
www.bsc.es

Montevideo, 21-25 October 2019

Atomic operations

Marc Jordà, Antonio J. Peña

Objective

Understand atomic operations

– Why we need them? Read-modify-write in parallel computation

– How are atomic operations used in CUDA

– Why atomic operations reduce memory system throughput

– How to avoid atomic operations in some parallel algorithms

Atomic Operations

• Example: 2 threads sharing a counter (Mem[x]), each thread incrementing

the counter once

• If Mem[x] was initially 0, what would the value of Mem[x] be after threads 1

and 2 have completed?

– Also, what does each thread get in their Old variable?

Thread 2:

Old Mem[x]

New Old + 1

Mem[x] New

Thread 1:

Old Mem[x]

New Old + 1

Mem[x] New

Atomic Operations

• Example: 2 threads sharing a counter (Mem[x]), each thread incrementing

the counter once

• If Mem[x] was initially 0, what would the value of Mem[x] be after threads 1

and 2 have completed?

– Also, what does each thread get in their Old variable?

• The answer depends on the interleaving of the operations performed by

threads 1 and 2

• Operations from one thread are (usually) guaranteed to be in program order

• There is no guarantee on the interleaving of operations from different threads

Thread 2:

Old Mem[x]

New Old + 1

Mem[x] New

Thread 1:

Old Mem[x]

New Old + 1

Mem[x] New

 Time Thread 1 Thread 2

1 (0) Old Mem[x]

2 (1) New Old + 1

3 (1) Mem[x] New

4 (1) Old Mem[x]

5 (2) Old Old + 1

6 (2) Mem[x] New

Timing Scenario #1

– Thread 1 Old = 0

– Thread 2 Old = 1

– Mem[x] = 2 after the sequence

 Time Thread 1 Thread 2

1 (0) Old Mem[x]

2 (1) New Old + 1

3 (1) Mem[x] New

4 (1) Old Mem[x]

5 (2) New Old + 1

6 (2) Mem[x] New

Timing Scenario #2

– Thread 1 Old = 1

– Thread 2 Old = 0

– Mem[x] = 2 after the sequence

 Time Thread 1 Thread 2

1 (0) Old Mem[x]

2 (1) New Old + 1

3 (0) Old Mem[x]

4 (1) Mem[x] New

5 (1) New Old + 1

6 (1) Mem[x] New

Timing Scenario #3

– Thread 1 Old = 0

– Thread 2 Old = 0

– Mem[x] = 1 after the sequence

 Time Thread 1 Thread 2

1 (0) Old Mem[x]

2 (0) Old Mem[x]

3 (1) New Old + 1

4 (1) Mem[x] New

5 (1) New Old + 1

6 (1) Mem[x] New

Timing Scenario #4

– Thread 1 Old = 0

– Thread 2 Old = 0

– Mem[x] = 1 after the sequence

Atomic Operations

• Only timing scenarios 1 and 2 give a correct result

• We have a race condition

• Depending on the interleaving of operations, executions of the same program will give

different results

• To ensure we get the correct result always, we have to use atomic

operations

• An operation that performs several operations (read, modify, write) as if they were a single

(atomic) one

Thread 1 Thread 2

Old Mem[x]

New Old + 1

Mem[x] New

Old Mem[x]

New Old + 1

Mem[x] New

Thread 1 Thread 2

Old Mem[x]

New Old + 1

Mem[x] New

Old Mem[x]

New Old + 1

Mem[x] New

Atomic Operations in General

Performed by a single ISA instruction on a memory location

(address)

– Read the old value, calculate a new value, and write the new value to

the location

The hardware ensures that no other threads can access the

location until the atomic operation is complete

– Any other threads that access the same location will typically be held in

a queue until its turn

– All threads perform the atomic operation serially

Atomic Operations in CUDA

Functions named atomic<Operation>(…)

– Add, sub, inc, dec, min, max, and, or, xor, exch (exchange), CAS

(compare and swap)

– Check the CUDA C programming Guide for details

Atomic Add

 int atomicAdd(int* address, int val);

“Equivalent” to: *address += val;

Reads the integer pointed to by address (old) in global or shared

memory, computes old + val, and stores the result back to the same

address.

 The function returns old.

More Atomic Adds in CUDA

Unsigned 32-bit integer atomic add

unsigned int atomicAdd(unsigned int* address, unsigned int val);

Unsigned 64-bit integer atomic add

unsigned long long int atomicAdd(unsigned long long int* address, unsigned long

long int val);

Single-precision floating-point atomic add

float atomicAdd(float* address, float val);

Double-precision floating-point atomic add (since CUDA 8, Pascal GPUs)

double atomicAdd(double* address, double val);

Half-precision floating-point atomic add (since Volta GPUs)

__half atomicAdd(__half* address, __half val);

Other Atomic Operations in CUDA

Atomic Exchange (or Swap)

int atomicExch(int* address, int val);

– Sets *address = val and returns the previous value of *address

– The read of the previous value and the write are performed atomically

Atomic Compare and Swap

 int atomicCAS(int* address, int compare, int val);

– Similar to the previous one but only updates *address if its value is

equal to compare

• Read *address (old)

