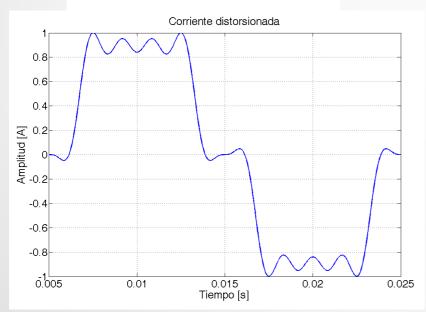
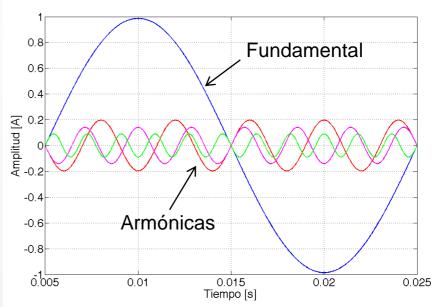

Curso de Iluminación LED – Armónicas Facultad de Ingeniería - Universidad de la República

2019

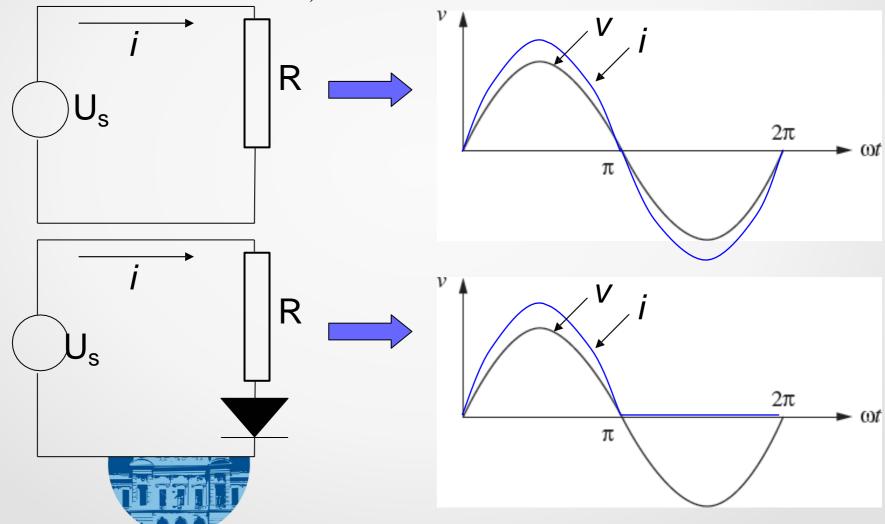


Curso Alumbrado LED de la FING - MSc. Ing. Andrés Cardozo Armónicas


<u>IEC 61000-2-1</u>: Electromagnetic Compatibility (EMC). Part 2: Environment. Section 1: Description of Environment - Electromagnetic Environment for Low Frequency Conducted Disturbances and Signaling in Public Power Supply Systems).

Se define a una armónica como una señal cuya frecuencia es un múltiplo entero de la frecuencia fundamental del sistema (50 Hz en Uruguay, 60 Hz en Brasil).

Corriente distorsionada


Armónicas de corriente

¿Cómo se generan las armónicas?

Por la presencia de cargas no lineales, que provocan una deformación de la forma de onda de tensión o de corriente, idealmente sinusoidal.

Dada una función periódica, de período T, bajo ciertas condiciones de regularidad, según Fourier se puede expresar como la suma de:

- Una componente de continua.
- Una componente sinusoidal de frecuencia igual a la del sistema (fundamental).
- Una serie de componentes sinusoidales cuyas frecuencias son múltiplos de la frecuencia fundamental (armónicas).

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n \sin\left(\frac{2\pi nt}{T}\right) \right)$$

$$a_0 = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) dt \qquad a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(\frac{2\pi nt}{T}\right) dt \qquad b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(\frac{2\pi nt}{T}\right) dt$$

Algunas simplificaciones importantes:

Simetría impar: x(t) = -x(-t)

$$a_0 = 0$$
, $\forall n: a_n = 0$, $b_n = \frac{4}{T} \int_0^{T/2} x(t) sen\left[\frac{2\pi nt}{T}\right] dt$

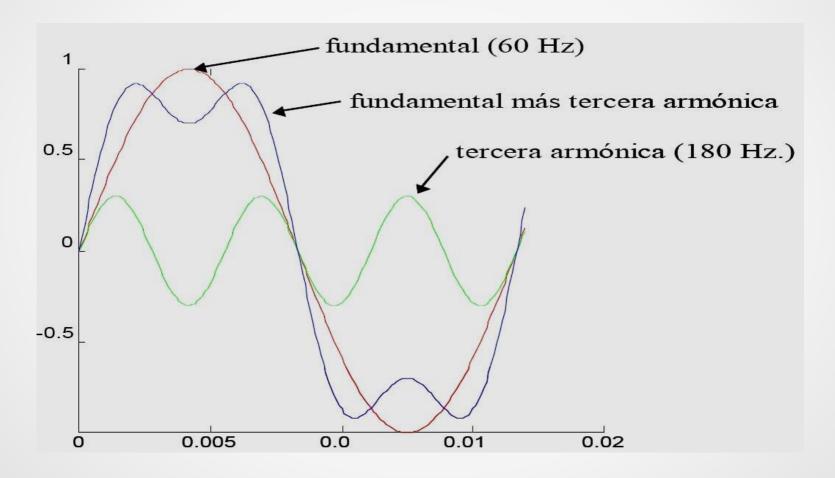
Simetría par: x(t) = x(-t)

