Getting Started Guide

This document describes information for GPU programming for the course.

Please, read it carefully.

2.1. Change your password

Use an SSH client program to login to dt0l.bsc.es using the training account
login information provided to you. This machine is only used for password setup,
the machines you will have to connect during the hands on labs of the course are
detailed below. Once logged in, follow the steps that appear in the terminal to
change your default password for a new one of your choice (If no steps appear after
you login, execute the command passwd). Note that there could be some
restrictions to ensure that passwords have a minimum strength level (a minimum
number of characters, use of numbers and/or punctuation symbols, etc.). Once you
finish changing you password, you can logout from this machine and connect to the

cluster login node.

Note: the password change may take ‘a couple’ of minutes to be effective.

2.2. Cluster usage

With your SSH client login to mtl.bsc.es using the provided username and your
new password. If you just changed your password, it may take some time (up to 10
minutes) for the change to be effective, thus it is possible that you cannot login

during this time.

In this section, we present a brief description of the main commands needed to
work in the cluster. For further information about the MinoTauro cluster, take a
look to the MinoTauro User's Guide. This guide contains detailed information

about the MinoTauro Cluster, its job management system, etc.

The MinoTauro cluster uses a job management system to control access to the
computing nodes. To run the labs, you will need to use the commands provided by
the system to submit jobs for execution, check their state, or cancel them if

necessary:

http://www.bsc.es/support/MinoTauro-ug.pdf

Submitting a job
To submit a job, use the command sbatch <job script>, like in the following
example:

$ sbatch ./job.sh
Submitted batch job 170798

After you execute the command, you shall see a message with the ID of the
newly created job (170798 in the example above). The argument of sbatch
(<job_script>) is the path of a shell script which contains a set of directives
required by the job queue system, and the command to execute the program (see
the example below). Some labs already provide a job.sh file, just note that to run
the different programs in a lab, you will have to edit the last line of the script to
execute the corresponding program. If a lab doesn’t provide a job script, make a
copy of a previous one and edit it accordingly for the current lab.

#!/bin/bash

#SBATCH --job-name=MyJob
#SBATCH --workdir=.
#SBATCH --output=%j.out
#SBATCH --error=%j.err
#SBATCH --time=00:05:00
#SBATCH --ntasks=1

#SBATCH --tasks-per-node=1

#SBATCH --cpus-per-task=1
#SBATCH --gres=gpu:1l

<some command(s)>

Query job status

To query job status use the squeue command. You shall see all your submitted

jobs that are waiting or running in the cluster.
A job has the PENDING state when is waiting in the queue:

$ squeue --long
JOBID NAME USER STATE TIME TIMELIMIT CPUS NODES NODELIST (REASON)
170798 MyJob nct@@E02 PENDING 0:00 10:00 6 1 (Priority)

A job has the RUNNING state when it is executing. When a job is in the
RUNNING state, the TIME column shows the elapsed time since the job started
executing, and the NODELIST (REASON) column indicates on which cluster's
node/s the job is running.
$ squeue --long

JOBID NAME USER STATE TIME TIMELIMIT CPUS NODES NODELIST(REASON)
170798 MyJob nct00002 RUNNING 0:04 10:00 6 1 nvb118

When the job has finished and the job queue system has finished cleaning the job

resources, the job won't appear anymore in the list:

$ squeue --long
JOBID NAME USER STATE TIME TIMELIMIT CPUS NODES NODELIST(REASON)

Canceling a job
To delete a job you can use the command scancel <job ID>

$ scancel 170798

When your job is finished, you can check the program output in the files
“XXX.out” and “XXX.err”, where “XXX” is the job ID number. Files with “.out”
extension store the execution output log (stdout). Files with “.err” extension store

the error or warning messages printed during the execution (stderr).

Note: Be aware that interruptions to your SSH connection may cause you to lose
unsaved work. If you have reason to believe your connection to the cluster may be
unstable, you may wish to use an FTP program with the SF'TP protocol and your
provided login information to retrieve the source files to your local machine for

editing and upload them back to the cluster to compile and execute the programs.

Execution of GUI applications

In some of the labs we will use the NVIDIA Visual Profiler to profile the code
and obtain a timeline of its execution. The best way to view the windows of a GUI
app running in the cluster is to use the X forwarding feature of ssh. Setting up X
forwarding to be able to use remote GUI apps depends on the OS installed in your
laptop;

Linux

In this case you just have to add the -X flag when connecting to the cluster
through ssh:

$ ssh -X <username>@mtl.bsc.es
If any error appears while trying to run a GUI app, you may try using the -Y
flag instead of -X.

Windows

Windows doesn’t handle X GUIs by default. There are several apps for Windows
that enable this functionality, but many of them are not free. If you already have

an X server emulation app installed in your laptop, you can use it for these labs. If

not, we did some tests with the free version of MobaXterm and seems to work well.

You can download it from:

http:/mobaxterm.mobatek.net/

Mac OS

On Mac OS, the X windows system is called XQuartz. Mac OS X 10.5, 10.6 and
10.7 installed it by default, but as of 10.8 Apple has dropped support and directs
users to the open source XQuartz. You can install XQuartz from the OS

distribution media or download it from https://www.xquartz.org/.

When connecting to the cluster through ssh add the -Y flag (not -X) to enable X

forwarding;:

$ ssh -Y <username>@mtl.bsc.es

Obtain the labs source code

Use an SSH client program to login to mtl.bsc.es using the training account login
information provided to you. Your home directory can be organized in any way you
like. To unpack the labs framework including the code for all the lab assignments,
execute the unpack command in the directory you would like the labs framework to

be deployed:
$ tar -zxf ~nct00021/mv19 openacc.tgz

Check that a directory containing the labs has been created:

$ cd mv19 openacc
$ 1s

The last command should list the different labs’ directories and a few files.

Setup the environment

To be able to compile the labs, we first have to enable the PGI’s OpenACC
compiler. For this, execute the following command:

$ module load pgi

You will have to execute this command every time you login to the cluster.

OpenACC Course-Lab 1

This hands-on lab walks you through a short sample of a scientific code, and

demonstrates how you can employ OpenACC directives using a four-step process.

You will make modifications to a simple C program, then compile and execute the

newly enhanced code in each step. Along the way, hints and solution are provided,

so you can check your work, or take a peek if you get lost.

You can accelerate your applications using OpenACC directives with 4

straightforward steps:

1. Characterize your application

2. Add compute directives

3. Minimize data movement

4. Optimize kernel scheduling

The content of these steps and their order will be familiar if you have ever done

parallel programming on other platforms. Parallel programmers deal with the same

issues whenever they tackle a new set of code, no matter what platform they are

parallelizing an application for. These issues include:

Optimizing and benchmarking the serial version of an application

Profiling to identify the compute-intensive portions of the program that

can be executed concurrently

Expressing concurrency using a parallel programming notation (e.g.,
OpenACC directives)

Compiling and benchmarking each new /parallel version of the application

Locating problem areas and making improvements iteratively until the

target level of performance is reached

The 4 Steps process will help you use OpenACC on your own codes more

productively, and get better speed-ups in less time.