• If old == compare

– *address = val

• Else

– *address is not changed

Implementing atomic operations with atomicCAS()

__device__ double atomicAdd(double* address, double val)

{

 // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)

 unsigned long long* address_as_ull = (unsigned long long int*)address;

 unsigned long long old = *address_as_ull;

 unsigned long long assumed, new;

 do {

 assumed = old;

 new = _d_as_ull(val + _ull_as_d(assumed))

 old = atomicCAS(address_as_ull, assumed, new);

 } while (assumed != old);

 return _ull_as_d(old);

}

For example, double-precision atomicAdd() for devices with

compute capability < 6.0 can be implemented as follows:

Histogramming: Objective

To learn practical histogram programming techniques

– Basic histogram algorithm using atomic operations

– Privatization

– Alternative histogram algorithm without atomic operations

A Histogram Example

Build a histogram of the frequency of each letter in the

sentence “Programming Massively Parallel Processors”

A(3), C(1), E(1), G(1), …

How do you do this in parallel?

Iteration #1

P R O G R A M M I N G M A V I S S Y L E P

Thread 0 Thread 1 Thread 2 Thread 3

A B C D E

1

F G H I J K L M

2

N O P

1

Q R S T U V

Iteration #2

P R O G R A M M I N G M A V I S S Y L E P

Thread 0 Thread 1 Thread 2 Thread 3

A

1

B C D E

1

F G H I J K L

1

M

3

N O P

1

Q R

1

S T U V

Iteration #3

P R O G R A M M I N G M A V I S S Y L E P

Thread 0 Thread 1 Thread 2 Thread 3

A

1

B C D E

1

F G H I

1

J K L

1

M

3

N O

1

P

1

Q R

1

S

1

T U V

Iteration #4

P R O G R A M M I N G M A V I S S Y L E P

Thread 0 Thread 1 Thread 2 Thread 3

A

1

B C D E

1

F G

1

H I

1

J K L

1

M

3

N

1

O

1

P

1

Q R

1

S

2

T U V

Iteration #5

P R O G R A M M I N G M A V I S S Y L E P

Thread 0 Thread 1 Thread 2 Thread 3

A

1

B C D E

1

F G

1

H I

1

J K L

1

M

3

N

1

O

1

P

2

Q R

2

S

2

T U V

Iteration #5

P R O G R A M M I N G M A V I S S Y L E P

Thread 0 Thread 1 Thread 2 Thread 3

A

1

B C D E

1

F G

1

H I

1

J K L

1

M

3

N

1

O

1

P

2

Q R

2

S

2

T U V

It works, but reads from the input array are not

coalesced bad performance

A better approach

Assign contiguous inputs to the threads, and iterate over the

input if its larger than the grid of threads

28

P R O G R A M M I N G M A V I S S Y L E P

Thread 0 Thread 1 Thread 2 Thread 3

A B C D E F G

1

H I J K L M N O

1

P

1

Q R

1

S T U V

A better approach

29

P R O G R A M M I N G M A V I S S Y L E P

Thread 0 Thread 1 Thread 2 Thread 3

A

1

B C D E F G

1

H I J K L M

2

N O

1

P

1

Q R

2

S T U V

Assign contiguous inputs to the threads, and iterate over the

input if its larger than the grid of threads

A Histogram Kernel

The kernel receives a pointer to the input buffer

Each thread process part of the input in a strided pattern
__global__ void

histo_kernel(unsigned char *buffer, long size, unsigned int *histo)

{

 int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

 int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x consecutive elements

 while (i < size) {

 atomicAdd(&(histo[buffer[i]]), 1);

 i += stride;

 }

}

L2

Global memory atomics are managed at the L2

cache

– Must work across SMs

Atomic operations on the same address are

serialized

Cost of Atomic Operations

L2 delay

atomic operation N atomic operation N+1 time

If many threads attempt to do atomic operations on the same

location (high contention), the performance penalty can be high

– All atomics are started in parallel, but the HW does them one at a time

– Possible mitigation privatization

Privatization in Shared Memory

Each thread block has its private array of bins in shared

memory

– Less threads potentially contending on the bins

– Atomics on shared memory are faster than on global memory (L2)

After the whole input is processed, the threads of each thread

block have to update the global bins with their partial counts

The histogram size (number of bins) needs to be small

– To fit into shared memory

Split the bins across the threads

All threads iterate the input array looking for the letters of their bins

Why don’t we need atomic operations in this case?

Alternative Histogramming approach

P R O G R A M M I N G M A V I S S Y L E P

Thread 0 Thread 1 Thread 2 Thread 3

A B C D E F G H I J K L M N O P

1

Q R S T U V

Alternative Histogramming approach

Known as Gather design

– The one using atomic ops is known as Scatter design

Pros

– No need for atomic operations no contention

• Each bin is only accessed by one thread

Cons

– All threads have to iterate over the whole input vector

Which is better depends on:

– Input size

– Number of bins

– Number of conflicting updates to the same bin

• E.g. if a large part of the input elements have the same value

– Latency of atomic operations

www.bsc.es

Thank you!

For further information please contact

marc.jorda@bsc.es, antonio.pena@bsc.es