$$a_0 = \frac{2}{T} \int_0^{T/2} x(t) dt$$
, $a_n = \frac{4}{T} \int_0^{T/2} x(t) \cos\left[\frac{2\pi nt}{T}\right] dt$, $\forall n: b_n = 0$

Simetría de media onda: x(t) = -x(t - T/2)

$$a_0 = 0$$
, $\forall n \text{ par: } a_n = 0$, $b_n = 0$

$$\forall n \ impar: \ a_n = \frac{4}{T} \int_0^{T/2} x(t) cos\left[\frac{2\pi nt}{T}\right] dt \ , \qquad b_n = \frac{4}{T} \int_0^{T/2} x(t) sen\left[\frac{2\pi nt}{T}\right] dt$$



$$x(t) = a_0 + \sum_{k=1}^{\infty} \left[a_n \cos\left(\frac{2\pi nt}{T}\right) + b_n sen\left(\frac{2\pi nt}{T}\right) \right]$$

- El análisis armónico es el cálculo de la magnitud de la componente fundamental y de las componentes de mayor orden, así como sus desfasajes.
- La Serie de Fourier establece la relación entre la función en el dominio del tiempo y sus componentes en el dominio de la frecuencia.

Un ejemplo sencillo:

Tasa de Distorsión Total (TDT) o Total Harmonic Distortion (THD):

Es un parámetro para ponderar el contenido armónico total, aplicable tanto a tensiones como a corrientes:

$$THD_{U} \ [\%] = \frac{\sqrt{\sum_{k=2}^{50} U_{k}^{2}}}{U_{1}} * 100 \qquad THD_{I} \ [\%] = \frac{\sqrt{\sum_{k=2}^{50} I_{k}^{2}}}{I_{1}} * 100$$

Tasa de Distorsión de Demanda o Total Demand Distortion (TDD):

Es un parámetro aplicable sólo para corrientes, que evalúa la distorsión de corriente en función de la corriente máxima contratada por el usuario (IL):

$$TDD_{I}[\%] = \frac{\sqrt{\sum_{k=2}^{50} I_{k}^{2}}}{I_{L}}$$
Distorsión Armónica Individual:
$$HD_{n}[\%] = \frac{X_{n}}{X_{1}} * 100$$

$$HD_n[\%] = \frac{X_n}{X_1} * 100$$

Cargas que generan armónicas

Previo a la aparición de dispositivos con electrónica de potencia:

- Hornos de arco
- Transformadores
- Lámparas fluorescentes
- Máquinas eléctricas

Dispositivos que integran electrónica de potencia:

- Controladores de velocidad (ventiladores, bombas y controladores de procesos).
- Switches de estado sólido que modulan corrientes de control, intensidad de luz, calor, etc.
- Fuentes controladas para equipos electrónicos.
- Rectificadores (equipos de soldadura, cargadores de baterías).
- Compensadores estáticos de potencia reactiva.
- **Inversores**

Equipamiento que integra electrónica de potencia

¿Dónde se encuentran dispositivos con EdeP?

En casi todos lados...

Industrias:

Control de motores Sistemas de control

Iluminación

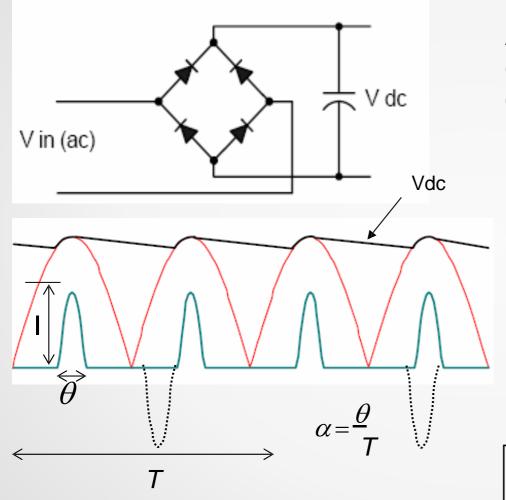
Balastos electrónicos para lámparas fluorescentes y lámparas LED, Dimmers

Generación (concentrada y distribuida) y transmisión de energía

Solar fotovoltaica Eólica

HVDC – Conversión de frecuencia

Residencias y oficinas:

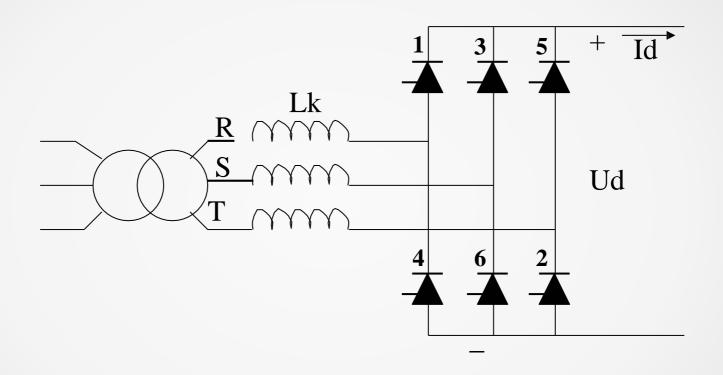

PC's

Televisores Microondas

Equipamiento eléctrico de oficina (impresoras, PC's, etc.)

