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Partial differential equations to which thermal quantities must satisfy

  q k grad 
The Fourier equation links the temperature field 
(K) to the heat flux vector (Wm-2). This flux is

proportional to the temperature gradient and the

thermal conductivity k (Wm-1K-1).

If there is no heat sink or source, the heat flow

verifies the continuity equation (or equilibrium

equation).

When the conductivity coefficient is constant, if

the continuity equation is expressed in terms of

temperature, it becomes the Laplacian.

The basic boundary conditions concern the

temperatures fixed on the part S1 of the boundary

and the heat fluxes imposed on its complement S2.

Their union represents the boundary of the domain.

q

0 

 0div q 
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2

1 2

n

on S

n q q on S

S S S

 

 

 



In these equations,  is the unknown

temperature field expressed in K, and k, the

thermal conductivity (Wm-1K-1).

The boundary of the domain is divided into 2

parts: S1 where the temperature is imposed, S2

where the normal heat flow is imposed .

A bar indicates that the concerned quantity is

imposed.

  0      div k grad in  

2

1

n

on

n q q on S

S 

 

To compute the temperature distribution in a domain , subjected to boundary

conditions on the temperature and/or the heat flow, the following system of partial

differential equations must be solved as well as the boundary conditions associated

with it:



5



6

Conductive heat transfers

1. Partial differential equations

2. Variational methods

3. Rayleigh Ritz method

4. Finite element method (local level)

5. Finite element method (global level)

6. Matlab© procedures and examples

7. More about the heat flows



By using the variations method, one shows that solving the system of partial

differential equations is equivalent to look for the stationnarity conditions of the

functional (expressed in WK)
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( )  ( ) .    

2

T

n

S

I k grad grad d q dS   


     minimum

Explicitly: ( ) ( ) 0I I    

the difference between the functional calculated with a small arbitrary variation δτ of 

the temperature τ and the current functional is equal to zero.

2 2
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 ( ( )) ( )  ( )  

2 2

( ) 0

T T

n n

S S

k grad grad d k grad grad d

q dS q dS

     

  

 

     

   

 

 

1, 0  on S   

To express the stationnarity condition, it is sufficient to write that under the boundary 

conditions:
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The terms in blue are counterbalanced, the second term of the first line (in red) can 

be ignored because it is second order. So:
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By developing this expression, we obtain:

To exploit this result, it is necessary to put the term of variation δτ in evidence. We 

thus carry out an integration by parts of the first term of the previous expression
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 ( ) ( )    0T

n

S

k grad grad d q dS  


    

1 2 2

  div (  ( ))      0n n

S S S

k grad d q dS q dS   
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Applied to equation (2), it gives:
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Integration by parts

We start by calculating the divergence of the product of a scalar by a vector.

    . (2   )    div f grad grad f grad f    

If this vector is the gradient of a scalar function , equation (1) becomes:

   (1 . )      div f g gradf g f div g 

   .       (3)
S

div f g d f g n dS


  

   ( ).       (4)
S

div f grad d f grad n dS 


  

The Green-Ostrogradsky theorem applied to equation (1) gives:
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  (5 .    ( ).       )
S

grad f grad f d f grad n dS  


    

Using (7), we justify the integration by parts carried out 2 slides higher on the 

following expression:

( ).   ( ) .     (   7) 
S

grad grad d grad n dS d     
 

      

The integrand of the left-hand side of equation (4) is replaced by the second 

member of (2):

Transfer the second left term of (5) in the right-hand side:

 .   ( ).         (6)
S

grad f grad d f grad n dS f d  
 

      

2

 ( ) ( )    0T

n

S

k grad grad d q dS  


    

In (6), we replace the scalar function f by δτ



In conclusion, we can replace the computation of the partial differential equations of

the conduction problem by the expression of the stationnarity conditions of the

functional:
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  div (  ( ))  -    0n n

S

k grad d q q dS 
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div (  ( )) 0   

 (  )   n

k grad in

n k grad q on S





 

 

Because the variation is arbitrary, the factor must be zero, which makes it possible 

to write the equations that the thermal field must satisfy.
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I k grad grad d q dS   


     minimum
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Since the variation δ is zero on the boundary S1. the expression is reduced to:
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i i iS

I k grad f grad f d q f dS   
  

      

To find the minimum of this functional, one can use an approximation of the

temperature field (method of Rayleigh - Ritz). The field  is represented by a

combination of test functions, each one is assigned a coefficient βi which will be

determined in the minimization process.

We obtain a new functional:

31 2

31 2

31

3

2

1

2

...

...

..
. .

.
.

ff f

x x x x

ff f

y y y y

ff f

z z z z













    
       
    

      
       
    

      
       

2

1
( )  ( ) .    

2

T

n

S

I k grad grad d q dS   


     minimum

To compute the gradients, we use a matrix formalism.
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Parameters βi are get out of integrals that can be directly calculated.

