#### Video Adaptativo Sobre HTTP

#### Pablo Flores Guridi, pablof@fing.edu.uy

Curso Tecnología de Servicios Audiovisuales Instituto de Ingeniería Eléctrica Facultad de Ingeniería Universidad de la República Montevideo, Uruguay

16 de noviembre de 2022

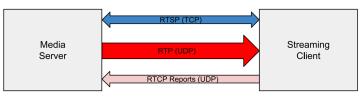




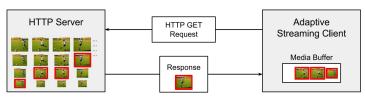
# De qué se trata

- en 2005 una compañía llamada "Move Networks" introdujo un nuevo paradigma...
  - el contenido multimedia es fragmentado en pequeños "segments" o "chunks"
  - cada segmento es distribuido mediante HTTP, como cualquier contenido web
  - distintos segmentos con distintas calidades son generados para el mismo período
  - el cliente puede decidir qué segmento descargar según sus propios requerimientos
- por lo general cada segmento dura entre 2 y 10 segundos
- es posible utilizar servidores web tradicionales por lo que no se requiere cambios en redes existentes
- ¡rápidamente se convirtió el el paradigma de distribución multimedia dominante!

⇒ También conocido como HAS del Inglés "HTTP Adaptive Streaming"


Pablo Flores Guridi 2 of

### El paradigma anterior


- servidor "empujaba" el tráfico hacia el cliente
  - Real Time Messaging Protocol (RTMP): sobre TCP, orientado a conexión
  - Real Time Transport Protocol (RTP): sobre UDP, no orientado a conexión
- la lógica no estaba en el cliente sino en el servidor
  - Real Time Streaming Protocol (RTSP):
    - en general sobre TCP, orientado a conexión, utiliza el puerto 554
    - similar a HTTP, pero con estados
    - algunas directivas: OPTIONS, DESCRIBE, SETUP, PLAY, PAUSE
  - RTP Control Protocol (RTCP):
    - sobre UDP, no orientado a conexión
    - mediante este protocolo el cliente envía estadísticas al servidor
- el servidor mantiene el estado de todos los clientes.
- se utilizan distintos protocolos y servidores dedicados
- el tráfico puede ser bloqueado en algunas redes

Pablo Flores Guridi 3 of 3

#### RTP vs HAS



(a) Distribución multimedia mediante RTP



(b) Distribución multimedia mediante HAS

Figura: tomada de "A Survey on Bitrate Adaptation Schemes for Streaming Media over HTTP", IEEE Communications Surveys & Tutorials.

⇒ HAS utiliza HTTP en capa de aplicación y TCP en capa de transporte

Pablo Flores Guridi 4 of 3

### Push vs Pull delivery

| Push-based delivery                            | Pull-based delivery                          |  |  |  |
|------------------------------------------------|----------------------------------------------|--|--|--|
| Lógica en el servidor                          | Lógica en el cliente                         |  |  |  |
| Servidor guarda estado de todas las conexiones | Cliente guarda los estados                   |  |  |  |
| Conviven de múltiples protocolos               | Sólo se utiliza HTTP                         |  |  |  |
| Servidores específicos                         | Servidores web estándar                      |  |  |  |
| Puede ser bloqueado en algunas redes           | Las redes en general soportan contenido HTTP |  |  |  |

- on "lógica" nos referimos al control de la reproducción y su calidad
- al mantener estados en el servidor, es más probable que el servicio se vea afectado ante caídas parciales
- Servidores web más ampliamente utilizados en el mundo<sup>1</sup>:
  - Apache 44.3 %
  - nginx 41,0 %
  - IIS 8,9 %
  - LiteSpeed Web Server 3,9 %
  - GWS 0.9 %

 $\Rightarrow$  ¡métodos basados en *push* requieren servidores más complejos, más caros y menos estables!