This lab is provided with C code. Some of the following labs will also provide

Fortran versions.

The most difficult part of accelerator programming begins before the first line of
code is written. If your program is not highly parallel, an accelerator or coprocesor
won't be much use. Understanding the code structure is crucial if you are going to
identify opportunities and successfully parallelize a piece of code. The first step in

OpenACC programming then is to characterize the application. This includes:

* Understanding the program structure and how data is passed through the call

tree

* Profiling the CPU-only version of the application and identifying

computationally-intense "hot spots”
o Which loop nests dominate the runtime?
o Are the loop nests suitable for an accelerator?

* Insuring that the algorithms you are considering for acceleration are safely

parallel

What we've just said may sound a little scary, but please note that as parallel
programming methods go, OpenACC is really friendly; because OpenACC directives
are incremental, you can add one or two directives at a time and see how things
work. Also, the compiler provides a lot of feedback that can help you during the
acceleration process.

In this first lab, we will be accelerating a 2D-stencil called the Jacobi Iteration.
Jacobi Iteration is a standard method for finding solutions to a system of linear

equations. Here is the serial C code for our Jacobi Iteration:

#include <math.h>
#include <string.h>
#include <openacc.h>
#include "timer.h"
#include <stdio.h>

#define NN 1024
#define NM 1024

float A[NN][NM];
float Anew[NN][NM];

int main(int argc, char** argv)
o

int 1,73;

const int n NN;

const int m = NM;

const int iter_max = 1000;
const double tol = 1.0e-6;
double error =1.0;

memset(A, ©, n * m * sizeof(float));
memset(Anew, @, n * m * sizeof(float));

for (3 = 0; J <n; j++)

A[j][e]
Anew[j][0]

1.0;
1.0;

}

printf("Jacobi relaxation Calculation: %d x %d mesh\n", n, m);

StartTimer();
int iter = 0;

while (error > tol && iter < iter_max)

{
error = 0.0,
for(j =1; j < n-1; j++)
for(i =1; 1 <m-1; i++)
Anew[j][1i] = 0.25 * (A[J][i+1] + A[J][i-1]
+ A[J-1][1] + A[J+1][1i]);
error = fmax(error, fabs(Anew[j][i] - A[j1[i]));
}
}
for(j =1; j < n-1; j++)
{
for(1 =1; i < m-1; i++)
A[JI[1i] = Anew[]j][1i];
}
if(iter % 100 == 0) printf("%5d, %0.6f\n", iter, error);
iter++;
}

double runtime = GetTimer();

printf(" total: %f s\n", runtime / 1000);

In this code, the outer 'while' loop iterates until the solution has converged, by
comparing the computed error to a specified error tolerance, tol The first of two
sets of inner nested loops applies a 2D Laplace operator at each element of a 2D

grid, while the second set copies the output back to the input for the next iteration.

Benchmarking

Before you start modifying code and adding OpenACC directives, you should
benchmark the serial version of the program. To facilitate benchmarking after this
and every other step in our parallel porting effort, we have built a timing routine

around the main structure of our program -- a process we recommend you follow in

your own efforts. Let's run the taskl.c file without making any changes -- using
the -fast set of compiler options on the serial version of the Jacobi Iteration
program -- and see how fast the serial program executes. This will establish a
baseline for future comparisons. Execute the following command to compile the

code:
$ pgcc -fast -o jacobi taskl taskl/taskl.c

Now submit the example job script provided with the labs (job.sh) using the

command introduced in the Getting Started:
$ mnsubmit ../../job.sh

NOTE: In this first task the job script already contains the command that
executes the program we just compiled. From now on, you will have to edit the
script and modify the command it contains according to the program you want to

run.

Once the job finishes, check the *.out file. It should contain the output of the

program and look something like:

Jacobi relaxation Calculation: 1024 x 1024 mesh

0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269

total: 4.434503 s

Results Correctness

This is a good time to briefly talk about having a quality check in your code
before starting to offload computation to an accelerator (or do any optimizations,
for that matter). It doesn't do you any good to make an application run faster if it
does not return the correct results. It is thus very important to have a quality check
built into your application before you start accelerating or optimizing. This can be
a simple value print out (one you can compare to a non-accelerated version of the

algorithm) or something else.

In our case, on every 100th iteration of the outer while Iloop, we print the

current max error. As we add directives to accelerate our code later in this lab, you

can look back at these values to verify that we're getting the correct answer. These

print-outs also help us verify that we are converging on a solution -- which means

that we should see, as we proceed, that the values are approaching zero.

NOTE: NVIDIA GPUs implement IEEE-754 compliant floating point arithmetic
just like most modern CPUs. However, because floating point arithmetic is not
associative, the order of operations can affect the rounding error inherent with
floating-point operations; you may not get exactly the same answer when you move
to a different processor. Therefore, you'll want to make sure to verify your answer
within an acceptable error bound. Please read this article at a later time, if you
would like more details.

Profiling

Your objective in Step 2 will be to modify task2.c in a way that moves the
most computationally intensive, independent loops to the accelerator. With a simple
code, you can identify which loops are candidates for acceleration with a little bit of
code inspection. On more complex codes, a great way to find these computationally
intense areas is to use a profiler (such as NVIDIA’s nvprof, PGI's pgprof or open-
source gprof) to determine which functions are consuming the largest amounts of
compute time. In the next labs will see how to use nvprof to do the initial profiling.
For this one, the compute-intensive part of our code is the two for-loops nested

inside the while loop in the function main.

In C, an OpenACC directive is indicated in the code by '#pragma acc
<Zdirective>'. This is very similar to OpenMP programming and gives hints to the
compiler on how to handle the compilation of your source. If you are using a
compiler which does not support OpenACC directives, it will simply ignore the

'#pragma acc' directives and move on with the compilation.

In this step, you will add compute regions around your expensive parallel loop(s).
The first OpenACC directive you're going to learn about is the kernels directive.
The kernels directive gives the compiler a lot of freedom in how it tries to accelerate
your code - it basically says, "Compiler, I believe the code in the following region is

parallelizable, so I want you to try and accelerate it as best you can."

Like most OpenACC directives in C/C++, the kernels directive applies to the
structured code block immediately following the #pragma acc <directive>. For
example, each of the following code samples instructs the compiler to generate a

kernel -- from suitable loops -- for execution on an accelerator:

https://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus

#pragma acc kernels

{
// accelerate suitable loops here
// (note the plural, the block can contain more than one loop)

}
// but not these loops

or

#pragma acc kernels
for (int i = 0; i < n; ++i)
{ // body of for-loop
. // The for-loop is a structured block, so this code will be accelerated

. // Any code here will not be accelerated since it is outside of the for-loop

One, two or several loops may be inside the structured block, the kernels
directive will try to parallelize it, telling you what it found and generating as many
kernels as it thinks it safely can. At some point, you will encounter the OpenACC
parallel directive, which provides another method for defining compute regions in
OpenACC. For now, let's drop in a simple OpenACC kernels directive in front of
and embracing both the two for-loop codeblocks that follow the while loop. The
kernels directive is designed to find the parallel acceleration opportunities implicit

in the for-loops in the Jacobi Iteration code.

