WWW.DSC.es

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

Atomic operations

Marc Jorda, Antonio J. Pena

Montevideo, 21-25 October 2019

({ Understand atomic operations
— Why we need them? Read-modify-write in parallel computation
— How are atomic operations used in CUDA
— Why atomic operations reduce memory system throughput
— How to avoid atomic operations in some parallel algorithms

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Atomic Operations

« Example: 2 threads sharing a counter (Mem([x]), each thread incrementing
the counter once

« If Mem[x] was initially 0, what would the value of Mem[x] be after threads 1
and 2 have completed?

— Also, what does each thread get in their Old variable?

Thread 1: Thread 2:

Old € Mem|x] Old € Mem|x]
New < Old + 1 New €< Old + 1
Mem|[x] € New Mem[x] € New

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Atomic Operations

« Example: 2 threads sharing a counter (Mem([x]), each thread incrementing
the counter once

« If Mem[x] was initially 0, what would the value of Mem[x] be after threads 1
and 2 have completed?

— Also, what does each thread get in their Old variable?

Thread 1: Thread 2:

Old € Mem|x] Old € Mem|x]
New < Old + 1 New €< Old + 1
Mem|[x] € New Mem[x] € New

* The answer depends on the interleaving of the operations performed by
threads 1 and 2

« Operations from one thread are (usually) guaranteed to be in program order
* There is no guarantee on the interleaving of operations from different threads

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Timing Scenario #1

Thread 1 Thread 2

(0) Old €« Mem|x]
(1) New €< Old + 1
(1) Mem[x] € New

(1) Old € Mem|x]
(2)Old €« Old + 1
(2) Mem[x] € New

O O A W N

— Thread 1 Old =0
— Thread 20Ild =1
— Mem[x] = 2 after the sequence

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Timing Scenario #2

Thread 1 Thread 2

(0) Old € Mem|x]
(1) New € Old + 1
(1) Mem[x] € New

(1) Old € Mem|x]

(2) New < Old + 1

(2) Mem[x] € New

O 01 A W DN

— Thread 1 Old =1
— Thread 2 Old =0
— Mem[x] = 2 after the sequence

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Timing Scenario #3

Thread 1 Thread 2

(0) Old €« Mem|x]
(1) New €< Old + 1

(0) Old € Mem|x]
(1) Mem[x] € New

(1) New €< Old + 1

(1) Mem[x] € New

O O A W N

— Thread 1 Old =0
— Thread 2 Old =0
— Mem[x] = 1 after the sequence

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Timing Scenario #4

Thread 1 Thread 2

(0) Old € Mem|x]

(0) Old €« Mem[x]
(1) New €< Old + 1
(1) Mem[x] € New
(1) New €< Old + 1
(1) Mem[x] € New

O O A W N

— Thread 1 Old =0
— Thread 2 Old =0
— Mem[x] = 1 after the sequence

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Atomic Operations

« Only timing scenarios 1 and 2 give a correct result

Thread 1

Old € Mem([x]
New < Old + 1
Mem[x] € New

Thread 2

Old € Mem|x]
New < Old + 1
Mem[x] € New

 \We have a race condition

« Depending on the interleaving of operations, executions of the same program will give

different results

Thread 1

Old € Mem|[x]
New < Old + 1
Mem[x] € New

Thread 2

Old €« Mem[x]
New < Old + 1
Mem[x] € New

» To ensure we get the correct result always, we have to use atomic
operations

« An operation that performs several operations (read, modify, write) as if they were a single

®

(atomic) one

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Atomic Operations in General

({ Performed by a single ISA instruction on a memory location
(address)

— Read the old value, calculate a new value, and write the new value to
the location

(€ The hardware ensures that no other threads can access the
location until the atomic operation is complete

— Any other threads that access the same location will typically be held in
a queue until its turn

— All threads perform the atomic operation serially

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Atomic Operations in CUDA

(€ Functions named atomic<Operation>(...)
— Add, sub, inc, dec, min, max, and, or, xor, exch (exchange), CAS
(compare and swap)
— Check the CUDA C programming Guide for details

(€ Atomic Add
int atomicAdd(int* address, int val);

“Equivalent” to: *address += val;

Reads the integer pointed to by address (old) in global or shared
memory, computes old + val, and stores the result back to the same

address.
The function returns old.

More Atomic Adds in CUDA

(€ Unsigned 32-bit integer atomic add
unsigned int atomicAdd(unsigned int* address, unsigned int val);

(€ Unsigned 64-bit integer atomic add

unsigned long long int atomicAdd(unsigned long long int* address, unsigned long
long int val);

(€ Single-precision floating-point atomic add
float atomicAdd(float* address, float val);

(€ Double-precision floating-point atomic add (since CUDA 8, Pascal GPUSs)
double atomicAdd(double* address, double val);

(€ Half-precision floating-point atomic add (since Volta GPUSs)
__half atomicAdd(__half* address, __half val);

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Other Atomic Operations in CUDA

(€ Atomic Exchange (or Swap)
int atomicExch(int* address, int val);
— Sets *address = val and returns the previous value of *address
— The read of the previous value and the write are performed atomically