<sup>&</sup>lt;sup>1</sup>Fuente: Wikipedia (https://en.wikipedia.org/wiki/Web\_server), datos al 2019

### Algunos conceptos importantes

- **segment** o **chunk**: porción del contenido multimedia, usualmente de 2 a 10 segundos
- representations: distintas versiones codificadas del mismo segment (pueden cambiar calidades, bitrates, resoluciones)
- adaptation set: conjunto de representations, por ejempo video, distintos idiomas de audio, distintos idiomas de subtítulos
- manifest: archivo que especifica los distintos *adaptation sets* y *representations* disponibles, y la ruta para obtenerlos

Pablo Flores Guridi 6 of 3

# Ejemplo de sesión HAS

- (1) el cliente pide al servidor el *manifest* mediante un HTTP GET
- (2) en el manifest lee los *adaptation sets* y *representations* disponibles, entre otra información
- (3) según algún criterio (en general las preferencias del usuario) se seleccionan los *adaptation sets* a descargar
- (4) según algún criterio (en general la de *menor bitrate*) se selecciona la primera *representation* a descargar de cada *adaptation set*
- (5) se descarga el primer segmento de las representations seleccionadas
- (6) a partir de ciertos parámetros (ancho de banda, estado del buffer, batería, CPU, etc.) se selecciona la siguiente *representation* a descargar de cada *adaptation set*
- (7) se descarga el siguiente segmento de las representations seleccionadas
- (8) se vuelve al paso 6 en tanto dure la sesión

Pablo Flores Guridi 7 of 3

## Principales estándares

- HTTP Dynamic Streaming (HDS)
  - creador: Adobe
- Smooth Streaming
  - creador: Microsoft
- HTTP Live Streaming (HLS)
  - creador: Apple
- Dynamic Adaptive Streaming over HTTP (DASH)
  - creador: MPEG
- ⇒ ¡son todos distintas maneras de implementar HAS!

Pablo Flores Guridi 8 of 3

# Algo sobre HTTP (1) - introducción

- protocolo de aplicación sin estados que permite transferencia de archivos a través de Internet
- se basa en el modelo cliente-servidor, bajo una lógica de pedido-respuesta (request-response)
- el servidor estará esperando por un pedido por parte del cliente, analizará el mensaje y enviará una o más respuestas en consecuencia
- *resource*: el objetivo de un pedido HTTP, identificado por un *Uniform Resource Identifier* (URI)
- representation (HTTP): información que representa el estado actual de un resource

Cuadro: versiones de HTTP y años de publicación

| Versión | Año de publicación |  |  |  |  |
|---------|--------------------|--|--|--|--|
| 0.9     | 1991               |  |  |  |  |
| 1.0     | 1996               |  |  |  |  |
| 1.1     | 1997               |  |  |  |  |
| 2.0     | 2015               |  |  |  |  |
| 3.0     | 2018               |  |  |  |  |

Pablo Flores Guridi 9 of 3

# Algo sobre HTTP (2) - mensajes y formato

Un mensaje HTTP tiene el siguiente formato:

```
HTTP-message = start-line
*( header-field CRLF )
CRLF
[ message-body ]
```

- start-line = request-line / status-line
- request-line = METHOD SP request-URI SP HTTP-version CRLF
- status-line = HTTP-version SP status-code SP reason-phrase CRLF
- header-field = field-name ":" OWS field-value OWS
- message-body = \*OCTET

Pablo Flores Guridi 10 of 37

# Algo sobre HTTP (3) - métodos

- en HTTP los *requests* se realizan en forma de métodos
- cada método indica el propósito por el cuál el cliente ha realizado el request y qué espera en respuesta
- una descripción detallada puede ser encontrada en
  - https://tools.ietf.org/html/rfc7231
  - https://tools.ietf.org/html/rfc5789 (PATCH)