The approximate functional  I(β) depends on the parameters βi.

minimum
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This formalism is extremely attractive and well suited to numerical computation

because it only uses linear equation solving techniques. The only difficulty is that,

on the boundary, S1 the approximate solution must satisfy exactly the conditions

imposed on the temperatures. Moreover, since the test functions must cover the

whole area, it is not easy, except in special cases, to find some that are

representative of the exact solution.
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3
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 K G







 
 
   
 
 
 

The functional has been transformed into a quadratic algebraic function of the

parameters βi. The computation of the derivatives with respect to the βi is immediate.

These derivatives must be null, which leads to the resolution of the linear system of

equations:
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This leads to imagining test functions that cover only a small part of the field.

By doing so for all the partitions whose union covers the domain, it is easier to

apply the Rayleigh-Ritz method to all these elements and then to add their

contributions. These partitions constitute what is known as a finite element

mesh.

The Rayleigh-Ritz method is therefore applied to one of these sub-domains

(or finite element):

2

1
 ( )  

2
el el

T

el el n el

S

I k grad grad d q dS  


    

Functional at element level:



1 2 3 4x y xy       
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This trial function has the required properties (it is of first degree on

the horizontal and vertical directions) however, we observe that the

parameters βi do not have the same physical meaning and are not easy

to handle in order to ensure the continuity of the temperature field in a

separation between 2 adjacent elements

1 2 3 4x y xy       

1 2 3 4x y xy       

Continuity ?

Finite element formulation of a temperature model by connection

matrix approach to develop a rectangular element: we start exactly as

before with a Rayleigh-Ritz like approximation:



So, it is better to use more physical parameters like nodal temperatures. In

the interface between 2 elements, it is sufficient to ensure that 2 local

temperatures are identical on both sides in order to guarantee the continuity

of two 1st degree fields.

So, we first write the definitions of the 4 corner temperatures:

T2
T1

T3T4

x

b
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The connection matrix is defined in such a way that it is non singular and thus, can be 

inverted. 



1 2 3 41 1 1 1
x y x y x y x y

a b a b a b
T

a
T T

b
T

      
             

      

Finite element formulation of a temperature model by direct weight (or shape or 

blending) function approach (Coons patch):

Replacing the coefficient βi in the expression

we obtain the expression of the field  in terms of weight functions, and nodal

temperatures which can be obtained directly, using the techniques developed in

CAD (see the Coons patch).

The weight functions are adimensional. Each one is equal to 1 at one node and 0

at the others. They also have to respect the property of partition of unity which is

mandatory to save the possibility to represent a constant temperature field.
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The temperature gradient is computed in term of nodal temperatures.
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The first part of the functional defined above can now be written in compact form

by using the so called conductivity matrix K, which is symmetric and singular (at

least one temperature has to be fixed).

Using the vector of nodal temperatures the functional becomes:
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and surface integrals.
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Details of the computation: core of the integral.

Integration of the monomial terms:
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Result of the integration:
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This is the conductivity matrix of a rectangle of dimensions a x b

 4 1 2 1

1  4 1 2

2 1  4 16

1 2 1  4

el

ke
K

   
 
  
 
   
 
   

The conductivity of a

square element is:
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        if    1 1 1 1       0c c ce

T

l

T
T T K T  

 

 4 1 2 1

1  4 1 2

2 1  4 16

1 2 1  4

el

ke
K

   
 
  
 
   
 
   

Because the conductivity matrix is based on a product of temperature gradients, the above 

expression vanish when the temperature field is constant, for instance:

        
1

 
2 2

el

T T

elT T
ke x

dxdy
x

K
y

y

T T



 




 
    
        
  



The sum of each line of the [Kel] matrix  = 0. 
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ke
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F T T
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This expression shows that the sum of the second members: 

F1 + F2 + F3 + F4 = 0

for any set of nodal temperatures. 

The sum of each column of the [Kel] matrix  = 0. 
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It remains to express the continuity of the temperature field across the whole

domain. For this, at each interface between two elements, it must be stated that the

nodal temperatures are identical, which means to identifying them at the same

node.

minimum
2

1 1 1 1

1
( ) (  ( ) .    )

2
j

nel n n n
T

j ij iij ij j j n ij j

j i ij S

ij

i

T T TI T k grad f grad f d q f dS
   

        

 
1

, ,
n

j ij

i

ij f yT x z




In each sub-domain or finite element j, a Rayleigh-Ritz was applied,
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Then, the contributions of all the finite elements of the domain were added and the

discretized functional was obtained:

minimum
1

( )
nel

T T

j j

j

j j jI T K FT T T


                     

After introducing the polynomial trial functions, we wrote it in matrix form:



It is easily verified that by performing this product,

the coefficients of the conductivity matrix of

element number 4 are placed at positions 8, 9, 6 and

5 of the domain conductivity matrix.

4

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

L
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T2T1

T3
T4  j jT L T      

    4 4 4

T
L K L

The nodal temperature vectors of the elements are linked to the global vector of 

temperatures by location matrices [Lj].