Add the directives in the file task2/task2.c and, once you finish, compile the code
with the following command:

$ pgcc -acc -Minfo -o jacobi task2 task2/task2.c

If you successfully added #pragma acc kernels in the proper spots, the

compiler output messages should look similar to this:

main:

36, Generating present_or_copyin(Anew[1:1022][1:1022])
Generating copyin(A[:]1[:1)
Generating copyout(A[1:1022][1:1022])
Generating NVIDIA code

41, Loop is parallelizable

43, Loop is parallelizable
Accelerator kernel generated
41, #pragma acc loop gang /* blockIdx.y */
43, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
47, Max reduction generated for error

52, Loop is parallelizable

54, Loop is parallelizable
Accelerator kernel generated
52, #pragma acc loop gang /* blockIdx.y */
54, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
Memory copy idiom, loop replaced by call to __c_mcopy4

If you do not get a similar output, please check your work and try re-compiling.
If you're stuck, you can compare what you have with the code in
task2/task2 solution.c.

The output provided by the compiler is very useful, and should not be ignored
when accelerating your own code with OpenACC. Let's break it down a bit and see

what it's telling us.

1. First, since we used the -Minfo command-line option, we will get all the
output messages the compiler can provide. If we were to use -Minfo=accel

we would only see the output corresponding to the accelerator, in this case an
NVIDIA GPU.

2. The first line of the output, main, tells us which function the following

information is in reference to.

3. The line starting with 41, Loop 1s parallelizable of the output tells
us that on line 41 in our source, an accelerated kernel was generated. This is

the the loop just after where we put our #pragma acc kernels.

4. The following lines provide more details on the accelerator kernel on line 42.
It shows we created a parallel OpenACC loop. This loop is made up of
gangs (a grid of blocks in CUDA language) and vector parallelism (threads in
CUDA language) with the vector size being 128 per gang.

5. At line 54, the compiler tells us it found another loop to accelerate.

6. The rest of the information concerns data movement which we'll get into
later in this lab.

So as you can see, lots of useful information is provided by the compiler, and it's
important that you carefully inspect this information to make sure the compiler is

doing what you've asked for.

Once you feel your code is correct, edit the job script to execute jacobi task2, and
submit it using mnsubmit. You'll want to review our quality check to make sure

you didn't break the functionality of your application.

Now, if your solution is similar to the one in taskZ2 solution.c, you have probably
noticed that we're executing slower than the non-accelerated, CPU-only version we
started with. What gives?!

The compiler feedback we collected earlier tells you quite a bit about data
movement, and you can collect even more by setting an environment variable
(export PGI_ACC TIME=1) and then running the compiled code (We'll use this later in

Step 4). The reason for our slowdown in this step is excessive data movement: both

regions spent the majority of their time copying data.

The OpenACC compiler can only work with the information we have given it. It
knows we need the A and Anew arrays on the GPU for each of our two accelerated
sections, but we didn't tell it anything about what happens to the data outside of
those sections. Without this knowledge, it has to copy the arrays to the GPU and
back to the CPU for each accelerated section, every time it goes through the while
loop. That is a LOT of wasted data transfers.

Ideally, we would just transfer A and Anew to the GPU at the beginning of the
Jacobi Iteration, and then only transfer A back to the CPU at the end.

Because overall accelerator performance is determined largely by how well
memory transfers are optimized, the OpenACC specification defines the data
directive and several modifying clauses to manage all the various forms of data

movement.

We need to give the compiler more information about how to reduce unnecessary
data movement for the Jacobi Iteration. We are going to do this with the
OpenACC data directive and some modifying clauses defined in the OpenACC

specification.

In C, the data directive applies to the next structured code block. The compiler
will manage data according to the provided clauses. It does this at the beginning of
the data directive code block, and then again at the end. Some of the clauses

available for use with the data directive are:

 copy(list) - Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

* copyin(list) - Allocates memory on GPU and copies data from host to GPU when
entering region.

« copyout(list) - Allocates memory on GPU and copies data to the host when exiting
region.

 create(list) - Allocates memory on GPU but does not copy.

* present(list) - Data is already present on GPU from another containing data
region.

As an example, the following directive copies array A to the GPU at the
beginning of the code block, and back to the CPU at the end. It also copies arrays
B and C to the CPU at the end of the code block, but does not copy them to the
GPU at the beginning:

#pragma acc data copy(A), copyout(B, C)

For detailed information on the data directive clauses, you can refer to the
OpenACC 1.0 or 2.0 specifications.

Edit task3/task3.c and add a data directive to minimize data transfers in the

Jacobi Iteration. There's a place for the create clause in this exercise, too.

Hints:

* You should only have to worry about managing the transfer of data in arrays
A and Anew.

* You want to put the data directive just above the outer while loop.

* You want to copy A so it is transferred to the GPU and back again after the
final iterations through the data region. But you only need to create Anew

as it is just used for temporary storage on the GPU, so there is no need to

ever transfer it back and forth.

You can also look at task3 solution.c to see the answer if you get completely

stuck or want to check your work.

Once you finish adding the data directives, compile the code and run it with the
job system. After making these changes, our accelerator code should be much faster
-- with just a few lines of OpenACC directives we have made our code more than

twice as fast by running it on an accelerator.

The final step in our tuning process is to tune the OpenACC compute region
schedule using the gang and vector clauses. These clauses let us take more explicit
control over how the compiler parallelizes our code for the accelerator we will be

using.

Kernel scheduling optimizations may give you significantly higher speedup, but
be aware that these particular optimizations can significantly reduce performance
portability. The vast majority of the time, the default kernel schedules chosen by
the OpenACC compilers are quite good, but other times the compiler doesn't do as
well. Let's spend a little time examining how we could do better, if we were in a

situation where we felt we needed to.

First, we need to get some additional insight into how our Jacobi Iteration code

with the data optimizations is running on the accelerator. Let's run it with all your

http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

data movement optimizations on the accelerator again, this time setting the
environment variable PGI ACC TIME that we mentioned before.