Cuadro: Métidos HTTP

| Método  | Descripción                                                                        |
|---------|------------------------------------------------------------------------------------|
| GET     | Pide obtener el estado actual de un determinado recurso                            |
| HEAD    | Igual que GET pero sólo espera encabezado de la respuesta                          |
| POST    | Pide al recurso que procese los datos enviados en el cuerpo del mensaje            |
| PUT     | Pide al recurso que actualice la información a la enviada en el cuerpo del mensaje |
| DELETE  | Pide eliminar toda la información del recurso                                      |
| CONNECT | Pide establecer un tunel con el servidor identificador por el recurso              |
| OPTIONS | Pide especificar las opciones disponibles para el recurso (métodos soportados)     |
| TRACE   | Pide responder el mismo mensaje que fue enviado para dines de diagnóstico          |
| PATCH   | Pide al recurso realizar cambios parciales                                         |

Pablo Flores Guridi 11 of 3

# Algo sobre HTTP (4) - ejemplo: GET

#### Request

GET /hello.txt HTTP/1.1

User-Agent: curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3

Host: www.example.com Accept-Language: en, mi

#### Response

HTTP/1.1 200 OK

Date: Mon. 27 Jul 2009 12:28:53 GMT

Server: Apache

Last-Modified: Wed, 22 Jul 2009 19:15:56 GMT

ETag: "34aa387-d-1568eb00"

Accept-Ranges: bytes Content-Length: 51 Vary: Accept-Encoding Content-Type: text/plain

¡Hola! Este ejemplo lo saqué del RFC-7230, sección 2.1

Pablo Flores Guridi 12 of

# HTTP Live Streaming (HLS)

- fue implementado por Apple en 2009
- es uno de los protocolos líderes para la distribución de contenido multimedia mediante HAS
- web oficial https://developer.apple.com/streaming/
- la versión 7 (y última) del protocolo está especificada en el RFC-8216

Pablo Flores Guridi 13 of 37

### HLS, conceptos importantes

- master playlist (manifest):
  - un set de variant streams
  - su URI debe terminar con m3u8 o m3u
- media playlist (manifest):
  - refiere a un variant stream o una rendition
  - especifica cómo obtener los segments correspondientes
  - su URI debe terminar con m3u8 o m3u
- variant stream:
  - diferentes versiones del mismo contenido, en cuanto a calidad, resolución y bitrate
  - es formado por un conjunto de *renditions* o *rendition groups*
  - son seleccionados debido al entorno (condiciones de red, CPU, buffer, etc.)
- rendition:
  - versiones alternativas de un contenido
  - por ejemplo distintos idiomas de audio o subtítulos
  - son seleccionadas según las preferencias del usuario
  - a un set de renditions se los llama rendition groups

Pablo Flores Guridi 14 of 37

## Master Playlist

```
#EXTM3U

#EXT-X-STREAM-INF:BANDWIDTH=150000,RESOLUTION=416x234,CDECS="avc1.42e00a,mp4a.40.2"
http://example.com/low/index.mSu8

#EXT-X-STREAM-INF:BANDWIDTH=240000,RESOLUTION=416x234,CDECS="avc1.42e00a,mp4a.40.2"
http://example.com/lo_mid/index.mSu8

#EXT-X-STREAM-INF:BANDWIDTH=440000,RESOLUTION=416x234,CDECS="avc1.42e00a,mp4a.40.2"
http://example.com/hi_mid/index.mSu8

#EXT-X-STREAM-INF:BANDWIDTH=640000,RESOLUTION=640x360,CDECS="avc1.42e00a,mp4a.40.2"
http://example.com/high/index.mSu8

#EXT-X-STREAM-INF:BANDWIDTH=640000,RESOLUTION=640x360,CDECS="avc1.42e00a,mp4a.40.2"
http://example.com/high/index.mSu8

#EXT-X-STREAM-INF:BANDWIDTH=64000,CDECS="mp4a.40.5"
http://example.com/audio/index.mSu8
```

Figura: tomada de https://developer.apple.com/streaming/.