Rectificador monofásico

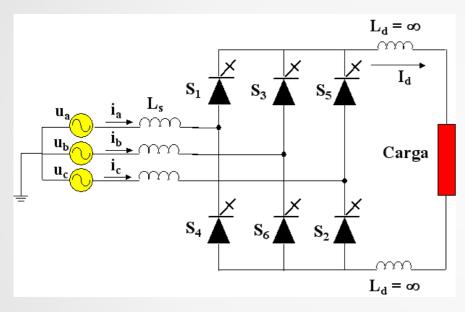
Antes: transformador para adaptar el nivel de continua – reducía el contenido armónico...

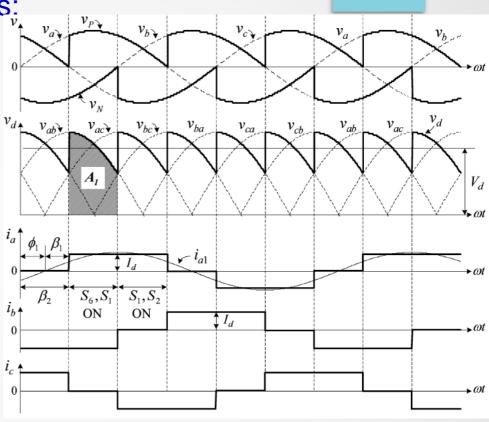

Ahora: conversores DC-DC ¿Dónde se encuentran?

 Equipamiento de oficina, PC's, televisores, microondas, balastos electrónicos

$$I_n = \frac{8\alpha I}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{\cos(n\alpha\pi)}{1 - n^2\alpha^2\pi^2}$$

Rectificador trifásico





Se comporta como una fuente de corrientes armónicas del lado AC y como una fuente de tensiones armónicas del lado DC

Rectificador trifásico

Convertidores trifásicos de 6 pulsos:

La corriente I_d es siempre positiva

Si $0 < \alpha < 90^{\circ}$

La tensión U_d es positiva

P > 0

Si $90^{\circ} < \alpha < 1$

La tensión U_d es negativa

P < 0

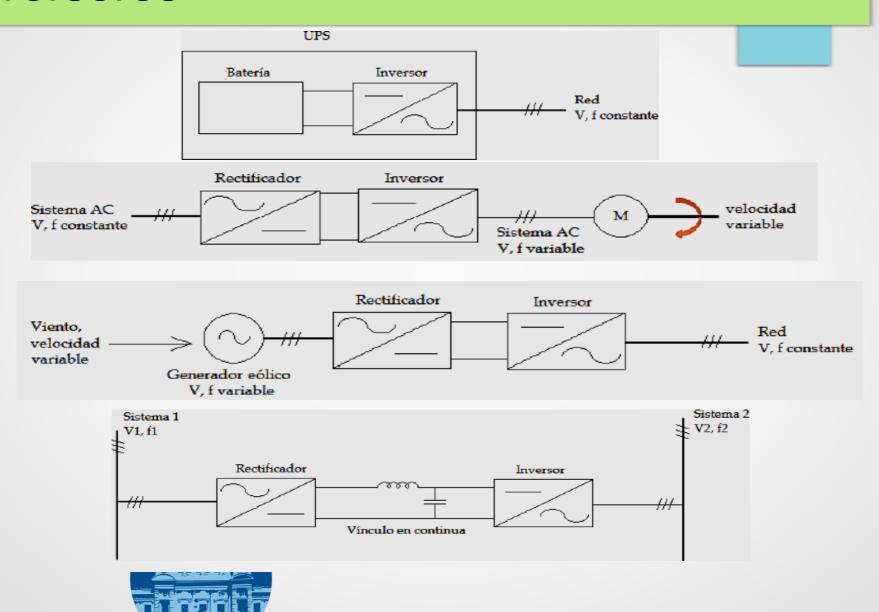
Rectificador trifásico

La corriente de línea es:

$$i_R = \frac{2\sqrt{3}}{\pi} I_d \left[\cos(\omega t) - \frac{1}{5} \cos(5\omega t) + \frac{1}{7} \cos(7\omega t) - \frac{1}{11} \cos(11\omega t) + \frac{1}{13} \cos(13\omega t) + \cdots \right]$$

No tiene armónicos múltiplos de 3

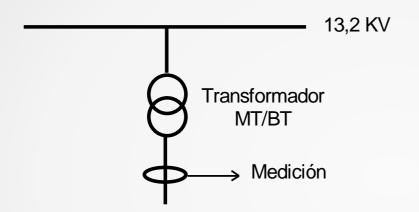
Tiene armónicos de orden 6k±1, k entero


- 6k+1 (sec. positiva)
- 6k-1 (sec. Negativa)

$$I_1 = \frac{\sqrt{6}}{\pi} I_{\rm d} \qquad \qquad I_n = \frac{I_1}{n}$$

Suelen conectarse a través de un transformador...