0     0     0     0     0     0     0     1     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     0     0     0     0     0     0

0     0     0     0     0     1     0     0     0     0     0     0     0     0     0

0     0     0     0     1     0     0     0     0     0     0     0     0     0     0

0.6667   -0.1667   -0.3333   -0.1667

-0.1667    0.6667   -0.1667   -0.3333

-0.3333   -0.1667    0.6667   -0.1667

-0.1667   -0.3333   -0.1667    0.6667

L4
T K4 L4 =

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0    0.6667   -0.1667         0   -0.1667   -0.3333         0         0         0        0         0         0

0         0         0         0   -0.1667    0.6667         0   -0.3333   -0.1667         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0   -0.1667   -0.3333         0    0.6667   -0.1667         0         0         0        0         0         0

0         0         0         0   -0.3333   -0.1667         0   -0.1667    0.6667         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

0         0         0         0         0         0         0         0         0         0         0         0        0         0         0

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

L4 =

  
1

nel
T

j j j

j

L K L T


           Example of element number 4

 4 1 2 1

1  4 1 2

2 1  4 16

1 2 1  4

ke

   
 
  
 
   
 
   

K4  =

k = 1, e = 1
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1 1

1 1

    and   =

nel nel
T T

j j j j j

j j

nel nel
T T

j j j j j

j j

L K L T L F

with K L K L F L F

 

 

                   

               

 

 

We thus reach the solution of a linear system whose matrix of coefficients is the 

matrix of global conductivity:

As we have seen for element number 4 of the domain on the previous slide, the

nodal temperature vectors of the elements are linked to the global vector of the

temperatures of the domain by localization matrices [Lj]. We can therefore

perform the summation which, simultaneously, ensures the continuity of the field

by identification with the nodes of the domain.

        
1

( )
nel

T TT T

j j jj j j j

j

L T I T T L K L T T L FT


                             

The next step is to get out of the sum, the vector [T] in the product above

    
1

( )
nel

T TT

j j j j j

j

I T T L K L T L F


 
                    

 


Deriving with respect to the parameters [T], we have:

    K T F 34



For each element, the four nodes must be located in the

domain mesh. For the first element, line 1 of the

localization matrix, we have then the global nodes: 4, 5, 2

and 1, etc..

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7 8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8   

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11

T2T1

T3
T4

Here, to improve the efficiency

of the procedure, we use direct

localization instead of the matrix

formalism seen before in the

theoretical presentation.
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Using localization vectors

The element node sequence is always the

same and must be respected during

assembling
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4 1 1 2

1 4 2 1

1 2 4 1

2 1 1

6

4

k
K

e

 
 
 
 
 
 


  

  

  

  
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
  



Element 1

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7     8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8   

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11
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4 1 1 2

1 4 2 1

1 2 4

4 1 0 1 2 0

1 4 2 1

0 0

1 2 0 4 1 0

2 1 1 4

0

1

2 1

6

1 40

ke
K

   

  

   

 

   
 
  
 
 
 
   
   
 
 
 
 

  
 
 
 
 





 
 
 
 
 
  

Element 1 & 2

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7     8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8   

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11
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4 1 0 1 2 0

1 8 1 2 2 2

0 1 4 0 2 1

1 2 0 4 1 0

2 2 2 1 8 1

0

4 1 1 2

1 4 2 1

1 2 4 1

2 1 1

2 1 0

6
4

1 4

ke
K

   

   

  



   
 
    
 
   
 
   
     
 

   
 


 


  
 
 
 
 
 
 
 
 
 
 
  

Element 1 to  3

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7     8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8   

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11
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Element 1 to  4

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7     8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8   

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11
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4 1 1 2

1 4 2

4 1 0 1 2 0

1 8 1 2 2 2
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Element 1 to  5

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7     8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8   

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11
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  4

4 1 0 1 2 0

1 8 1 2 2 2

0 1 4 0 2 1

1 2 0 8 2 0 1 2

2 2 2 2 16 2 2 2 2

0 2 1 0 2 8 2 1

1 2 8 2 1 2

2 2 2 2 12 1 2 1
6

2 1 1 4

1

1 1 2

1 4 2 1

1 2 4 1
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Element 1 to  6

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7     8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11
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Element 1 to  7

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7     8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8   

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11
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Element 1 to  8

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7     8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8   

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11
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Global conductivity matrix. 

