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Partition and Summarize 

A commonly used strategy for processing large input data 

sets 

– Assume there is no required order of processing elements in a data set  

(associative and commutative) 

– Partition the data set into smaller chunks 

– Have each thread to process a chunk 

– Use a reduction tree to summarize the results from each chunk into the 

final answer 

Google and Hadoop MapReduce frameworks are examples of 

this pattern 

We will focus on the reduction tree step. 

 

2 



Reduction enables other techniques 

Reduction is also needed as a final step after some commonly 

used parallelizing transformations 

 

Privatization 

– Multiple threads write into an output location 

– Replicate the output location so that each thread has a private output 

location 

– Use a reduction tree to combine the values of private locations into the 

original output location 
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What is a reduction computation ? 

Summarize a set of input values into one single value using a 

reduction operation 

– Max 

– Min 

– Sum 

– Product 

– User defined reduction operation function, as long as the operation 

• Is associative and commutative 

• Has a well-defined identity value (e.g., 0 for sum, 1 for product) 

 

Reduction is an example of "collective operations" 
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A parallel reduction tree algorithm performs N-1 Operations in 

log(N) steps 
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A Parallel Sum Reduction Example 

Parallel implementation: 

– Recursively halve # of threads, add two values per thread in each 

step 

– Takes log(n) steps for n elements, requires n/2 threads 

 

Example: an in-place reduction using shared memory 

– The original vector is in device global memory 

– The shared memory is used to hold a partial sum vector 

– Each step brings the partial sum vector closer to the sum 

– The final sum will be in element 0 

– Reduces global memory traffic due to partial sum values 
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Vector Reduction with Branch Divergence 
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Simple Thread Index to Data Mapping 

Each thread is responsible of an even-index location of the 

partial sum vector  

– One input is the location of responsibility 

 

After each step, half of the threads are no longer needed 

 

In each step, one of the inputs comes from an increasing 

distance away 
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A Simple Thread Block Design 

Each thread block takes 2* BlockDim input elements 

Each thread loads 2 elements into shared memory 

 

__shared__ float partialSum[2*BLOCK_SIZE]; 

 

unsigned int t = threadIdx.x; 

unsigned int start = 2*blockIdx.x*blockDim.x; 

partialSum[t] = input[start + t]; 

partialSum[blockDim.x + t] = input[start + blockDim.x + t]; 

 

12 



The Reduction Steps 

for (unsigned int stride = 1;  

   stride < blockDim.x;  stride *= 2)  

  { 

  __syncthreads(); 

  if (t % stride == 0) 

   partialSum[2*t] += partialSum[2*t+stride]; 

  } 
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Why do we need 
__syncthreads()? 

 



Barrier Synchronization 

 

__syncthreads() are needed to ensure that all elements of 

each version of partial sums have been generated before we 

proceed to the next step 
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Back to the Global Picture 

Thread 0 of each thread block writes the partial sum 

computed by the thread block into a vector indexed by the 

blockIdx.x 

 

There can be a large number of reduction iterations if the 

original vector is very large 

– The thread grid may iterate over the input, or 

– The host code may iterate and launch another kernel 

 

When there are only a small number of elements to reduce, 

the host can simply transfer the data back and add them 

together serially. 
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Some Observations 

In each iteration, two control flow paths will executed in each 
warp 
– Threads that perform addition and threads that do not 

– Threads that do not perform addition still consume execution resources 

 

Half or fewer of threads will be executing after the first step 
– All odd index threads are disabled after first step 

– After the 5th step, entire warps in each block will fail the if test, poor 
resource utilization but no divergence 

• This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256, 
512, 1024), where each active warp only has one productive thread until all 
warps in a block retire  
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A Better Strategy 

Always compact the partial sums into the first locations in the 

partialSum[] array 

 

Keep the active threads consecutive 

 

18 



An Example of 16 threads 
Thread 0 

0 1 2 3 … 13 15 14 18 17 16 19 

0+16 15+31 

Thread 1 Thread 2 Thread 14 Thread 15 
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A Better Reduction Kernel 

__shared__ float partialSum[2*BLOCK_SIZE]; 

 

unsigned int tx = threadIdx.x; 

unsigned int start = 2*blockIdx.x*blockDim.x; 

partialSum[tx] = input[start + tx]; 

partialSum[blockDim.x + tx] = input[start + blockDim.x + tx]; 

 

for (unsigned int stride = blockDim.x;  

                      stride > 0;  stride /= 2)  

{ 

  __syncthreads(); 

  if (tx < stride) 

   partialSum[tx] += partialSum[tx + stride]; 

} 
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A Quick Analysis 

For a 1024 thread block 

– No divergence in the first 5 steps 

– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each 

step 

– The final 5 steps will still have divergence 

• Only the last warp will be running, no efficiency issues  
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