Si el primario o secundario está en triángulo no cambia el contenido armónico, solo los signos para valores impares de k (5,7,17,19...)


Inversores

Ejemplo 2: Centro de transformación de central telefónica.

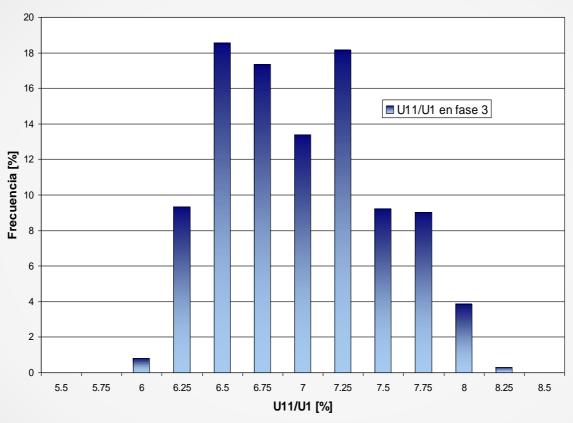
Esquema de la Medición

Datos de la Medición:

<u>Lugar</u>: Centro de Transformación de Central telefónica con *Rectificadores*. <u>Potencia del Transformador</u>: 500 KVA

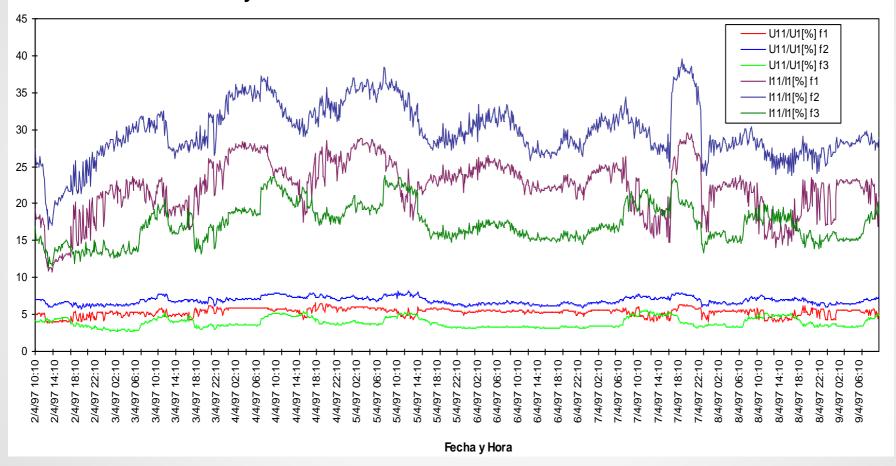
Marca del Transformador : SIAM

Relación de Transformación : 13200/400


Equipo utilizado : **CPM** ACE 2000 Período de Medición : Una semana

Resultado del procesamiento:

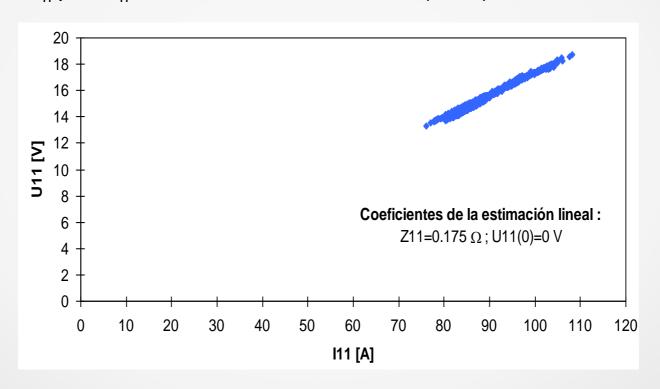
Cantidad	[%] que hubo	Penalización	OBSERVACIONES
de	violación en	Unitaria	
Intervalos	alguna fase de U	[U\$S/kWh]	
1008	100 %	0.2	Violación Armónica 11 ^{ra}


Nota: La energía registrada durante la semana de medición fue aproximadamente 32000 kWh

Histograma de la Armónica 11:

Nota: El valor máximo permitido para la armónica 11^{ra} en tensión es 3.5 %. Por lo tanto se observa que, en la fase 3, durante los 1008 períodos de medición se produjo violación.

