fraction of SYN packets (nSYN/nPkts), etc.

X = {x
1

, ..,x
n

} is the complete matrix of features, referred to as the
feature space.
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Clustering for Anomaly Detection

PSfrag replacements
X is a bla
k box

How to detect an anomalous macro-flow in X via clustering?

“Simple idea”: cluster X, big-size clusters correspond to normal-flows,
outliers are anomalies.
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PSfrag replacements
X is a bla
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How to detect an anomalous macro-flow in X via clustering?

“Simple idea”: cluster X, big-size clusters correspond to normal-flows,
outliers are anomalies.
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Clustering for Anomaly Detection

PSfrag replacements
IS NOT THAT SIMPLE!!!

How to detect an anomalous macro-flow in X via clustering?

“Simple idea”: cluster X, big-size clusters correspond to normal-flows,
outliers are anomalies.
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Sub-Space Clustering

How to Improve Robustness and Clustering Performance?

Idea: combine the information provided by multiple partitions of X to
“filter noise”, easing the discovery of outliers.
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Sub-Space Clustering

How to Improve Robustness and Clustering Performance?

Idea: combine the information provided by multiple partitions of X to
“filter noise”, easing the discovery of outliers.

How to produce multiple partitions? → Sub-Space Clustering.
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Sub-Space Clustering

How to Improve Robustness and Clustering Performance?

Idea: combine the information provided by multiple partitions of X to
“filter noise”, easing the discovery of outliers.

How to produce multiple partitions? → Sub-Space Clustering.

Each sub-space X
i

⊂ X is obtained by projecting X in k out of the m

original dimensions. Density-based clustering applied to X
i

.
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Sub-Space Clustering

How to Improve Robustness and Clustering Performance?

Idea: combine the information provided by multiple partitions of X to
“filter noise”, easing the discovery of outliers.

How to produce multiple partitions? → Sub-Space Clustering.

Each sub-space X
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Sub-Space Clustering

How to Improve Robustness and Clustering Performance?

Idea: combine the information provided by multiple partitions of X to
“filter noise”, easing the discovery of outliers.

How to produce multiple partitions? → Sub-Space Clustering.

Each sub-space X
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Sub-Space Clustering
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Idea: combine the information provided by multiple partitions of X to
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Sub-Space Clustering

How to Improve Robustness and Clustering Performance?

Idea: combine the information provided by multiple partitions of X to
“filter noise”, easing the discovery of outliers.
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Sub-Space Clustering

How to Improve Robustness and Clustering Performance?

Idea: combine the information provided by multiple partitions of X to
“filter noise”, easing the discovery of outliers.

How to produce multiple partitions? → Sub-Space Clustering.

Each sub-space X
i

⊂ X is obtained by projecting X in k out of the m
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Sub-Space Clustering

How to Improve Robustness and Clustering Performance?

Idea: combine the information provided by multiple partitions of X to
“filter noise”, easing the discovery of outliers.

How to produce multiple partitions? → Sub-Space Clustering.

Each sub-space X
i

⊂ X is obtained by projecting X in k out of the m

original dimensions. Density-based clustering applied to X
i
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Evidence Accumulation for Outliers Ranking

Evidence Accumulation to combine the results of SSC:

Build a new dissimilarity measure D = {d
1

, d
2

, . . . , d
n

}: d
i

measures how
different is flow i from the majority of the traffic.
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Evidence Accumulation for Outliers Ranking

Evidence Accumulation to combine the results of SSC:

Build a new dissimilarity measure D = {d
1

, d
2

, . . . , d
n

}: d
i

measures how
different is flow i from the majority of the traffic.

Accumulate in d

i

the weighted distance from outliers to biggest cluster in
each sub-space.
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Evidence Accumulation for Outliers Ranking

Evidence Accumulation to combine the results of SSC:

Build a new dissimilarity measure D = {d
1

, d
2

, . . . , d
n

}: d
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measures how
different is flow i from the majority of the traffic.

Accumulate in d

i

the weighted distance from outliers to biggest cluster in
each sub-space.

Most dissimilar flows w.r.t. D are flagged as anomalies.
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Evidence Accumulation for Outliers Ranking

Evidence Accumulation to combine the results of SSC:
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Attacks Detection in MAWI Traffic
MAWI: packet traces from link Japan-U.S.A. of the WIDE network.

Ex: worm scanning, ICMP flooding attack, IPsr
/32 macro-flows.

Pedro CASAS AI4NETS IIE-ARTES



Attacks Detection in MAWI Traffic
MAWI: packet traces from link Japan-U.S.A. of the WIDE network.

Ex: worm scanning, ICMP flooding attack, IPsr
/32 macro-flows.

5 10 15 20 25
0

0.5

1

1.5

2

2.5

x 10
5

Ranking

D
is

si
m

ila
rit

y

 

 

Dissimilarity Score

Normal traffic

SYN network scan

ICMP spoofed flooding

Very-high rate of HTTP requests

Very-high rate of DNS traffic

PSfrag replacements

threshold α
1

threshold α
2

Pedro CASAS AI4NETS IIE-ARTES
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Ground-Truth (GT) Attacks in METROSEC & MAWI

METROSEC, DDoS attacks of different intensities (70% to 4%),
IPdst/32 macro-flows.
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MAWI, worm scanning (Sasser and Dabber), DoS/DDoS attacks, GT
attacks detected by signatures + Anomaly Detection.
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Ground-Truth (GT) Attacks in METROSEC & MAWI

METROSEC, DDoS attacks of different intensities (70% to 4%),
IPdst/32 macro-flows.

MAWI, worm scanning (Sasser and Dabber), DoS/DDoS attacks, GT
attacks detected by signatures + Anomaly Detection.

Compared against traditional unsupervised approaches: DBSCAN
based, k -means based, and PCA based outliers detection.
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(a) MAWI, IPsr
 key. (b) MAWI, IPdst key. (c) METROSEC, IPdst key.
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Detectiong Attacks in KDD99

DARPA - KDD99 dataset, DoS (udp storm, pod, appache flooding, etc.),
scans (port, net), Remote-2-Local attacks (guess password, imap, http
tunnel, etc.), User-2-Root (buffer overflows).
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Compared against signature-based detection → NIDS based on
decision trees (C4.5).

Pedro CASAS AI4NETS IIE-ARTES



Detectiong Attacks in KDD99

DARPA - KDD99 dataset, DoS (udp storm, pod, appache flooding, etc.),
scans (port, net), Remote-2-Local attacks (guess password, imap, http
tunnel, etc.), User-2-Root (buffer overflows).

Compared against signature-based detection → NIDS based on
decision trees (C4.5).

Trees are constructed for a set of known attacks, and tested with
unknown attacks.
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Thank You for Your Attention!!

Remarks & Questions?
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