- la master playlist es leída una única vez al comienzo de la reproducción, se asume que su contenido no cambia
- tags:
  - EXTM3U:
    - indica que se trata de un archivo M3U extendido
    - todas las playlists deben comenzar con este tag
  - EXT-X-STREAM-INF:
    - especifica un variant stream que es un conjunto de renditions
    - los atributos del tag dan información del variant stream
    - la URI siguiente es mandatoria especifica una rendition del variant stream

Pablo Flores Guridi 15 of 3

# Media Playlist - VOD

```
#EXTMSU
#EXT-X-PLAYLIST-TYPE:V00
#EXT-X-PAGETDURATION:10
#EXT-X-VERSION:4
#EXT-X-MEDIA-SEQUENCE:0
#EXTINF:10.0,
http://example.com/movie1/fileSequenceA.ts
#EXTINF:10.0,
http://example.com/movie1/fileSequenceB.ts
#EXTINF:10.0,
http://example.com/movie1/fileSequenceC.ts
#EXTINF:9.0,
http://example.com/movie1/fileSequenceC.ts
#EXTINF:9.0,
http://example.com/movie1/fileSequenceD.ts
```

Figura: tomada de https://developer.apple.com/streaming/.

 para VOD las media playlists son estáticas y especifican las URI de todo el contenido multimedia

Pablo Flores Guridi 16 of 37

# Media Playlist - VOD (tags)

- EXT-X-PLAYLIST-TYPE: puede tomar los valores EVENT o VOD
  - puede tomar los valores EVENT o VOD
  - EVENT: el servidor no puede borrar ninguna parte de la playlist, sólo puede agregar cosas al final
  - VOD: la playlist no debe cambiar nunca
- EXT-X-TARGETDURATION: el tamaño máximo que puede tener un segment
- EXT-X-VERSION: indica la versión de la playlist
- EXT-X-MEDIA-SEQUENCE: indica el número de secuencia de la primera URI de la lista
- EXTINF: la duración en segundos del segment especificado en la URI que está a continuación
- EXT-X-ENDLIST: indica que no se especificarán más *segments* en la *playlist*

Pablo Flores Guridi 17 of 3

## Media Playlist - live

```
#EXTMOU #EXT—X-TARGETDURATION:10 #EXT—X-VERSION:4 #EXT—X-MEDIA—SEQUENCE:1 #EXTINF:10.0, fileSequence1.ts #EXTINF:10.0, fileSequence2.ts #EXTINF:10.0, fileSequence3.ts #EXTINF:10.0, fileSequence4.ts #EXTINF:10.0, fileSequence5.ts
```

Figura: tomada de https://developer.apple.com/streaming/.

- puede verse este tipo de playlists como ventanas móviles
- el tag EXT-X-ENDLIST no está al final de la lista, indicando que se irán agregando nuevos segments
- conforme se van agregando segments al final de la lista, se remueven los primeros

la playlist está constantemente variando su contenido

ablo Flores Guridi 18 of 37

### Media Playlist - event

```
#EXTMOU
#EXT—X-PLAYLIST—TYPE:EVENT
#EXT—X-TARGETDURATION:10
#EXT—X-VERSION:4
#EXT—X-WEDIA—SEQUENCE:0
#EXTINF:10.00,
fileSequence0.ts
#EXTINF:10.0,
fileSequence1.ts
#EXTINF:10.0,
fileSequence3.ts
#EXTINF:10.0,
fileSequence3.ts
#EXTINF:10.0,
fileSequence4.ts
```

Figura: tomada de https://developer.apple.com/streaming/.