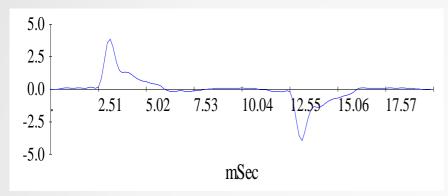
Perfil de tensiones y corrientes referidas a sus fundamentales:

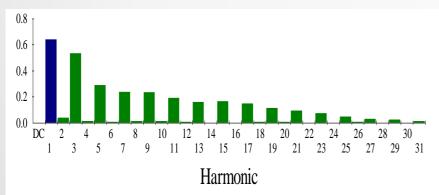


Se observa cierta correlación entre las corrientes y tensiones armónicas.

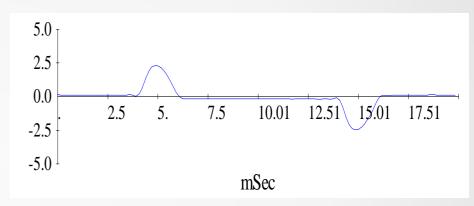
Gráficos U vs I:

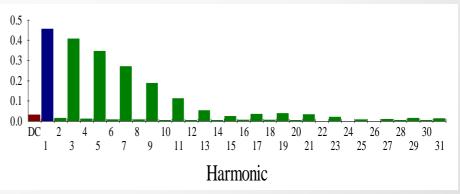
Son utilizados para estimar si determinada armónica es producida por el Usuario. Para ello se grafica la coordenada de tensión y corriente de la armónica h para cada intervalo k. Luego se observa el valor U_h para I_h nula. Para el caso anterior (h=11):




Se concluye que la armónica 11^{ra} es producida por la emisión del Usuario.

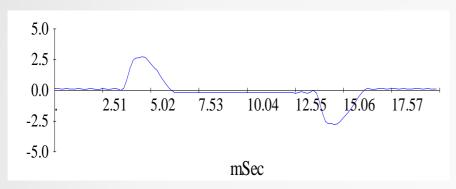
Mediciones en cargas distorsionantes de BT

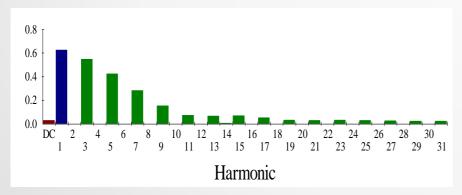

Lámpara fluorescente compacta



THD=123 %

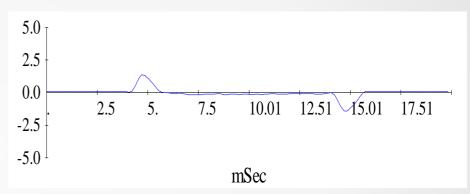
Televisor

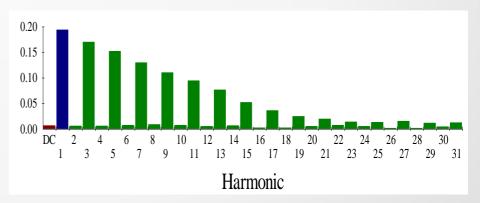



THD=141 %

Mediciones en cargas distorsionantes de BT

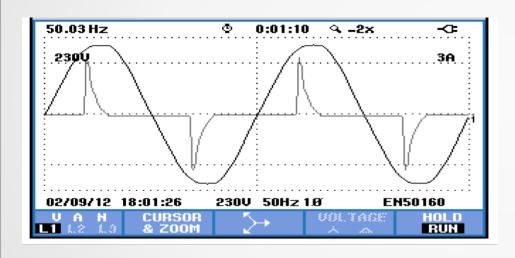
Computadora

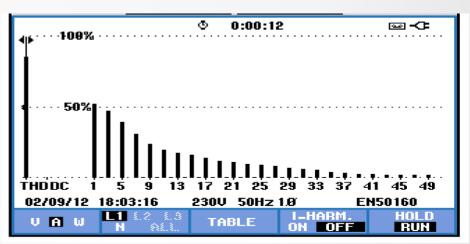




THD=124 %

VCR

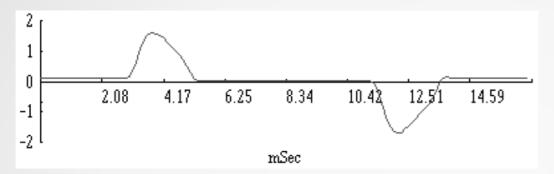




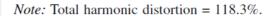
THD=165 %

Mediciones en cargas distorsionantes de BT

LED como sistema de Iluminación

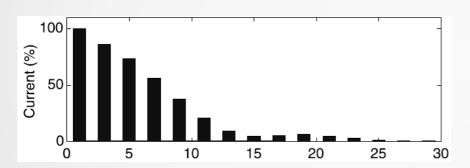


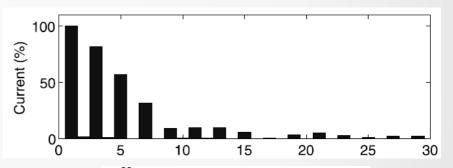
THD=163 %


Mediciones en cargas distorsionantes de BT

Computadora personal

Harmonic Number h(n) vs. Individual Harmonic Distortion for a Personal Computer

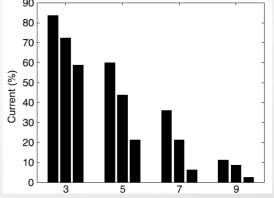

	Harmonic Distortion Spectrum				
h (n)	IHD (%)	h(n)	IHD (%)	h(n)	IHD (%)
0	12.8	11	10.3	22	2.1
1	100	12	1.2	23	0
2	3.3	13	10.3	24	0
3	87.2	14	0	25	0
4	5.1	15	10.3	26	0
5	64.1	16	0	27	0
6	1.6	17	5.1	28	0
7	41.1	18	0	29	0
8	0	19	2.4	30	0
9	17.9	20	0	31	0
10	1.1	21	2.1		