The matrix is diagonal dominant and so, very well conditioned.
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The conductivity matrix computed in the Matlab© procedure pp_Base_conduction.m

K*6/(th*co(1)) = [ 

4    -1     0    -1    -2     0     0     0     0     0     0     0     0     0     0

-1     8    -1    -2    -2    -2     0     0     0     0     0     0     0     0     0

0    -1     4     0    -2    -1     0     0     0     0     0     0     0     0     0

-1    -2     0     8    -2     0    -1    -2     0     0     0     0     0     0     0

-2    -2    -2    -2    16    -2    -2    -2    -2     0     0     0     0     0     0

0    -2    -1     0    -2     8     0    -2    -1     0     0     0     0     0     0

0     0     0    -1    -2     0     8    -2     0    -1    -2     0     0     0     0

0     0     0    -2    -2    -2    -2    16    -2    -2    -2    -2     0     0     0

0     0     0     0    -2    -1     0    -2     8     0    -2    -1     0     0     0

0     0     0     0     0     0    -1    -2     0     8    -2     0    -1    -2     0

0     0     0     0     0     0    -2    -2    -2    -2    16    -2    -2    -2    -2

0     0     0     0     0     0     0    -2    -1     0    -2     8     0    -2    -1

0     0     0     0     0     0     0     0     0    -1    -2     0     4    -1     0

0     0     0     0     0     0     0     0     0    -2    -2    -2    -1     8    -1

0     0     0     0     0     0     0     0     0     0    -2    -1     0    -1     4

]



In summary, the principle of the method is to split the domain into

elements that, in general, all have the same simple form (for example, triangles or

quadrangles in 2D, tetrahedrons or hexahedrons in 3D).

It is necessary to make sure that the discretized field is differentiable by

piece (it is necessary to be able to calculate the gradients inside the elements),

from where, the choice of polynomial functions.

The coherence of the solution implies the continuity of the fields (same

degree on either side of the interfaces between neighboring elements) and the

conformity of the mesh

A simple way to satisfy the conditions of continuity is to create a

conformal mesh and to define the temperature fields of the elements according to

the values of the temperature at the nodes of the mesh.
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Properties of the conductivity matrix:

The conductivity matrix is symmetric and semi-definite positive (its

determinant is never negative). The totaling of the terms of each column or of

each line is zero.

For any heat transfer problem, the temperature has to be specified at

least at one point in order to make the conductivity matrix definite positive.

The conductivity matrix of a square does not depend on its size.
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Conductive heat transfers

1. Partial differential equations

2. Variational methods

3. Rayleigh Ritz method

4. Finite element method (local level)

5. Finite element method (global level)

6. Matlab© procedures and examples

7. More about the heat flows
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Matlab© procedure pp_Conduction.m to solve a conduction problem 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

tb    = 270;tt = tb+50 ; pge  = [1;2;1;2];pf = [0;12.5;0]; k = 1;       

qs    = pf(1)*pge(1)*pge(2);qw=pf(2)*pge(2)*pge(3);qe=pf(3)*pge(2)*pge(3); 

nx    = pge(4);ny = nx*2;nel = nx*ny;no = (nx+1)*(ny+1);nf = nx+1;  % Mesh 

co    = kf1_conduction(nx,ny,k); 

Kel   = pge(3)/6*[4 -1 -2 -1;-1 4 -1 -2;-2 -1 4 -1;-1 -2 -1 4]; % elem. K 

lK    = kf2_conduction(nx,ny); K = zeros(no,no); 

for n = 1:nel;for i=1:4;for j=1:4   % Assembling nel conduct. matrices Kel 

        K(lK(n,i),lK(n,j))=K(lK(n,i),lK(n,j))+co(n)*Kel(i,j);end;end;end 

nl    = max(1,round(nx/5));if  nl > nf;nl = nf;end; nu  = no-2*nl; 

K21   = K(nl+1:nu+nl , 1     : nl);K22 = K(nl+1:nu+nl , nl+1    : nu+nl); 

K23   = K(nl+1:nu+nl , nu+nl+1 : nu+nl*2);ar=ones(nl,1); 

tca   = [ar*tt;K22\(-K23*ar*tb-K21*ar*tt);ar*tb]; 

        kf3_conduction(nx,ny,tca);axis off;        % Drawing the isotherms       

 

Lines 1 – 3 : Data input

tb    = 270;tt = tb+50; pge  = [1;2;1;50];

nx    = pge(4);ny = nx*2;nel = nx*ny;no = (nx+1)*(ny+1);nf = nx+1;  % Mesh

Variables tb & tt give the temperatures on the top and the bottom of the domain.

The vector pge contains the dimensions of the domain: width, height, thickness

and the number nx of elements in the horizontal direction. ny is the number of

elements in the vertical direction: twice nx. The following items concern the

computation of nel: number of elements, no: number of nodes, nf: number of

nodes on a horizontal line of the mesh.
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Line 4 : conductivity coefficients in the elements (function kf1.m)

For a mesh of nx x ny elements (arguments of the function), one defines the vector

co (output of the function) which contains the values of the coefficients of

conductivity of all the elements..

In a non-homogeneous medium, the conductivities may vary from one element to

another, it is necessary to add to the previous procedure the two lines defining the

elements operating with the second conductivity and modify the assembly of the

elements. The conductivity coefficient acts as coefficients in the assembly of the

global matrix (line 8). The conductivities of the elements are stored in the vector co

of dimension nel.