Add the following command in the job script, before the command that was

executing step 3’s code:
export PGI ACC TIME=1

Submit the job script to run again the code from step 3, and when the job is
done, examine the output files. The *.out file should contain the normal output of
the program, and the *.err file should contain some timing information we haven't

seen previously:

Accelerator Kernel Timing data
/home/gpudevl/notebook/task3/task3.c
main NVIDIA devicenum=0
time(us): 391,494
34: data region reached 1 time
34: data copyin reached 1 time
device time(us): total=479 max=479 min=479 avg=479
68: data copyout reached 1 time
device time(us): total=519 max=519 min=519 avg=519
37: compute region reached 1000 times
44: kernel launched 1000 times
grid: [8x1022] block: [128]
device time(us): total=248,508 max=268 min=242 avg=248
elapsed time(us): total=258,569 max=453 min=255 avg=258
44: reduction kernel launched 1000 times
grid: [1] block: [256]
device time(us): total=27,531 max=83 min=25 avg=27
elapsed time(us): total=37,589 max=93 min=35 avg=37
55: kernel launched 1000 times
grid: [8x1022] block: [128]
device time(us): total=114,457 max=170 min=110 avg=114
elapsed time(us): total=124,880 max=303 min=121 avg=124

There is a lot of information here about how the compiler mapped the
computational kernels in our program to our particular accelerator (in this case, an
NVIDIA GPU). We can see three regions. The first one is the memcopy loop nest
starting on line 34, which takes only a tiny fraction of the 0.39 seconds of total
system time. The second region is the nested computation loop starting on line 44,
which takes about 0.25 seconds. The copyback (copyout) loop then executes
beginning with line 68. We can see that region takes very little time -- which tells
us there is no other part of the program that takes significant time. If we look at

the main loop nests, we can see these lines:

grid: [8x1022] block[128]

The terms grid and block come from the CUDA programming model. A GPU
executes groups of threads called thread blocks. To execute a kernel, the application
launches a grid of these thread blocks. Each block runs on one of the GPU
multiprocessors and is assigned a certain range of IDs that it uses to address a
unique data range. In this case our thread blocks have 128 threads each. The grid
the compiler has constructed is also 2D, 8 blocks wide and 1022 blocks tall. This is
just enough to cover our 1024x1024 grid. But we don't really need that many blocks
-- if we tell the compiler to launch fewer, it will automatically generate a sequential

loop over data blocks within the kernel code run by each thread.

Note: You can let the compiler do the hard work of mapping loop nests, unless
you are certain you can do it better (and portability is not a concern.) When you
decide to intervene, think about different parallelization strategies (loop schedules):
in nested loops, distributing the work of the outer loops to the GPU multiprocessors
(on PGI = gangs) in 1D grids. Similarly, think about mapping the work of the
inner loops to the cores of the multiprocessors (CUDA threads, vectors) in 1D
blocks. The grids (gangs) and block (vector) sizes can be viewed by setting the
environment variable ACC NOTIFY.

Try to modify the code for the main computational loop nests in the file
taskd/task4.c. You'll want a gang() and vector() clause on the inner loops, but you
may want to let the compiler decide the dimensions of the outer loops. In that case,
you can use a loop directive without any modifying clauses. Look at task4_solution.c
if you get stuck. When you're done, compile and execute the code to see the change

in performance you obtained.

Looking at task4 solution.c, the gang(8) clause on the inner loop tells it to launch
8 blocks in the X(column) direction. The vector(32) clause on the inner loop tells
the compiler to use blocks that are 32 threads (one warp) wide. The absence of
clause on the outer loop lets the compiler decide how many rows of threads and
how many blocks to use in the Y(row) direction. You can check which value it used
running the code with the env. var PGI_ACC_TIME set to 1.

OpenACC Course - Lab 2

In this lab you will profile the provided application using either NVIDIA nvprof
or gprof and the PGI compiler. After profiling the application, you will use
OpenACC to express the parallelism in the 3 most time-consuming routines. You
will use CUDA Unified Memory and the PGI "managed" option to manage host and
device memories for you. You may use either the kernels or parallel loop
directives to express the parallelism in the code. Versions of the code have been
provided in C99 and Fortran 90. The C99 version is available in the c99 directory

and the F90 version is available in the £90 directory.

Identify
Available
Parallelism

Optimize
Loop
Performance

Express
Parallelism

Express Data
Movement

As discussed in the associated lecture, this lab will focus on Identifying
Parallelism in the code by profiling the application and Expressing Parallelism
using OpenACC. We will use CUDA Unified Memory to allow the data used on the
GPU to be automatically migrated to and from the GPU as needed. Please be
aware that you may see an application slowdown until you have completed each
step of this lab. This is expected behavior due to the need to migrate data between
the CPU and GPU memories.

Hint: You should repeat steps 2 and 3 for each function identified in step 1 in
order of function importance. Gather a new GPU profile each time and observe how

the profile changes after each step.

Makefiles have been provided for building both the C and Fortran versions of the
code. Change directory to your language of choice and run the make command to
build the code.

https://github.com/mjorda/nvidia-openacc-course-sources/blob/master/labs/lab2/Lecture_2_Steps.png

CIC++

$ cd c99/
$ make

Fortran

$ cd 90/
$ make

This will build an executable named cg that you can run with the ./cg

command. You may change the options passed to the compiler by modifying the
CFLAGS variable in c99/Makefile or FCFLAGS in T90/Makefile. You should
not need to modify anything in the Makefile except these compiler flags.

In this step, use the NVPROF profiler, or your preferred performance analysis
tool, to identify the important routines in the application and examine the loops
within these routines to determine whether they are candidates for acceleration. Use
the command below in the job script to gather a CPU profile.

nvprof --cpu-profiling on --cpu-profiling-mode top-down ./cg
Once the job is done, the *.out file should have the cg program output:

Rows: 8120601, nnz: 218535025
Iteration: O, Tolerance: 4.0067e+08

Iteration: 10, Tolerance: 1.8772e+07
Iteration: 20, Tolerance: 6.4359e+05
Iteration: 30, Tolerance: 2.3202e+04
Iteration: 40, Tolerance: 8.3565e+02
Iteration: 50, Tolerance: 3.0039e+01
Iteration: 60, Tolerance: 1.0764e+00
Iteration: 70, Tolerance: 3.8360e-02
Iteration: 80, Tolerance: 1.3515e-03
Iteration: 90, Tolerance: 4.6209e-05

Total Iterations: 100 Time: 28.534824s

The *.err file should have the profiling information, which should be something

similar to this:

======== CPU profiling result (top down):

99.87% main

| 81.12% matvec(matrix const &, vector const &, vector const &)

| 11.53% waxpby(double, vector const &, double, vector const &, vector const &)
| 4.55% dot(vector const &, vector const &)

| 2.65% allocate_3d_poisson_matrix(matrix&, int)

| 0.03% free_matrix(matrix&)

| 0.03% munmap

0.13% __c_mset8

======== Data collected at 100Hz frequency

We see from the above output that the matvec, waxpy, and dot routines take
up the majority of the runtime of this application. We will focus our effort on

accelerating these functions.

NOTE: The allocate_3d_poisson_matrix routine is an initialization

routine that can be safely ignored.