El efecto de agregar más computadoras en el mismo nodo es equivalente a ensanchar el ancho del pulso de corriente. Esto resulta en una reducción de las armónicas de orden elevado, pero no altera mayormente a las armónicas de bajo orden.

Una PC: THD = 134%

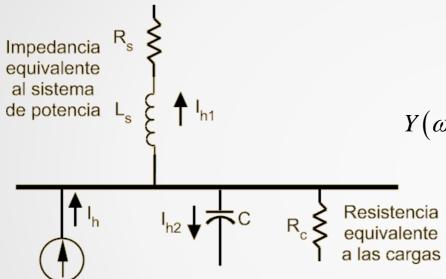
Múltiples PC: THD = 106%


Medición de las armónicas de corriente para:

➤1 Televisor

▶10 Televisores

≥80 Televisores



Resonancias

Carga Perturbadora

$$Y(\omega) = \frac{1}{R_c} + \frac{1}{R_s + j\omega L_x} + j\omega C$$

$$Y(\omega) = \frac{R_s}{R_s^2 + (\omega L_s)^2} + \frac{1}{R_c} + j \left[\omega C - \frac{\omega L_s}{R_s^2 + (\omega L_s)^2} \right]$$

 $\omega C - \frac{\omega L_s}{R^2 + (\omega L_s)^2} = 0$

En resonancia se anula la parte reactiva de la impedancia

$$\omega = \frac{1}{\sqrt{L_s C}} \sqrt{1 - \frac{R_s^2 C}{L_s}} \approx \frac{1}{\sqrt{L_s C}}$$

$$f = \frac{1}{2\pi\sqrt{L_sC}}$$

Alternativamente la frecuencia de resonancia puede calcularse como:

$$f = f_0 \sqrt{\frac{S_{cc}}{Q_c}}$$

- $f = f_0 \sqrt{\frac{S_{cc}}{Q_c}}$ $\stackrel{\triangleright}{\triangleright}$ f_0 es la frecuencia fundamental del sistema $\stackrel{\triangleright}{\triangleright}$ S_{cc} es la potencia de cortocircuito donde se coloca el capacitor
 - Q es la potencia reactiva del banco de compensación

En la frecuencia de resonancia, la impedancia equivalente de la red se hace muy grande y resulta:

$$Z(\omega_r) = \frac{R_s^2 + (\omega L_s)^2}{R_s} \approx \frac{(\omega L_s)^2}{R_s} = Q \cdot XL_s$$

La magnitud de la impedancia vista desde los generadores de corrientes armónicas depende del factor de merito Q del circuito.

En sistemas de Distribución: $2 \le Q \le 5$

En sistemas de Transmisión: $5 \le Q \le 20$

En el secundario de grandes transformadores : Q > 30

Durante la resonancia paralelo, una pequeña corriente armónica puede causar una importante tensión armónica:

$$U_p = Q \cdot XL_s \cdot I_h = QU_h$$

En el punto de resonancia, las corrientes en el capacitor y en el sistema de potencia son:

$$I_c = \frac{Q \cdot XL_s \cdot I_h}{X_c}$$

$$I_{s} = \frac{Q \cdot XL_{s} \cdot I_{h}}{XL_{s}} = Q \cdot I_{h}$$

Las corrientes en el capacitor y en el sistema de potencia se magnifican Q veces. Este fenómeno puede causar fallas en los capacitores, explosiones de fusibles y recalentamiento de los transformadores

Efecto de las armónicas en los SEPs

Aumento de pérdidas en líneas y cables por efecto Joule:

$$P = R. I_{eff}^2$$
 $I_{eff}^2 = \sum_{k=1}^{\infty} I_k^2$

Derating en transformadores (menor capacidad de transferir potencia):

Tensiones armónicas:

Incrementan las pérdidas por histéresis y por corrientes Eddy.

Aumentan la solicitación de los aislamientos.

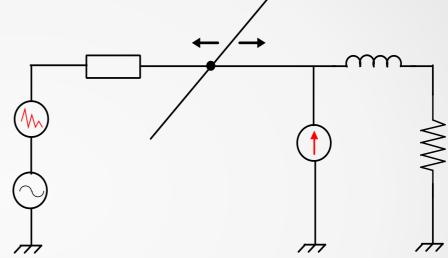
Corrientes armónicas:

Aumentan las pérdidas en los conductores, en forma "más que proporcional" porque se "adiciona" el efecto skin.