Matlab© function kf1_conduction.m to handle non uniform k 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

function [co] = kf1_conduction(nx,ny)% Treatment of non uniform onductiv. 

k   = 1;     % W/(m K) 

nel = nx*ny; % Number of element computed from mesh definition  

fa  = 1 ;    % Ratio between the 2 conductivities, if 1, k is a cst 

co  = ones(nel,1)*k; 

        co(nx*nx+1:nx*nx+nx)  = k*fa;    % Second k on horizontal band 1 

if nx>2;co(nx*(nx-1)+1:nx*nx) = k*fa;end % Second k on horizontal band 2 

disp(['Thermal conductiv.  : ',num2str(k,'%0.3g'),' W/(m K)']) 

disp(['Main & bridge k.    : ',num2str([co(1) co(nx*nx+1)]),' W/(m K)']) 

end 
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Line 5 : conductivity matrix of a square element

Kel   = pge(3)/6*[4 -1 -2 -1;-1 4 -1 -2;-2 -1 4 -1;-1 -2 -1 4]; % elem. K

The variable pge(3) corresponds to the thickness of the element. In Matlab, the 

matrix coefficients are written in compact form.

 4 1 2 1

1  4 1 2

2 1  4 16

1 2 1  4

el

ke
K

   
 
  
 
   
 
   

Matlab© procedure kf2_conduction.m to build the localization matrix 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

function [lK]=kf2_conduction(nx,ny)   % Localization matrix with fixed 

base 

nel   = nx*ny; 

nf    = nx+1; 

lK    = zeros(nel,4);   % Elements are numbered left - right, top - bottom 

for j = 1:ny               % Nodes are numbered left - right, top - bottom 

    for i                = 1:nx 

        lK((j-1)*nx+i,1) = j*(nx+1)         + i; 

        lK((j-1)*nx+i,2) = lK((j-1)*nx+i,1) + 1; 

        lK((j-1)*nx+i,3) = lK((j-1)*nx+i,1) - nx; 

        lK((j-1)*nx+i,4) = lK((j-1)*nx+i,1) - nf; 

    end 

end  

end 

 

T2T1

T3
T4



For each element, the four nodes must be located in the

domain mesh. For the first element, line 1 of the

localization matrix, we have then the global nodes: 4, 5, 2

and 1, etc..

Element 1 :   4     5      2       1

Element 2 :   5      6     3       2

Element 3 :   7 8      5       4

Element 4 :   8      9     6       5

Element 5 : 10    11     8       7 

Element 6 : 11    12     9       8   

Element 7 : 13    14    11    10

Element 8 : 14    15    12    11

T2T1

T3
T4

Here, to improve the efficiency

of the procedure, we use direct

localization instead of the matrix

formalism seen before in the

theoretical presentation.
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Line 6 : compute the localization matrix (function kf2.m)

The element node sequence is always the

same and must be respected during

assembling
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Lines 7 – 8 : global conductivity matrix assembling

for n = 1:nel;for i=1:4;for j=1:4   % Assembling nel conduct. matrices Kel

K(lK(n,i),lK(n,j))=K(lK(n,i),lK(n,j))+co(n)*Kel(i,j);end;end;end

The external loop is performed on the elements and the 2 internal ones on the

lines and columns of the element conductivity matrices. Each term (i, j) of

element n is located at (lK(n, i), lK(n, j))in the global K matrix according to

the lK matrix computed in kf2.m (see previous slide). Moreover, the

coefficients of the element matrices Kel are multiplied by their conductivity

coefficient co (n) (see line 4).
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Line 9 : Data for fixed temperatures

nl    = 10;if  nl > nf;nl = nf;end; nu  = no-2*nl;    % Size of the system

In the proposed example, we fix some temperatures on the horizontal sides,

starting from opposite corners : left on the top, right in the bottom. The number

nl of fixed temperatures is less or equal to the number of nodes on a horizontal

line: nx + 1 (checked in the procedure). The solution of a problem involving

only imposed temperatures is performed as follows. Assuming that [T2] is given,

we have only to compute [T1] . The computation of the incoming or outcoming

heat flows through the fixations is simply obtained by multiplying the global
conductivity matrix by the vector of temperatures.

       1 221 22? TKTK 

11 12

22

1

21 2

0

?

TK K

K K T

     
     
    

      
1

11 11 2 2TKT K
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Lines 10 – 12 : solution of the system

K21   = K(nl+1:nu+nl , 1     : nl);K22 = K(nl+1:nu+nl , nl+1    : nu+nl);

K23   = K(nl+1:nu+nl , nu+nl+1 : nu+nl*2);ar=ones(nl,1);

tca     = [ar*tt;K22\(-K23*ar*tb-K21*ar*tt);ar*tb];

The system to be solved is the same as in the previous slide but, now, the

fixed temperatures are split into 2 sets of dimensions nl, the first in the begin

of the full matrix and the second at the end. The final size of the matrix to be

inverted is nu (see the previous slide). As a consequence the global matrix is

divided into 9 submatrices. The imposed temperatures are equal to [T3] in the

bottom: ar*tb and [T1] on the top: ar*tt. Note that ar is defined as a vector of

dimension nl.

