
www.bsc.es

Montevideo, 21-25 October 2019

Reductions

Marc Jordà, Antonio J. Peña

Partition and Summarize

A commonly used strategy for processing large input data

sets

– Assume there is no required order of processing elements in a data set

(associative and commutative)

– Partition the data set into smaller chunks

– Have each thread to process a chunk

– Use a reduction tree to summarize the results from each chunk into the

final answer

Google and Hadoop MapReduce frameworks are examples of

this pattern

We will focus on the reduction tree step.

2

Reduction enables other techniques

Reduction is also needed as a final step after some commonly

used parallelizing transformations

Privatization

– Multiple threads write into an output location

– Replicate the output location so that each thread has a private output

location

– Use a reduction tree to combine the values of private locations into the

original output location

3

What is a reduction computation ?

Summarize a set of input values into one single value using a

reduction operation

– Max

– Min

– Sum

– Product

– User defined reduction operation function, as long as the operation

• Is associative and commutative

• Has a well-defined identity value (e.g., 0 for sum, 1 for product)

Reduction is an example of "collective operations"

4

A parallel reduction tree algorithm performs N-1 Operations in

log(N) steps

3 1 7 0 4 1 6 3

3 7 4 6

max max max max

max max

7 6

max

7

6

A Parallel Sum Reduction Example

Parallel implementation:

– Recursively halve # of threads, add two values per thread in each

step

– Takes log(n) steps for n elements, requires n/2 threads

Example: an in-place reduction using shared memory

– The original vector is in device global memory

– The shared memory is used to hold a partial sum vector

– Each step brings the partial sum vector closer to the sum

– The final sum will be in element 0

– Reduces global memory traffic due to partial sum values

8

Vector Reduction with Branch Divergence

0 1 2 3 4 5 7 6 10 9 8 11

0+1 2+3 4+5 6+7 10+11 8+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Thread 0 Thread 4 Thread 1 Thread 2 Thread 3 Thread 5

9

0..15

Data

4

Simple Thread Index to Data Mapping

Each thread is responsible of an even-index location of the

partial sum vector

– One input is the location of responsibility

After each step, half of the threads are no longer needed

In each step, one of the inputs comes from an increasing

distance away

11

A Simple Thread Block Design

Each thread block takes 2* BlockDim input elements

Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim.x + t] = input[start + blockDim.x + t];

12

The Reduction Steps

for (unsigned int stride = 1;

 stride < blockDim.x; stride *= 2)

 {

 __syncthreads();

 if (t % stride == 0)

 partialSum[2*t] += partialSum[2*t+stride];

 }

13

Why do we need
__syncthreads()?

Barrier Synchronization

__syncthreads() are needed to ensure that all elements of

each version of partial sums have been generated before we

proceed to the next step

14

Back to the Global Picture

Thread 0 of each thread block writes the partial sum

computed by the thread block into a vector indexed by the

blockIdx.x

There can be a large number of reduction iterations if the

original vector is very large

– The thread grid may iterate over the input, or

– The host code may iterate and launch another kernel

When there are only a small number of elements to reduce,

the host can simply transfer the data back and add them

together serially.

15

Some Observations

In each iteration, two control flow paths will executed in each
warp
– Threads that perform addition and threads that do not

– Threads that do not perform addition still consume execution resources

Half or fewer of threads will be executing after the first step
– All odd index threads are disabled after first step

– After the 5th step, entire warps in each block will fail the if test, poor
resource utilization but no divergence

• This can go on for a while, up to 6 more steps (stride = 32, 64, 128, 256,
512, 1024), where each active warp only has one productive thread until all
warps in a block retire

16

A Better Strategy

Always compact the partial sums into the first locations in the

partialSum[] array

Keep the active threads consecutive

18

An Example of 16 threads
Thread 0

0 1 2 3 … 13 15 14 18 17 16 19

0+16 15+31

Thread 1 Thread 2 Thread 14 Thread 15

19

A Better Reduction Kernel

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int tx = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[tx] = input[start + tx];

partialSum[blockDim.x + tx] = input[start + blockDim.x + tx];

for (unsigned int stride = blockDim.x;

 stride > 0; stride /= 2)

{

 __syncthreads();

 if (tx < stride)

 partialSum[tx] += partialSum[tx + stride];

}

20

A Quick Analysis

For a 1024 thread block

– No divergence in the first 5 steps

– 1024, 512, 256, 128, 64, 32 consecutive threads are active in each

step

– The final 5 steps will still have divergence

• Only the last warp will be running, no efficiency issues

21

www.bsc.es

Thank you!

For further information please contact

marc.jorda@bsc.es, antonio.pena@bsc.es