Within each of the routines identified above, express the available parallelism to
the compiler using either the acc kernels or acc parallel loop directive.
As an example, here's the OpenACC code to add to the matvec routine.

void matvec(const matrix& A, const vector& x, const vector &y) {

unsigned int num_rows=A.num_rows;

unsigned int *restrict row_offsets=A.row_offsets;
unsigned int *restrict cols=A.cols;

double *restrict Acoefs=A.coefs;

double *restrict xcoefs=x.coefs;

double *restrict ycoefs=y.coefs;

#pragma acc kernels
{
for(int i=0;i<num_rows;i++) {

double sum=0;

int row_start=row_offsets[i];

int row_end=row_offsets[i+1];

for(int j=row_start;j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[]j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

ycoefs[i]=sum;

Add the necessary directives to each routine one at a time in order of
importance. After adding the directive, recompile the code, check that the output

has remained the same, and note the performance difference from your change.

Before compiling, edit the Makefile and add the required flags to specify the
target architecture configuration to generate GPU code using managed memory.
Also add the flag that tells the compiler to output information about the
parallelization process.
$ make
pgc++ -fast -acc -ta=tesla:managed -Minfo=accel main.cpp -0 cg
"vector.h", line 16: warning: variable "vcoefs" was declared but never

referenced
double *vcoefs=v.coefs;

N

matvec(const matrix &, const vector &, const vector &):
8, include "matrix_functions.h"
15, Generating copyout(ycoefs[:num_rows])
Generating
copyin(xcoefs[:],Acoefs[:],cols[:], row_offsets[:num_rows+1])
16, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
16, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x
*/
20, Loop is parallelizable
The performance may slow down as you're working on this step. Be sure to read
the compiler feedback to understand how the compiler parallelizes the code for you.
If you are doing the C/C++ lab, it may be necessary to declare some pointers as
restrict in order for the compiler to parallelize them. You will know if this is

necessary if the compiler feedback lists a "complex loop carried dependency."

Once you have added the OpenACC directives to your code, you should obtain a
new profile of the application. For this step, use the NVIDIA Visual Profiler to
obtain a GPU timeline and see how the the GPU computation and data movement
from CUDA Unified Memory interact. Before continuing, read the Getting Started

section on how to use GUI apps in cluster, if you didn’t read it yet.
To run the NVIDIA Visual Profiler in the cluster use the command:
$../../launch _nvvp

This will launch the profiler in one of the computating nodes of the cluster for a
maximum of 20 minutes. We recommend you to close the profiler as soon as you
finish to check the timeline to not occupy the computing nodes needlessly and allow

other users to proceed with their jobs.

Once Visual Profiler has started, create a new session by selecting File -> New
Session. Then select the executable that you built by pressing the Browse button
next to File, browse to your working directory, select the cg executable, and then
press Next. On the next screen ensure that FEnable unified memory profiling is
checked and press Finish. The result should look like the image below. Experiment

with Visual Profiler to see what information you can learn from it.

W &g =g ¥ [&= d FIIEE R

*NewSessionl 3 Z E
%

= Process "cg* {6739)
[=] Thread 1231177600

b I [T R R Y 1 W VW PO TR X OO e VY 1
- Profiling Overhesd I
=1 0] Tesla K20
[=] Context 1 (CUDA)
- T Mem(py (HtaD) L R R R AR AR RN R AR RN R AR AR AR AN
L My e COLLLELELELRELELELLELE LR EL L LR EEEL L LR LR LR LD L
S Compuiie PO T P A R P P W G Y A YU Y RN
o e 1 e e o e . e e e e e e e e e et e e e e, e
L 3.9% owapbydRK. CLLCTPELCLEEEELEL PR ELEL PR R E LUV E LR PR TP ETEE VL EE LT ELLT |
LT 18w Zadomksvect R A R A R R R e AR R A AN AR R AR AR NARE
- 0.3% BdotKevect.. COELEECCELECRCELECEC PR LRV EECECET LD PR L DT R EFCRCECE T TEEL L
[=] Streams
£ Sipeam 13 [O O 0 0 ow VW N W WA N AW WS N STV W SO Y PN 1N
[E Analysis 38 T2 Detalls B console Tq Settir 3. 5 B B Properiies B =2
[E] S & % Export POF Rep Results
1. CUDA Application Analysis ;?:;:ire:lghilgnt 2 single interval o see

Thie puided anatyss systerm walks you
through the various analysis stages to t
ik

F Fode

anahysis stages in an unguided mode, ¥

optimizing your application it is impaort

1o fully usilize the compute and data

maovement capabilities of the GFUL To ¢

this you shauld loak at your applicatio

rwsarall 71 | 115anm 35 well 3¢ the B

After completing the above steps for each of the 3 important routines your
application should show a speed-up over the unaccelerated version. You can verify
this by removing the -ta flag from your compiler options. In the next lecture and
lab we will replace CUDA Unified Memory with explicit memory management using
OpenACC and then further optimize the loops using the OpenACC loop directive.

If you used the kernels directive to express the parallelism in the code, try again
with the parallel loop directive. Remember, you will need to take responsibility of
identifying any reductions in the code. If you used parallel loop, try using kernels
instead and observe the differences both in developer effort and performance.

https://github.com/mjorda/nvidia-openacc-course-sources/blob/master/labs/lab2/visual_profiler_lab2.png

OpenACC Course - Lab 3

In this lab you will build upon the work from lab 2 to add explicit data
management directives, eliminating the need to use CUDA Unified Memory, and
optimize the matvec kernel using the OpenACC loop directive. If you have not
already completed lab 2, please go back and complete it before starting this lab.

Makefiles have been provided for building both the C and Fortran versions of the
code. Change directory to your language of choice and run the make command to
build the code.

CIC++

$ cd c99
$ make

Fortran

$ cd 90
$ make

This will build an executable named cg that you can run with the ./cg

command. You may change the options passed to the compiler by modifying the
CFLAGS variable in c99/Makefile or FCFLAGS in f90/Makefile. You should
not need to modify anything in the Makefile except these compiler flags.

In the previous lab we used CUDA Unified Memory, which we enabled with the
ta=tesla:managed compiler option, to eliminate the need for data management
directives. Replace this compiler flag in the Makefile with -ta=tesla and try to
rebuild the code.

CIC++

With the managed memory option removed the C/C++ version will fail to build
because the compiler will not be able to determine the sizes of some of the arrays
used in compute regions. You will see an error like the one below:

PGCC-S-0155-Compiler failed to translate accelerator region (see -Minfo
messages): Could not find allocated-variable index for symbol (main.cpp: 15)

Fortran

The Fortran version of the code will build successfully and run, however the

tolerance value will be incorrect with the managed memory option removed.

$./cg

Rows: 8120601 nnz: 218535025
Iteration: 0O Tolerance: 4.006700E+08
Iteration: 10 Tolerance: 4.006700E+08
Iteration: 20 Tolerance: 4.006700E+08
Iteration: 30 Tolerance: 4.006700E+08
Iteration: 40 Tolerance: 4.006700E+08
Iteration: 50 Tolerance: 4.006700E+08
Iteration: 60 Tolerance: 4.006700E+08
Iteration: 70 Tolerance: 4.006700E+08
Iteration: 80 Tolerance: 4.006700E+08
Iteration: 90 Tolerance: 4.006700E+08
Total Iterations: 100

We can correct both of these problems by explicitly declaring the data movement
for the arrays that we need on the GPU. In the associated lecture we discussed the
OpenACC structured data directive and the unstructured enter data and exit
data directives. Either approach can be used to express the data locality in this

code, but the unstructured directives are probably cleaner to use.