 
11 12 13

21 22 23

31 32 33

K K K

K K K K

K K K

 
 


 
  

          
1

2 22 23 3 21 1T K K T K T
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Line 13 : drawing of the isotherms in the function kf3_conduction.m

This function performs the visualization of the isotherms of a mesh nx x ny

(arguments 1 and 2 of the function) based on the nodal temperatures stored in the

vector tca (argument 3). In line 9 of the function, the value of the intervals between

successive isotherms can be adjusted. Let observe at line 10 for the particularly

effective color bar (function kf4_conduction.m)

Matlab© function kf3_conduction.m to draw isotherm lines 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

function [ ] = kf3_conduction(nx,ny,tca) 

figure('Position',[1 1 600 512]); 

my = ny+1;no=(nx+1)*(ny+1); 

B         = ones(my,nx+1)*tca(1);x = zeros(my,nx+1);y = zeros(my,nx+1);    

for j     = 1 : nx+1;for i = 1 : ny;x(i,j) = j-1; y(i,j) = my-i;end;end; 

ii        = 0; 

for i     = 1:ny;for j = 1:nx+1;ii = ii+1; B(i,j) = tca(ii);end;end 

x(my,:)   = x(ny,:);y(:,1)    = y(:,2);B(my,:)   = tca(ii+1:no ); 

gap = 1;     % gap         = max(round((tmax-tmin)/20),.5); %  gap = 0.25; 

colormap(kf4_conduction);                           % Color map definition 

[CS,H]    = contourf(x,y,B,(0.:gap:max(tca)),'b');hold on;axis equal  

    clabel(CS,H,[275 280 285 290 295 300 305 310 315 320]);colorbar 

plot  ([0 nx nx 0 0],[0 0 ny ny 0],'k','LineWidth',2);hold on;axis equal 

    title (['T_m_a_x : ',num2str(round(max(tca))),' K, T_m_i_n : ',... 

num2str(round(min(tca))),' K, step : ',num2str(gap),' K'],'fontsize',15); 

axis off;end                                       % End isotherms drawing 
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Matlab© function kf4_conduction.m for 

computing a color bar of  56 colors

Matlab© function kf4_conduction.m to 

install a convenient color map 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

function [bbr] = f4_conduction 

bbr=[    0         0    0.5625 

         0         0    0.6250 

         0         0    0.6875 

         0         0    0.7500 

         0         0    0.8125 

         0         0    0.8750 

         0         0    0.9375 

         0         0    1.0000 

         0    0.0625    1.0000 

         0    0.1250    1.0000 

         0    0.1875    1.0000 

         0    0.2500    1.0000 

         0    0.3125    1.0000 

         0    0.3750    1.0000 

         0    0.4375    1.0000 

         0    0.5000    1.0000 

         0    0.5625    1.0000 

         0    0.6250    1.0000 

         0    0.6875    1.0000 

         0    0.7500    1.0000 

         0    0.8125    1.0000 

         0    0.8750    1.0000 

         0    0.9375    1.0000 

         0    1.0000    1.0000 

    0.0625    1.0000    0.9375 

    0.1250    1.0000    0.8750 

    0.1875    1.0000    0.8125 

    0.2500    1.0000    0.7500 

    0.3125    1.0000    0.6875 

    0.3750    1.0000    0.6250 

    0.4375    1.0000    0.5625 

    0.5000    1.0000    0.5000 

    0.5625    1.0000    0.4375 

    0.6250    1.0000    0.3750 

    0.6875    1.0000    0.3125 

    0.7500    1.0000    0.2500 

    0.8125    1.0000    0.1875 

    0.8750    1.0000    0.1250 

    0.9375    1.0000    0.0625 

    1.0000    1.0000       0 

    1.0000    0.9375       0 

    1.0000    0.8750       0 

    1.0000    0.8125       0 

    1.0000    0.7500       0 

    1.0000    0.6875       0 

    1.0000    0.6250       0 

    1.0000    0.5625       0 

    1.0000    0.5000       0 

    1.0000    0.4375       0 

    1.0000    0.3750       0 

    1.0000    0.3125       0 

    1.0000    0.2500       0 

    1.0000    0.1875       0 

    1.0000    0.1250       0 

    1.0000    0.0625       0 

    1.0000         0       0]; 

end 

 



Procedure for thermal conduction problem which involves only imposed temperatures

Lines 1 – 3 : Data input

Line 4 : Definition of element conductivities (function conde.m)

Line 5 : conductivity matrix of a square element

Line  6 : localization matrix (function loca.m)

Lines 7 – 8 : assembling the global conductivity matrix

Line 9 : prescribed temperatures specification

Lines 10 – 12 : solution of the system

Line 13 : drawing the isotherms in the function grisb.m
57

Matlab© procedure pp_Conduction.m to solve a conduction problem 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

tb    = 270;tt = tb+50; pge  = [1;2;1;50];pf = [0;12.5;0];       

qs    = pf(1)*pge(1)*pge(2);qw=pf(2)*pge(2)*pge(3);qe=pf(3)*pge(2)*pge(3); 

nx    = pge(4);ny = nx*2;nel = nx*ny;no = (nx+1)*(ny+1);nf = nx+1;  % Mesh 

co    = f1_conduction(nx,ny); 