- en este tipo de playlists el tag EXT-X-PLAYLIST-TYPE toma el valor EVENT
- el tag EXT-X-ENDLIST inicialmente no está al final de la lista, indicando que se irán agregando nuevos *segments*
- no se elimina ningún segment anterior, siemplemente se agregan nuevos al final

Pablo Flores Guridi 19 of 37

# Tag EXT-X-MEDIA

```
#EXTM3U
#EXT-X-VERSION: 3
#EXT-X-MEDIA: TYPE=SUBTITLES.GROUP-ID="subs".NAME="Chinese".URI="chinese/ed.ttml"
#EXT-X-MEDIA: TYPE=SUBTITLES, GROUP-ID="subs", NAME="French", URI="french/ed.ttml"
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", NAME="English", URI="en/chunklist b160000.m3u8"
#EXT-X-MEDIA: TYPE=AUDIO. GROUP-ID="aac". NAME="Spanish". URI="sp/chunklist b160000.m3u8"
#EXT-X-MEDIA: TYPE=AUDIO, GROUP-ID="aac", NAME="Commentary", URI="com/chunklist b160000.m3u8"
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=2962000,NAME="High",CODECS="avc1.66.30",
        RESOLUTION=1280x720, AUDIO="aac", SUBTITLES="subs"
1280/chunklist b2962000.m3u8
#EXT-X-STREAM-INF: PROGRAM-ID=1, BANDWIDTH=1427000, NAME="Medium", CODECS="avc1.66.30",
        RESOLUTION=768x432, AUDIO="aac", SUBTITLES="subs"
768/chunklist b1427000.m3u8
#EXT-X-STREAM-INF: PROGRAM-ID=1, BANDWIDTH=688000, NAME="Low", CODECS="avc1.66.30",
        RESOLUTION=448x252, AUDIO="aac", SUBTITLES="subs"
448/chunklist b688000.m3u8
```

- es utilizado para identificar renditions alternativas del mismo contenido
- por ejemplo audios y subtítulos de distintos idiomas
- también distintas cámaras grabando el mismo evento

Pablo Flores Guridi 20 of 37

# Atributos (1)

Distintos tags definen distintos atributos, siguen algunos ejemplos para el tag **EXT-X-STREAM-INF**:

- BANDWIDTH: el bitrate máximo de variant stream
- RESOLUTION: la resolución óptima a la cuál presentar al variant stream
- CODECS: una lista separada por coma de los formatos presentes en el variant stream

Pablo Flores Guridi 21 of 3

# Atributos (2)

Distintos tags definen distintos atributos, siguen algunos ejemplos para el tag **EXT-X-MEDIA**:

- TYPE: puede tomar los valores AUDIO, VIDEO, SUBTITLES o CLOSED-CAPTIONS; es un atributo requerido
- GROUP-ID: especifica el grupo al cual pertenece la rendition; es un atributo requerido
- NAME: da una descripción a la rendition; es un atributo requerido
- URI: es un atributo opcional (a menos que se trate de subtítulos), especifica especifica la media playlist correspondiente a esta rendition

Pablo Flores Guridi 22 of 3

# Media Segments soportados

- MPEG-2 Transport Stream.
  - Sólo SPTS soportados.
  - Los primeros dos paquetes deben ser PAT y PMT.
- Fragmented MPEG-4.
  - Basados en el ISO Base Media File Format.
  - Cada fragmento corresponde a un chunk.
  - Podemos ir pidiendo al archivo de a bytes.
- Packed audio.
  - AAC sobre ADTS.
  - MP3.
  - AC-3.
  - Enhanced AC-3.
- WebVTT
  - Es el único formato de subtítulos soportado.