({ Atomic Compare and Swap
int atomicCAS(int* address, int compare, int val);
— Similar to the previous one but only updates *address if its value is
equal to compare
* Read *address (old)
 If old == compare
— *address = val

» Else
— *address is not changed

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Implementing atomic operations with atomicCAS()

({ For example, double-precision atomicAdd() for devices with
compute capability < 6.0 can be implemented as follows:

__device__ double atomicAdd(double* address, double val)
{
/[Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
unsigned long long* address_as_ull = (unsigned long long int*)address;
unsigned long long old = *address_as_ ull;
unsigned long long assumed, new;
do {
assumed = old;
new = _d_as_ull(val + ull_as d(assumed))
old = atomicCAS(address_as_ull, assumed, new);
} while (assumed != old);

return _ull_as_d(old);

}

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Histogramming: Objective

({ To learn practical histogram programming technigues
— Basic histogram algorithm using atomic operations
— Privatization
— Alternative histogram algorithm without atomic operations

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

A Histogram Example

({ Build a histogram of the frequency of each letter in the
sentence “Programming Massively Parallel Processors”

W A(3), C(1), E(1), G(1), ...

(€ How do you do this in parallel?

lteration #1

U Y @ s

Thread O Thread 1 Thread 2 Thread 3

1 2 1 |
ABCDEFGHI JKLMNOPQRSTUYV

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

lteration #2

W W/ W/ @

Thread O Thread 1 Thread 2 Thread 3

1 1 13 1| 1] |
ABCDEFGHI JKLMNOPQRSTUV

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

lteration #3

J < W V

Thread O Thread 1 Thread 2 Thread 3

1 1 1 113 111 111
A BCDEFGHI JKLMNOPQQRSTUYV

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

lteration #4

P RO
W W W @

Thread O Thread 1 Thread 2 Thread 3

1 1 1 1 1131111 112
A BCDEFGHI JKLMNOPQQRSTUYV

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

lteration #5

W W W V

Thread O Thread 1 Thread 2 Thread 3

1 1| (1] |12 1|3f1]|2]2] [2]2]
ABCDETFGHI JKLMNOPQRSTUV

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

lteration #5

W W W V

Thread O Thread 1 Thread 2 Thread 3

1 1| (1] |12 1|3f1]|2]2] [2]2]
ABCDETFGHI JKLMNOPQRSTUV

(€ It works, but reads from the input array are not
@m coalesced - bad performance

Supercomputing
Center
Centro Nacional de Supercomputacion

A better approach

(€ Assign contiguous inputs to the threads, and iterate over the
iInput If its larger than the grid of threads

Thread O Thread 1 Thread 2 Thread 3

1 111 1
A BCDEFGHI JKLMNOPQQRSTUYV

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

A better approach

(€ Assign contiguous inputs to the threads, and iterate over the
Input if its larger than the grid of threads

Thread O Thread 1 Thread 2 Thread 3

1 1 2 111 2
A BCDEFGHI JKLMNOPQQRSTUYV

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

A Histogram Kernel

(€ The kernel receives a pointer to the input buffer

({ Each thread process part of the input in a strided pattern
__global void
histo kernel(unsigned char *buffer, long size, unsigned int *histo)

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads
int stride = blockDim.x * gridDim.x;
// All threads handle blockDim.x * gridDim.x consecutive elements
while (i < size) {
atomicAdd(&(histo[buffer[i]]), 1);
1 += stride;

}

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Cost of Atomic Operations

(€ Global memory atomics are managed at the L2
cache SM#0 | SM#1 | ... SM#

— Must work across SMs 4 3 A

Interconnect

(€ Atomic operations on the same address are

serialized
L2 delay [Nl [
atomic operation N M atomic operation N+1

>

(€ If many threads attempt to do atomic operations on the same
location (high contention), the performance penalty can be high
— All atomics are started in parallel, but the HW does them one at a time
— Possible mitigation = privatization

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Privatization in Shared Memory

({ Each thread block has its private array of bins in shared
memory
— Less threads potentially contending on the bins
— Atomics on shared memory are faster than on global memory (L2)

({ After the whole input is processed, the threads of each thread
block have to update the global bins with their partial counts

(€ The histogram size (number of bins) needs to be small
— To fit into shared memory

Alternative Histogramming approach

(€ Split the bins across the threads

(€ All threads iterate the input array looking for the letters of their bins
(€ Why don’t we need atomic operations in this case?

GRAMMING M A S S | V E LY P

Thread O Thread 1 Thread 2 Thread 3
1 |
A B CDEFIGHI JKILIMNUOWPOQOR RIS T UV

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Alternative Histogramming approach

(€ Known as Gather design
— The one using atomic ops is known as Scatter design

(€ Pros

— No need for atomic operations - no contention
» Each bin is only accessed by one thread

(€ Cons
— All threads have to iterate over the whole input vector

(€ Which is better depends on:
— Input size
— Number of bins

— Number of conflicting updates to the same bin
« E.qg. if alarge part of the input elements have the same value

— Latency of atomic operations

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

WWW.DSC.es

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

Thank you!

For further information please contact
marc.jorda@bsc.es, antonio.pena@bsc.es