Circulación interna de armónicas múltiplos de tres:

En transformadores de potencia con bobinados en triángulo.

Transformadores con cargas asimétricas:


Si la corriente de carga contiene componentes d.c., la saturación del circuito magnético incrementa notablemente los niveles de armónicas del lado a.c.

Efecto de las armónicas en los SEPs

• Errores en el sistema de medición comercial de energía.

Potencia entrante a una carga R, desde una red con distorsión

$$P_{t} = \frac{U_{ef}^{2}}{R_{L}} = \frac{U_{1}^{2}}{R_{L}} + \frac{\sum_{2}^{n} U_{i}^{2}}{R_{L}}$$
Como:
$$TDT = \sqrt{\sum_{i=2}^{40} \left(\frac{U_{i}}{U_{1}}\right)^{2}}$$

$$P_{t} = P_{1} \left(1 + TDT^{2}\right)$$

Bancos de capacitores

La distorsión de tensión aumenta las pérdidas dieléctricas en el capacitor, siendo la pérdida total expresada como:

$$P_{h} = \sum_{n=1}^{N} C \cdot (\tan \delta) \cdot \omega_{n} \cdot U_{n}^{2}$$

$$tan \delta = \omega RC \text{ es el factor de pérdidas}$$

$$\omega_{n} = 2\pi f_{n}$$

$$U_{n} = \text{es la tensión eficaz de la armónica n}$$

 \rightarrow tan $\delta = \omega RC$ es el factor de pérdidas

La potencia reactiva total incluyendo la componente fundamental y los armónicos no debe exceder a la potencia reactiva nominal.

$$Q = \sum_{n=1}^{N} Q_n$$

Las resonancias entre los bancos de capacitores y el resto del sistema eléctrico pueden causar sobretensiones y sobrecorrientes que pueden aumentar sustancialmente las pérdidas en los capacitores, y por lo tanto el calentamiento, lo que puede llevar a su destrucción.

> Transformadores

Reseña de efectos:

Tensiones armónicas:

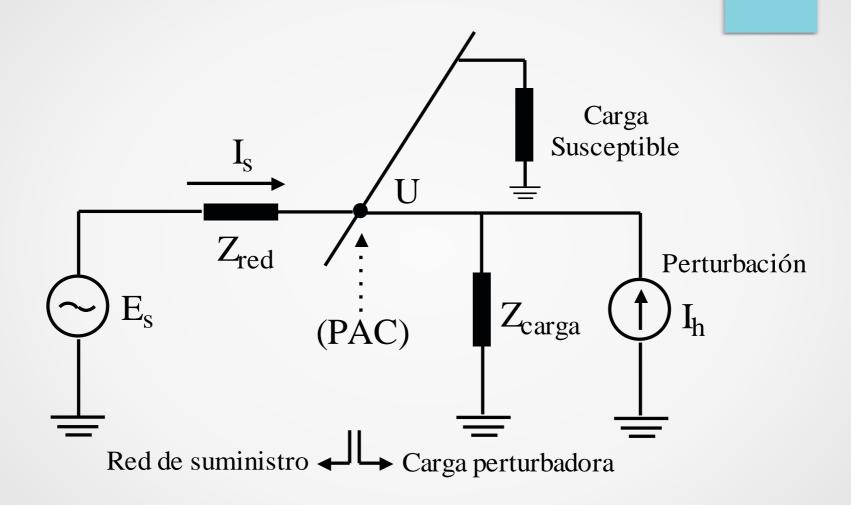
Incrementan las pérdidas por histéresis y por corrientes Eddy.

Aumentan la solicitación de los aislamientos.

Corrientes armónicas:

Aumenta las pérdidas en los conductores, en forma más que proporcional por efecto pelicular.

Circulación interna de armónicas múltiplos de tres:


En transformadores de potencia con bobinados en triángulo.

Transformadores con cargas asimétricas:

Si la corriente de carga contiene componentes d.c., la saturación del circuito magnético incrementa notablemente los niveles de armónicas del lado a.c.

Niveles de Compatibilidad

Límites de armónicas en la tensión

Límites para redes de BT (< 1kV): IEC 61000-2-2

IEC 61000-2-2: Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems.

Límites para redes de MT (1kV<U<35 kV): IEC 61000-2-12

Electromagnetic compatibility (EMC) - Part 2-12: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public medium-voltage power supply systems.

Límites para redes industriales: IEC 61000-2-4

Electromagnetic compatibility (EMC) - Part 2-4: Environment - Compatibility levels in industrial plants for low-frequency conducted disturbances.