Pablo Flores Guridi 23 of 3

#### Show time!

- instalar algun servidor web, como por ejemplo nginx sudo apt get install nginx
- (2) crear una carpeta "hls" en /var/www/html/
  sudo mkdir /var/www/html/hls
- (3) instalar ffmpeg sudo apt install ffmpeg
- (4) crear cada uno de los variant streams con el siguiente comando
   ffmpeg -i <input> -g <gop\_size> -s <resolution> \
   -aspect <aspect\_ratio> -r <frame\_rate> -c:v <video\_codec> \
   -c:a <audio\_codec> -b <bitrate> -hls\_list\_size 0 \
   -force\_key\_frames 'expr:gte(t,n\_forced\*10)' \
   -hls time <chunk duration> <output.m3u8>
- (5) armar la playlist segun los variant streams definidos
- (6) dejar todo disponible en el servidor web
- (7) probar reproducir con VLC en modo verbose
  vlc -vv http://localhost/hls/playlist.m3u8

ablo Flores Guridi 24 of 37

# Dynamic Adaptive Streaming over HTTP (MPEG Dash)

- ISO/IEC 23009-1: Information technology Dynamic adaptive streaming over HTTP (DASH) – Part 1: Media presentation description and segment formats.
- Estandarizado por el grupo MPEG en abril de 2012, la última versión revisada es de 2019.
- Es un estándar fomentado por la industria (Microsoft, Apple, Netflix, Qualcomm, Ericsson, Samsung, entre otros) con el objetivo de lograr interoperabilidad.
- Se formó a la vez el *DASH Industry Forum* (https://dashif.org/) para promover la adopción del estándar.
- Este foro además desarrolló y mantiene un player de referencia en código abierto (https://reference.dashif.org/dash.js/).

Pablo Flores Guridi 25 of 3

### Descripción general del sistema

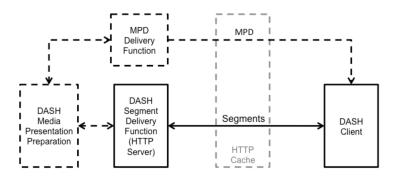



Figura: Tomada del estándar.

- Los Media Presentation Description (MPD) son archivos XML que indican al cliente cómo acceder a cada uno de segmentos (o partes de ellos).
- Todo el control recae principalmente sobre el cliente.

lablo Flores Guridi 26 of 37

# Componentes lógicos de un cliente DASH

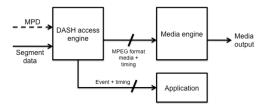



Figura: Tomada del estándar.

- A partir del MPD se piden (y reciben) los segmentos (o partes de ellos).
- El Media engine recibe contenido multimedia en dos posibles formatos contentedores: ISO/IEC 14496-12 ISO Base Media File Format, o ISO/IEC 13818-1 MPEG-2 Transport Stream.
- La Application recibe información temporal para mapear el contenido multimedia con la línea temporal del archivo MPD.
- Lo anterior es una abstracción. El estándar no especifica cómo debe ser implementado el player.

Pablo Flores Guridi 27 of 3

#### El modelo de datos de DASH

| Media Present  | tation Descri                    | ption (MP     | D) |                    |  |                 |                 |  |
|----------------|----------------------------------|---------------|----|--------------------|--|-----------------|-----------------|--|
| Period         |                                  |               | -, |                    |  |                 |                 |  |
|                |                                  |               |    |                    |  |                 |                 |  |
| Adaptation Set |                                  |               |    |                    |  |                 |                 |  |
| Represer       | epresentation Sub-Representation |               |    | Sub-Representation |  |                 |                 |  |
| Segmer         | 112                              | ub-<br>egment |    |                    |  | Sub-<br>Segment |                 |  |
|                |                                  |               |    |                    |  |                 |                 |  |
| Segmer         | nt                               |               |    |                    |  |                 | $ \cdot \cdot $ |  |
|                |                                  |               |    |                    |  |                 |                 |  |
| Representation |                                  |               |    |                    |  |                 |                 |  |
|                |                                  |               |    |                    |  |                 |                 |  |
| Adaptation Set |                                  |               |    |                    |  |                 |                 |  |
|                |                                  |               |    |                    |  |                 |                 |  |
| Period         |                                  |               |    |                    |  |                 |                 |  |
|                |                                  |               |    |                    |  |                 |                 |  |
| _              |                                  |               |    |                    |  |                 |                 |  |

Figura: Tomada del estándar.