CIC++

In the allocate_3d_poisson_matrix function in matrix.h, add the following

two directives to the end of the function.
#pragma acc enter data copyin(A)

#pragma acc enter data
copyin(A.row_offsets[:num_rows+1],A.cols[:nnz],A.coefs[:nnz])

The first directive copies the A structure to the GPU, which includes the
num_rows member and the pointers for the three member arrays. The second
directive then copies the three arrays to the device. Now that we've created space
on the GPU for these arrays, it's necessary to clean up the space when we're done.
In the free_matrix function, add the following directives immediately before the
calls to free.

#pragma acc exit data delete(A.row_offsets,A.cols,A.coefs)
#pragma acc exit data delete(A)
free(row_offsets);

free(cols);
free(coefs);

Notice that we are performing the operations in the reverse order. First we are
deleting the 3 member arrays from the device, then we are deleting the structure
containing those arrays. It's also critical that we place our pragmas before the

arrays are freed on the host, otherwise the exit data directives will fail.

Now go into vector.h and do the same thing in allocate_vector and
free_vector with the structure v and its member array v.coefs. Because we

are copying the arrays to the device before they have been populated with data, use

the create data clause, rather than copyin.

If you try to build again at this point, the code will still fail to build because we
haven't told our compute regions that the data is already present on the device, so
the compiler is still trying to determine the array sizes itself. Now go to the
compute regions (kernels or parallel loop) in matrix_functions.h and
vector_functions.h and use the present clause to inform the compiler that

the arrays are already on the device. Below is an example for matvec.

#pragma acc kernels present(row_offsets,cols, Acoefs, xcoefs, ycoefs)

Once you have added the present clause to all three compute regions, the
application should now build and run on the GPU, but is no longer getting correct
results. This is because we've put the arrays on the device, but we've failed to copy
the input data into these arrays. Add the following directive to the end of
initialize_vector function;

#pragma acc update device(v.coefs[:v.n])

This will copy the data now in the host array to the GPU copy of the array.
With this data now correctly copied to the GPU, the code should run to completion
and give the same results as before.

Fortran

To make the application return correct answers again, it will be necessary to add
explicit data management directives. This could be done using either the structured
data directives or unstructured enter data and exit data directives, as
discussed in the lecture. Since this program has clear routines for allocating and
initializing the data structures and also deallocating, we'll use the unstructured

directives to make the code easy to understand.

The allocate_3d_poisson_matrix in matrix.F90 handles allocating and

initializing the primary array. At the end of this routine, add the following directive

for copying the three arrays in the matrix type to the device;

I$acc enter data copyin(arow_offsets,acols,acoefs)

These three arrays can be copied in separate enter data directives as well.
Notice that because Fortran arrays are self-describing, it's unnecessary to provide
the array bounds, although it would be safe to do so as well. Since we've allocated
these arrays on the device, they should be removed from the device when we are
done with them as well. In the free_matrix subroutine of matrix.F90 add the

following directive;

I$acc exit data delete(arow_offsets,acols,acoefs)
deallocate(arow_offsets)

deallocate(acols)

deallocate(acoefs)

Notice that the exit data directive appears before the deallocate
statement. Because the OpenACC programming model assumes we always begin
and end execution on the host, it's necessary to remove arrays from the device
before freeing them on the host to avoid an error or crash. Now go add enter
data and exit data directives to vector.F90 as well. Notice that the
allocate_vector routine only allocates the array, but does not initialize it, so
copyin may be replaced with create on the enter data directive.

If we build and run the application at this point we should see our tolerance
changing once again, but the answers will still be incorrect. Next let go to each
compute directive (kernels or parallel loop) in matrix.F90 and vector.F90
and inform the compiler that the arrays used in those regions are already present on

the device. Below is an example from matrix.F90.

!$acc kernels present(arow_offsets,acols,acoefs, X,y)

At this point the compiler knows that it does not need to be concerned with data
movement in our compute regions, but we're still getting the wrong answer. The
last change we need to make is to make sure that we're copying the input data to
the device before execution. In vector.F90 add the following directive to the end of
initialize_vector.

vector(:) = value
I$acc update device(vector)

Now that we have the correct input data on the device the code should run
correctly once again.

NOTE for C/C++ and Fortran: One could also parallelize the loop in
initialize_vector on the GPU, but we choose to use the update directive

here to illustrate how this directive is used.

Now that we're running on the GPU and getting correct answers , let's apply our
knowledge of the code to help the compiler make better decisions about how to
parallelize our loops. We know from the allocate_3d_poisson_matrix routine
that the most non-zero elements we'll have per row is 27. By examining the
compiler output, as shown below, we know that the compiler chose a vector length
of 128 for the matvec loops. This means that with the compiler-selected vector
length of 128, 101 vector lanes (threads) will go unused. Let's tell the compiler to
choose a better vector length for these loops.
matvec(const matrix &, const vector &, const vector &):

8, include "matrix_functions.h"
15, Generating
present(row_offsets[:],cols[:],Acoefs[:],xcoefs[:],ycoefs[:])
16, Loop is parallelizable
Accelerator kernel generated
Generating Tesla code
16, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x
*/
20, Loop is parallelizable

On an NVIDIA GPU the vector length must be a multiple of the warp size of the
GPU, which on all NVIDIA GPUs to-date is 32. This means that the closest vector

length we can choose is 32. Depending on whether the code uses kernels or
parallel loop, we can specify the vector length one of two ways.

Kernels

When using the kernels directive, the vector length is given by adding
vector(32) to the loop we want to use as the vector loop. So for our matvec
loops, we'd apply the vector length as shown below.