Límites BT: IEC 61000-2-2

	Odd Harmonics non- multiple of 3		Odd Harmonics multiple of 3		rmonics
Harmonic Order n	Harmonic Voltage [%]	Harmonic Order n	Harmonic Voltage [%]	Harmonic Order n	Harmonic Voltage [%]
5	6	3	5	2	2
7	5	9	1.5	4	1
11	3.5	15	0.3	6	0.5
13	3	21	0.2	8	0.5
17	2	>21	0.2	10	0.5
19	1.5			12	0.2
23	1.5			>12	0.2
25	1.5				
>25	0.2+0.5x25/n				

THD: 8 %

Límites MT: IEC 61000-2-12

Odd Harmonics non- multiple of 3		Odd Harmonics multiple of 3		Even Harmonics	
Harmonic Order n	Harmonic Voltage [%]	Harmonic Order n	Harmonic Voltage [%]	Harmonic Order n	Harmonic Voltage [%]
5	6	3	5	2	2
7	5	9	1.5	4	1
11	3.5	15	0.4	6	0.5
13	3	21	0.3	8	0.5
17	2	>21	0.3	10	0.5
19	1.76			12	0.46
23	1.41			>12	0.2
25	1.27				
>25	0.2+0.5x25/n				

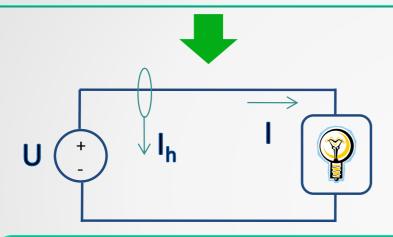
THD: 8 %

Redes Industriales: IEC 61000-2-4

La Norma clasifica a la red industrial de acuerdo a los niveles medidos en tres clases, llamadas 1, 2 y 3.

Order h	Class 1 U _h (%)	Class 2 U _h (%)	Class 3 U _h (%)
3	3	5	6
9	1.5	1.5	2.5
15	0.3	0.3	2
21	0.2	0.2	1.75
>21	0.2	0.2	1

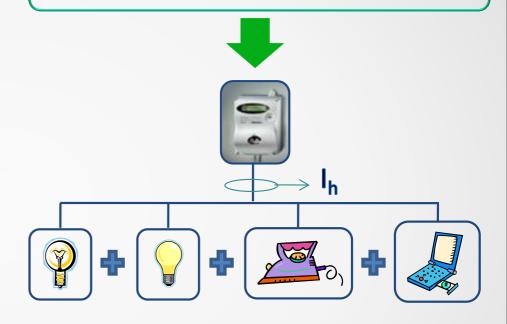
Order h	Class 1 U _h (%)	Class 2 U _h (%)	Class 3 U _h (%)
2	2	2	3
4	1	1	1.5
6	0.5	0.5	1
8	0.5	0.5	1
10	0.5	0.5	1
>10	0.2	0.2	1


Order h	Class 1 U _h (%)	Class 2 U _h (%)	Class 3 U _h (%)
5	3	6	8
7	3	5	7
11	3	3.5	5
13	3	3	4.5
17	2	2	4
19	1.5	1.5	4
23	1.5	1.5	3.5
25	1.5	1.5	3.5
>25	0.2+12.5/n	0.2+12.5/n	5*√(11/n)

	Class 1	Class 2	Class 3
	U _h (%)	U _h (%)	U _h (%)
THD	5	8	10

Marco Regulatorio sobre emisión armónicas

Normativa a nivel de equipos



Se ensayan distintos equipos a los efectos de evaluar la emisión de armónicas

Son empleadas por los fabricantes de equipos (Normas IEC 61000-3-2, 61000-3-4; etc.)

Normativa a nivel de Usuarios

Se penalizan aquellos usuarios que exceden los límites establecidos

En Argentina se emplea la Resolución ENRE 99/1997 (como referencia la IEEE 519-2014)

Límites de armónicas en la corriente

Límites para equipos con In ≤ 16 A: IEC 61000-3-2

Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current ≤ 16 A per phase).

Límites para equipos con ln > 16 A: IEC 61000-3-4

Electromagnetic compatibility (EMC) - Part 3-4: Limits - Limitation of emission of harmonic currents in low-voltage power supply systems for equipment with rated current greater than 16 A.

Conexión de equipos en MT y AT: IEC 61000-3-6

Electromagnetic compatibility (EMC) - Part 3-6: Limits - Assessment of emission limits for the connection of distorting installations to MV, HV and EHV power systems.

Aparatos con In≤16 A: IEC 61000-3-2

- Límites para aparatos *Clase A*, a la que pertenecen la mayoría de los equipos monofásicos y trifásicos balanceados.
- Los límites están dados directamente en [A].

Odd Harmonics		Even Harmonics	
Harmonic Order n	Maximum Harmonic Current [A]	Harmonic Order n	Maximum Harmonic Current [A]
3	2.3	2	1.08
5	1.14	4	0.43
7	0.77	6	0.3
9	0.4	8 ≤ n ≤ 40	0.23*8/n
11	0.33		
13	0.21]	

0.15*15/n

 $15 \le n \le 39$

Aparatos con In≤16 A: **IEC 61000-3-2**

- Los equipos de iluminación pertenecen a la Clase C.
- La Norma diferencia el tratamiento entre lámparas por debajo y por encima de 25 W.
- Límites para lámparas con P > 25 W.

Harmonic Order n	In/I₁ [%]
2	2
3	30⋅λ*
5	10
7	7
9	5
11 ≤ n ≤ 39 (odd harmonics)	3

λ: Factor de Potencia del circuito