Pablo Flores Guridi 28 of 37

# Algunas definiciones

- Media Presentation: Colección da datos que forman un contenido multimedia.
- **Period**: Intervalo de la *Media Presentation*. Una *Media Presentation* puede estar formada por uno o varios *Periods* contiguos.
- Media Content Component: Una media única y continua que puede ser codificada de manera individual.
- Media Stream: Versión codificada de un Media Content Component.
- Adaptation Set: Conjunto de versiones codificadas e intercambiables de un mismo Media Content Component (o conjunto de ellos). Conjunto de Representations intercambiables.
- Representation: Uno o más Media Streams listos para ser distribuidos (encapsulados y con metadata).
- **Segment**: Unidad de datos asociados a un pedido HTTP. Puede ser un rango de bytes correspondiente a un archivo de mayor tamaño.

lablo Flores Guridi 29 of 37

#### Media Presentation Description

```
MPD Type -->
```

Figura: Tomado de https://standards.iso.org/ittf/ PubliclyAvailableStandards/MPEG-DASH schema files/DASH-MPD.xsd.

Pablo Flores Guridi 30 of 3

#### Period

Figura: Tomado de https://standards.iso.org/ittf/
PubliclyAvailableStandards/MPEG-DASH\_schema\_files/DASH-MPD.xsd.

Pablo Flores Guridi 31 of 37

#### Adaptation Sets

```
<xs:element name="SegmentList" type="SegmentListType" min0ccurs="0"/>
```

Figura: Tomado de https://standards.iso.org/ittf/ PubliclyAvailableStandards/MPEG-DASH\_schema\_files/DASH-MPD.xsd.

Pablo Flores Guridi 32 of 3

#### Representation

Figura: Tomado de https://standards.iso.org/ittf/
PubliclyAvailableStandards/MPEG-DASH schema files/DASH-MPD.xsd.

- Cada Representation es formada por uno o más Segments.
- Debe contar con un Segment de inicialización, a menos que todos los Segments sean autoinicializados.

Pablo Flores Guridi 33 of 3

## Segment Base

```
<xs:attribute name="indexRangeExact" type="xs:boolean" default="false"/>
<!-- Multiple Segment information base -->
```

Figura: Tomado de https://standards.iso.org/ittf/
PubliclyAvailableStandards/MPEG-DASH schema files/DASH-MPD.xsd.

- Se debe utilizar cuando la Representation consta de un único Segment.
- En caso de constar de más de un Segment deben utilizarse los elementos Segment List o Segment Template.

Pablo Flores Guridi 34 of 37

## Segment List

```
<!-- Segment List ->"

<
```

Figura: Tomado de https://standards.iso.org/ittf/ PubliclyAvailableStandards/MPEG-DASH\_schema\_files/DASH-MPD.xsd.

- Cada elemento contiene un conjunto de elementos del tipo SegmentURL.
- Cada SegmentURL referencia a cada uno de los Segments consecutivos

Pablo Flores Guridi 35 of 37

## Segment Template

Figura: Tomado de https://standards.iso.org/ittf/ PubliclyAvailableStandards/MPEG-DASH\_schema\_files/DASH-MPD.xsd.

• Da una manera dinámica para ir obteniendo los distintos Segments.

Pablo Flores Guridi 36 of 37

# Tipos de Segments

- Se especifican cuatro tipos de segmentos:
  - Initialization Segments.
  - Media Segments.
  - Index Segments.
  - Bitstream Switching Segments.
- Formatos soportados:
  - ISO Base Media File Format (ISO/IEC 14496-12).
  - MPEG-2 TS (ISO/IEC 13818-1).

Pablo Flores Guridi 37 of 37