CIC++
#pragma acc kernels present(row_offsets,cols, Acoefs, xcoefs, ycoefs)

for(int i=0;i<num_rows;i++) {
double sum=0;

int row_start=row_offsets[i];
int row_end=row_offsets[i+1];
#pragma acc loop device_type(nvidia) vector(32)
for(int j=row_start;j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

ycoefs[i]=sum;

Fortran

!$acc kernels present(arow_offsets,acols,acoefs, X,y)
do i=1, a%num_rows

tmpsum = 0.0d0

row_start = arow_offsets(i)

row_end = arow_offsets(i+l)-1

!$acc loop device_type(nvidia) vector(32)

do j=row_start,row_end

acol = acols(j)

acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum + acoef*xcoef
enddo
y(i) = tmpsum
enddo

'$acc end kernels

Parallel Loop

When using parallel loop the vector length is given at the top of the region,

as shown below.
CIC++

#pragma acc parallel loop present(row_offsets,cols,Acoefs, xcoefs,ycoefs) \
device_type(nvidia) vector_length(32)
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];
#pragma acc loop reduction(+:sum) device_type(nvidia) vector
for(int j=row_start;j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

ycoefs[i]=sum;

Fortran

!$acc parallel loop private(tmpsum, row_start,row_end) &
I$acc& present(arow_offsets,acols,acoefs,x,y) &
I$acc& device_type(nvidia) vector_length(32)

do i=1, a%num_rows
tmpsum = 0.0d0
row_start arow_offsets(i)
row_end arow_offsets(i+1)-1
I$acc loop reduction(+:tmpsum) device_type(nvidia) vector
do j=row_start, row_end
acol = acols(j)

acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum + acoef*xcoef
enddo
y(i) = tmpsum
enddo

Notice that the above code adds the device_type(nvidia) clause to the
affected loops. Because we only want this optimization to be applied to NVIDIA
GPUs, we've protected that optimization with a device_type clause and allowed
the compiler to determine the best value on other platforms. Now that we've
adjusted the vector length to fit the problem, let's profile the code again to see how
well it's performing. Using Visual Profiler, let's see if we can find a way to further

improve performance.

The folders intermediate.kernels and intermediate.parallel contain
the correct code for the end of this step. If you have any trouble, use the code in

one of these folders to help yourself along.

Just as in the last lab, we'll use the NVIDIA Visual Profiler to profile our

application. Start it with the command:
$../../launch nvvp

Once Visual Profiler has started, create a new session by selecting File -> New
Session. Then select the executable that you built by pressing the Browse button
next to File, browse to your working directory, select the cg executable, and then
press Next. On the next screen press Finish. Visual Profiler will run for several

seconds to collect a GPU timeline and begin its guided analysis.

In the lower left, press the "Examine GPU Usage" button. You may need to
enlarge the bottom panel of the screen by grabbing just below the horizontal scroll
bar at the middle of the window and dragging it up until the button is visible. After
this runs, click on "Examine Individual Kernels" and select the top kernel in the
table. After selecting the top kernel, press the "Perform Kernel Analysis" button to
gather further performance information about this kernel and wait while Visual

Profiler collects additional data ***(this make take several minutes)™**. When this

completes, press "Perform Latency Analysis".

Profiler at this step.

The

screenshot below shows Visual

File View

NVIDIA Visual Profiler

Window Run Help

© *NewsSession1 3%

[=| Process "cg" (6079)
[=| Thread 3817265024
- Driver AP1
- Profiling Overhead
[=] [0] Tesla K20c

[l Analysis 52
= RERR
1. CUDA Application Analysis

iy, Export PDF Report

B oay & v =3

2. Performance-Critical Kernels

3. Compute, Band...or Latency Bound

4. Instruction and Memory Latency

Instruction and memory latency limit the
performance of a kernel when the GPU does
not have enough work to keep busy. The
performance of latency-limited kernels can
often be improved by increasing
occupancy. Occupancy is a measure of
how many warps the kernel has active on
the GPU, relative to the maximum number
of warps supported by the GPU. Theoretical
occupancy provides an upper bound while
arhieved nrrinancy indirates the karnel's

1s 2s 35! 4s 5s 6s 7s

Results

& @PU Utilization Is Limited By Block Size

The kernel has a block size of 32 threads. This block size is likely preventing the kernel from fully utilizing the GPU.
Device "Tesla K20c" can simultaneously execute up to 16 blocks on each SM. Because each block uses 1 warp to execute
the block's 32 threads, the kernel is using only 16 warps on each SM. Chart "Varying Block Size" below shows how
changing the block size will change the number of warps that can execute on each SM.

Optimization: Increase the number of threads in each block to increase the number of warps that can execute

on each SM.

Variable Achieved Theoretical | Device Limit Grid Size: [65535,1,1] (65535 blocks)Block Size: [

Occupancy Per SM

Active Blocks 16 16 T
0 2 4 6 B8 10 12 14 16

Active Warps 15.97 16 64 —— —
0 9 18 27 36 45 54 @

Active Threads 512 2048

Visual Profiler is telling us that the performance of the matvec kernel is limited

by the amount of parallelism in each gang (referred to as "block size" in CUDA).
Scrolling down in the Results section I see that the Occupancy is 25%. Occupancy
is a measure of how much parallelism is running on the GPU versus how much
theoretically could be running. 25% occupancy indicates that resources are sitting
idle due to the size of the blocks (OpenACC gangs).

NOTE: 100% occupancy is not necessary for high performance, but occupancy
below 50% is frequently an indicator that optimization is possible.

Scrolling further down in the Results section we reach the Block Limit metric,
which will be highlighted in red. This is shown in the screenshot below.

https://github.com/mjorda/nvidia-openacc-course-sources/blob/master/labs/lab3/lab3-nvvp-block-limit.png

¥ NVIDIA Visual Profiler

File View Window Run Help
EEE o CRSRO] RIE&E L

§ *NewSession1 22 =g &

—| Process "cg" (6079)
—| Thread 3817265024
Driver API
Profiling Overhead
—| [0] Tesla K20c

[l Analysis 58 A, 2 B

= = i Results
EIRERN g, Export PDF Report Occupancy Per M

1. CUDA Application Analysis .]
PR v Active Blocks 16 16 b ¥ r r - -)
D 2 4 6 2 D 2 4 6
2. Performance-Critical Kernels
Active Warps 15.97 16 64 _——— =
(s] 36 45 54
3. Compute, Band...or Latency Bound - - i .
Active Threads 512 2048 R— — —
4. Instruction and Memory Latency Y e bt =0 =hes
; — Occupancy 24.9% 25% 100% F— — — 1
Instruction and memory latency limit the 0% 25% 50% 75% 100%
performance of a kernel when the GPU does Warps
not have enough work to keep busy. The P
performance of latency-limited kernels can [- - -]
often be improved by increasing Threads/Block 32 1024 0 256 512 768 1024
occupancy. Occupancy is a measure of [~ 1
how many warps the kernel has active on Warps/Block 1 32 SR
the GPU, relative to the maximum number o _ _
of warps supported by the GPU. Theoretical Block Limit 64 16 W
occupancy provides an upper bound while E - L
arhieved arcinancy indirates the kernel's Damictare

This table is showing us that the GPU streaming multiprocessor (SM) can
theoretically run 64 warps (groups of 32 threads), but only has 16 to run. Looking
at the Warps/Block and Threads/Block rows of the table, we see that each block
contains 1 warp, or 32 threads, although it could run many more. This is because
we've told the compiler to use a vector length of 32. As a reminder, in OpenACC
many gangs run independently of each other, each gang has 1 or more workers,
each of which operates on a vector. With a vector length of 32, we'll need to add
workers in order to increase the work per gang. Now we need to inform the

compiler to give each gang more work by using worker parallelism.