Kel   = pge(3)/6*[4 -1 -2 -1;-1 4 -1 -2;-2 -1 4 -1;-1 -2 -1 4]; % elem. K 

lK    = f2_conduction(nx,ny); K = zeros(no,no); 

for n = 1:nel;for i=1:4;for j=1:4   % Assembling nel conduct. matrices Kel 

          K(lK(n,i),lK(n,j))=K(lK(n,i),lK(n,j))+co(n)*Kel(i,j);end;end;end 

nl    = 10;if  nl > nf;nl = nf;end; nu  = no-2*nl;    % Size of the system 

K21   = K(nl+1:nu+nl , 1     : nl);K22 = K(nl+1:nu+nl , nl+1    : nu+nl); 

K23   = K(nl+1:nu+nl , nu+nl+1 : nu+nl*2);ar=ones(nl,1); 

tca   = [ar*tt;K22\(-K23*ar*tb-K21*ar*tt);ar*tb]; 

f3_conduction(nx,ny,tca);axis off;   % Drawing the isotherms on the domain 

 



By using a 2 x 4 mesh and imposing the temperatures of 3 nodes on both

horizontal faces, we obtain as expected a solution showing a constant vertical

temperature gradient.
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When calculating the second members of the

system of equations, we find the same results

on the horizontal faces. The vertical gradient

being 25 K/m, the flux on these faces are equal

to 25 W.
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In this example, the temperatures are imposed on 1 segment of the upper and lower

faces: 320 K on the upper face and 270 K on the base. The mesh is 50 x 100. The

number of DOF is equal to 5131. The steps between isotherms = 1 K.

As expected, the isotherms are orthogonal to the walls, except in the two zones

where the temperatures are imposed.
In this example, the temperatures were imposed on 10 nodes of the upper and lower faces.

The nodal fluxes on both horizontal faces = ± 13.9 W.

They are highly concentrated at the junction of imposed

and free temperatures.

Matlab sentence to compute them:

a = K*tca;sum (a(1:nl))
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Conductive heat transfers

1. Partial differential equations

2. Variational methods

3. Rayleigh Ritz method

4. Finite element method (local level)

5. Finite element method (global level)

6. Matlab© procedures and examples

7. More about the heat flows



1

2

3

4

1 y b b y y yx

x a x x a x T

y

T

T

ab

T





  
                   
     

Assumed constant temperature gradient with higher (right) and lower (left)

temperatures. The temperature gradient inside an element is computed in term of

nodal temperatures.
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Mesh and nodes labels 
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Matlab© function kf5_conduction.m to draw element heat flows 
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function kf5_conduction (nx,ny,lK,tca,co) 

ii = 0;nn=(nx+1)*(ny+1);xyz = zeros(nn,3);nc=2;% Nodes Coons patch nx x ny 

P = [0 0 0; 1 0 0; 1 2 0; 0 2  0 ];                   % Flat square domain 

for i = ny:-1:0 

   for j = 0:nx 

       t = i/ny; s = j/nx; ii = ii +1; 

       for c = 1 : nc 

           xyz(ii,c)= (1-s)*(1-t)*P(1,c)+ s*(1-t)   *P(2,c)+... 

                       s*t       *P(3,c)+(1-s)*t    *P(4,c); 

       end 

   end 

end 

ii=0; 

X=zeros(nx*ny,1); Y=zeros(nx*ny,1); 

u=zeros(nx*ny,1); v=zeros(nx*ny,1); 

xx=zeros(4,1); yy=zeros(4,1);te=zeros(4,1); 

for i  = 1:nx                         % Loop on the nx columns of elemrnts 

    for j  = 1:ny                     % Loop on the ny liness  of elemrnts 

        ii = ii+1; 

        for k=1:4                  % Loop on the 4 vertices of the element 

            X(ii) = X(ii)+xyz(lK(ii,k),1)/4; % x coord of the elem. center 

            Y(ii) = Y(ii)+xyz(lK(ii,k),2)/4; % y coord of the elem. center 

            xx(k) = xyz(lK(ii,k),1); % xx contains the 4 vertices x coord.   

            yy(k) = xyz(lK(ii,k),2); % yy contains the 4 vertices y coord. 

            te(k) = tca(lK(ii,k));   % te contains the 4 vertices tempera.     

        end 

        Jacob     = 1/4*[xx(2)+xx(3)-xx(1)-xx(4) yy(2)+yy(3)-yy(1)-yy(4); 

                     xx(4)+xx(3)-xx(1)-xx(2) yy(4)+yy(3)-yy(1)-yy(2)];  

        Jm1       = Jacob^(-1)*co(ii); 

        u(ii)     = -Jm1(1,:)/4*[-1 1 1 -1;-1 -1 1 1]*te;% x comp. of grad 

        v(ii)     = -Jm1(2,:)/4*[-1 1 1 -1;-1 -1 1 1]*te;% y comp. of grad 

    end      

end  

gm    = [max(sqrt(u.*u+v.*v)); mean(sqrt(u.*u+v.*v))];  % grad : max & av. 

scale = 2; 

disp(['Elem. heat flow max : ', num2str(gm(1),3),', mean: ',... 

    num2str(gm(2),3),' W/m2']) 

quiver(X,Y,u,v,scale,'r','LineWidth',1);hold on; 

plot([xyz(ny*(nx+1)+1,1) xyz((nx+1)*(ny+1),1) xyz(nx+1,1) xyz(1,1) ... 

    xyz(ny*(nx+1)+1,1)],[xyz(ny*(nx+1)+1,2) xyz((nx+1)*(ny+1),2)... 

    xyz(nx+1,2) xyz(1,2) xyz(ny*(nx+1)+1,2)],'k');axis equal;hold on 

title(['Heat flow, max: ',num2str(gm(1),2),', mean: ',num2str(gm(2),2),... 

    ' W/m2'],'fontsize',15);axis off;hold on 

end 

 

Including at the end of 

the procedure 

pp_Conduction.m 

the sentence: 

figure;kf5_conduction 

(nx,ny,lK,tca,co);hold on

we obtain the heat flows 

diagram.
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The temperatures are imposed on segments of the upper and

lower faces: 320 K on the upper face and 270 K on the base. The

mesh is 10 x 20. In the elements, the maximum heat flow = 68

Wm-2 with an average of 14 Wm-2
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Introduction of two lines of higher conduction in

elements near the horizontal median of the domain.

This slide shows the constant conductivity

reference solution with 10 imposed nodal

temperatures on each horizontal side (see line 9 of

the procedure of slide 45).

In lines 6 and 7, the conductivity coefficient k is

multiplied by the factor fa defined in line 4. The

elements are numbered from left to right and from

top to bottom (see slide 48).

Matlab© function kf1_conduction.m to handle non uniform k 
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function [co] = kf1_conduction(nx,ny)% Treatment of non uniform onductiv. 

k   = 1;     % W/(m K) 

nel = nx*ny; % Number of element computed from mesh definition  

fa  = 1 ;    % Ratio between the 2 conductivities, if 1, k is a cst 

co  = ones(nel,1)*k; 

        co(nx*nx+1:nx*nx+nx)  = k*fa;    % Second k on horizontal band 1 

if nx>2;co(nx*(nx-1)+1:nx*nx) = k*fa;end % Second k on horizontal band 2 

disp(['Thermal conductiv.  : ',num2str(k,'%0.3g'),' W/(m K)']) 

disp(['Main & bridge k.    : ',num2str([co(1) co(nx*nx+1)]),' W/(m K)']) 

end 
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The conductivity change is introduced

in the 2 lines of elements at the left and

right of the vertical median.

k*0.1 k*0.01

Conductivity        : 1 W/(m K)

Base température    : 270 K

Top face temp.      : 320 K 

Number of elements  : 5000

N. fix. hor. faces  : 20

Matlab© function kf1_conduction.m to handle non uniform k 
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function [co] = kf1_conduction(nx,ny)% Treatment of non uniform onductiv. 

k   = 1;     % W/(m K) 

nel = nx*ny; % Number of element computed from mesh definition  

fa  = 1 ;    % Ratio between the 2 conductivities, if 1, k is a cst 

co  = ones(nel,1)*k; 

        co(nx*nx+1:nx*nx+nx)  = k*fa;    % Second k on horizontal band 1 

if nx>2;co(nx*(nx-1)+1:nx*nx) = k*fa;end % Second k on horizontal band 2 

disp(['Thermal conductiv.  : ',num2str(k,'%0.3g'),' W/(m K)']) 

disp(['Main & bridge k.    : ',num2str([co(1) co(nx*nx+1)]),' W/(m K)']) 

end 
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Introduction of  a central vertical strip with conductivity

k x 1                           k  x  1000                        k  x  0.1

Relative strip thickness: 1/8 domain width
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Temperature

gradient

Heat 

flow

k x 1 k x 1000 k x 0.1

Relative strip thickness:1/8 domain width







Variable Symbol Units

Conductivity coefficient & tensor k & kij W K-1 m-1

Resistivity coefficient r W-1 K m

State variable  temperature T K

Temperatures array τ K

Temperature gradient gi K m-1

Temperature gradient array G K m-1

Thermal loads array g W

Heat flux & heat flux array qi W m-2

Stream function ψ W 

Connection matrix C m2

Conductivity matrix K W K-1

Core resistivity matrix R W-1 K m4

Dissipation function I, J, F, P, Q W K

Geometric variable : thickness e m

Geometric variable : length a, b, c m

Geometric variable : area i D m2

Geometric variable : volume D m3

70Taxonomy and dimensions