To increase the parallelism in each OpenACC gang, we'll use the worker level of
parallelism to operate on multiple vectors within each gang. On an NVIDIA GPU
the vector length X number of workers must be a multiple of 32 and no larger than
1024, so let's experiment with increasing the number of workers. From just 1
worker up to 32. We want the outermost loop to be divided among gangs and
workers, so we'll specify that it is an gang and worker loop. By only specifying the
number of workers, we allow the compiler to generate enough gangs to use up the

rest of the loop iterations applying worker parallelism.

https://github.com/mjorda/nvidia-openacc-course-sources/blob/master/labs/lab3/lab3-nvvp-occupancy.png

Kernels

When using the kernels directive, use the 1loop directive to specify that the

outer loop should be a gang and worker loop with 32 workers as shown below.

Experiment with the number of workers to find the best value.
CIC++

#pragma acc kernels present(row_offsets,cols,Acoefs, xcoefs, ycoefs)
{
#pragma acc loop device_type(nvidia) gang worker(32)
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];
#pragma acc loop device_type(nvidia) vector(32)
for(int j=row_start;j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[]j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

ycoefs[i]=sum;

Fortran

I$acc kernels present(arow_offsets,acols,acoefs,Xx,y)
I$acc loop device_type(nvidia) gang worker(32)
do i=1, a%num_rows
tmpsum = 0.0d0
row_start arow_offsets(i)
row_end arow_offsets(i+1)-1
I$acc loop device_type(nvidia) vector(32)
do j=row_start,row_end
acol = acols(j)
acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum + acoef*xcoef
enddo
y(i) = tmpsum
enddo
I$acc end kernels

Parallel Loop

When using the parallel loop directive, use gang and worker to specify
that the outer loop should be a gang and worker loop and then add
num_workers(32) to specify 32 workers, as shown below. Experiment with the

number of workers to find the best value.
CIC++

#pragma acc parallel loop present(row_offsets,cols,Acoefs, xcoefs,ycoefs) \
device_type(nvidia) gang worker vector_length(32) num_workers(32)

for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];
#pragma acc loop reduction(+:sum) device_type(nvidia) vector
for(int j=row_start;j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[]j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;

ycoefs[i]=sum;

Fortran

I$acc parallel loop private(tmpsum,row_start,row_end) &
I$acc& present(arow_offsets,acols,acoefs,x,y) &
I$acc& device_type(nvidia) gang worker num_workers(32) vector_length(32)
do i=1, a%num_rows
tmpsum = 0.0d0
row_start arow_offsets(i)
row_end arow_offsets(i+1)-1
I$acc loop reduction(+:tmpsum) device_type(nvidia) vector
do j=row_start,row_end
acol = acols(j)
acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum + acoef*xcoef
enddo
y(i) = tmpsum
enddo

After experimenting with the number of workers, performance should be similar
to the table below.

Workers K40

1
2 61.03544
4 31.36616
8 16.71916
16 8.81069
32 6.488389

In this lab we started with a code that relied on CUDA Unified Memory to
handle data movement and added explicit OpenACC data locality directives. This

makes the code portable to any OpenACC compiler and accelerators that may not

have Unified Memory. We used both the unstructured data directives and the
update directive to achieve this.

Next we profiled the code to determine how it could run more efficiently on the
GPU we're using. We used our knowledge of both the application and the hardware
to find a loop mapping that ran well on the GPU, achieving a 2-4X speed-up over

our starting code.

The table below shows runtime for each step of this lab on an NVIDIA Tesla
K40 GPU.

Step K40
Unified Memory 8.458172
Explicit Memory 8.459754
Vector Length 32 11.656281

Final Code 4.802727

OpenACC Course - Lab 4

During this lab you will implement the advanced OpenACC techniques explained

in the last lecture;

* A pipelined GPU version of a Mandelbrot set generation app as an example

of asynchronous programming

* A multi-GPU Jacobi solver combining OpenACC and MPI

Since this code is the one presented during the lecture, you should already be
familiar with the process to implement the pipelined GPU version. To recap, here
are the steps needed to incrementally improve the Mandelbrot code to reach our

goal:

1. Implement the GPU version using the pragmas we’ve been using in all the

labs. You may need the routine pragma, too.

2. Break the image creation into several kernels, where each generates a part of

the final image.

3. Improve the handling of data by removing unecessary HtoD copies and
telling OpenACC to start DtoH copies as soon as each kernel finishes (check
the update directive).

4. Use several asynchronous queues to enable the parallel execution of unrelated
copies and kernel executions. Remember to wait for the async work to finish.
If the queue creation time is noticeable, try reusing a few queues instead of

creating a new one for each block.

You can experiment with the number of blocks you divide the image to see which

one gives the best time.

Before starting, we need extra steps to setup the environment for this lab to

work in the Minotauro cluster. Run the following commands:

module unload pgi

module unload bullxmpi

module load pgi/16.9

module load openmpi/1.10.2 cuda pgi

“+ A A A

For the C version, also run:
$ export OMPI CC=pgcc

You will have to run these commands every time you login to the cluster to work
in this lab.

Notice that this lab also includes a new job script (job_mpi.sh) that must be used

to run this lab’s code in the cluster.

The lab is divided in three tasks:

1. Add MPI boiler plate code

2. Distribute work across the GPUs

3. Overlap communication and computation to improve multi-GPU scalability

Complete the missing parts of the code and execute the code to see the
improvement you get after each task. If you want to make sure your code is correct

or you get stuck, check the solution provided with each task.

	Getting Started Guide
	1. Introduction
	2. MinoTauro GPU cluster
	2.1. Change your password
	2.2. Cluster usage
	Execution of GUI applications
	Linux
	Windows
	Mac OS

	Setting up the labs
	Obtain the labs source code
	Setup the environment

	OpenACC Course - Lab 1
	Step 1 - Characterize Your Application
	Benchmarking
	Results Correctness
	Profiling

	Step 2 - Add Compute Directives
	Step 3 - Manage Data Movement
	Step 4 - Optimize Kernel Scheduling

	OpenACC Course - Lab 2
	Step 0 - Building the code
	C/C++
	Fortran

	Step 1 - Identify Parallelism
	Step 2 - Express Parallelism
	Step 3 - Re-Profile Application
	Conclusion
	Bonus

	OpenACC Course - Lab 3
	Step 0 - Building the code
	C/C++
	Fortran

	Step 1 - Express Data Movement
	C/C++
	Fortran
	C/C++
	Fortran

	Step 2 - Optimize Loops - Vector Length
	Kernels
	C/C++
	Fortran

	Parallel Loop
	C/C++
	Fortran

	Step 3 - Optimize Loops - Profile The Application
	Step 4 - Optimize Loops - Increase Parallelism
	Kernels
	C/C++
	Fortran

	Parallel Loop
	C/C++
	Fortran

	Conclusion

	OpenACC Course - Lab 4
	Pipelined Mandelbrot set
	Multi-GPU Jacobi with OpenACC + MPI

