
www.bsc.es

Montevideo, 21-25 October 2019

Based on material from NVIDIA’s GPU Teaching Kit

Memory and Data Locality

Marc Jordà, Antonio J. Peña

How about performance on a GPU

– All threads access global memory for their input matrix elements
– One memory access (4 bytes) per floating-point addition

– 4B/s of memory bandwidth/FLOPS

– Assume a GPU with
– Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth

– 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating

– The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS

– This limits the execution rate to 3.3% (50/1500) of the peak
floating-point execution rate of the device!

– Need to drastically cut down memory accesses to get close to
the 1,500 GFLOPS

4

Programmer View of CUDA Memories

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

11

Declaring CUDA Variables

– __device__ is optional when used with __shared__, or __constant__

– Automatic variables reside in a register

– Except per-thread arrays that usually reside in global memory

 e.g. int array[10];

Variable declaration Memory Scope Lifetime

int LocalVar; register thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

12

Example:

Shared Memory Variable Declaration

__global__ void some_kernel(char* in, …)
{

 __shared__ float sh_in[TILE_WIDTH][TILE_WIDTH];

 …
}

13

Shared memory array dimension(s) must be known at compile time

Where to Declare Variables?

Can host access
it?

Outside of
any Function

In the kernel

Yes

• global

• constant

No

• registers

• shared

14

Shared Memory in CUDA

– A special type of memory whose contents are explicitly defined and
used in the kernel source code

– One in each SM

– Accessed at much higher speed (in both latency and throughput) than global
memory

– Scope of access and sharing - thread blocks

– Lifetime – thread block

– contents will disappear after the corresponding thread block finishes/terminates
execution

– Accessed by memory load/store instructions

– A form of scratchpad memory in computer architecture

15

Global Memory

Processing Unit

I/O

ALU

Streaming Multiprocessor (SM)

Shared

Memory
Register

File

Control Unit

PC IR

Hardware View of CUDA Memories

16

TILED PARALLEL ALGORITHMS

M

N

P

BLOCK_WIDTH

WIDTH WIDTH

B
L

O
C

K
_
W

ID
T

H

W
ID

T
H

W

ID
T

H

Row

Col

Use case – Matrix Multiplication

18

– Create a 2D grid of 2D thread blocks
to have one thread per output
element

– Each thread computes the scalar
product of its corresponding row of M
and column of N

A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

 // Calculate the row index of the P element and M

 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 // Calculate the column index of P and N

 int Col = blockIdx.x * blockDim.x + threadIdx.x;

 // compute element (Row, Col) of matrix P

 ...

}

19

P0,1 P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3 P2,1

P1,3 P1,2

P3,0 P3,2 P3,3 P3,1

Block(0,0) Block(0,1)

Block(1,1) Block(1,0)

BLOCK_WIDTH = 2
Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,1)

Thread(0,0)

Global Memory Access Pattern

of the Basic Matrix Multiplication Kernel

Thread 1

Thread 2 …

Global Memory

20

Data reuse by different threads

Tiling/Blocking - Basic Idea

Thread 1

Thread 2

…

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one tile at each point

in time

21

Tiling/Blocking - Basic Idea

Thread 1

Thread 2

…

Global Memory

On-chip Memory

22

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one tile at each point

in time

Basic Concept of Tiling

– In a congested traffic system, significant reduction of vehicles
can greatly improve the delay seen by all vehicles

– Carpooling for commuters

– Tiling for global memory accesses

– drivers = threads accessing their memory data operands

– cars = memory access requests

23

Carpools Need Synchronization

– Good: when people have similar schedule

Worker A

Worker B

Time

sleep

sleep work

work

dinner

dinner

25

Carpools Need Synchronization

– Bad: when people have very different schedule

Worker A

Worker B

Time

sleep

sleep work

work

dinner

party

26

Same with Tiling

Good: when threads have similar access timing

Bad: when threads have very different timing

Thread 1

Thread 2

Time

Thread 1

Thread 2

Time

…

27

Barrier Synchronization for Tiling

28

Tiling needs synchronization to keep threads in the same
phase

 - CUDA provides barriers to synchronize the threads in a thread block

Outline of Tiling Technique

– Identify a tile of global memory contents that are accessed by
multiple threads

– Load the tile from global memory into on-chip memory

– Use barrier synchronization to make sure that all threads are ready
to start the phase

– Have the multiple threads to access their data from the on-chip
memory

– Use barrier synchronization to make sure that all threads have
completed the current phase

– Move on to the next tile

29

M

N

P

BLOCK_WIDTH

WIDTH WIDTH

B
L

O
C

K
_
W

ID
T

H

W
ID

T
H

W

ID
T

H

Row

Col

Tiled Matrix Multiplication

– Data access pattern
– Each thread: a row of M and a

column of N

– Each thread block: a strip of M and a
strip of N

31

M

N

P

BLOCK_WIDTH

WIDTH WIDTH

B
L

O
C

K
_
W

ID
T

H

W
ID

T
H

W

ID
T

H

Row

Col

Tiled Matrix Multiplication

– Break up the execution of each
thread into phases

– so that the data accesses by the
thread block in each phase are
focused on one tile of M and one
tile of N

– The tile is of BLOCK_WIDTH
elements in each dimension

32

Phase 0 Load for Block (0,0)

P0,1 P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3 P2,1

P1,3 P1,2

P3,0 P3,2 P3,3 P3,1

M0,1 M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3 M2,1

M1,3 M1,2

M3,0 M3,2 M3,3 M3,1

N0,1 N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3 N2,1

N1,3 N1,2

N3,0 N3,2 N3,3 N3,1

M0,1 M0,0

M1,0 M1,1

N0,1 N0,0

N1,0 N1,1

Shared Memory

Shared Memory

34

Global Memory

Global Memory Global Memory

2D Thread grid with 2D thread

blocks, one thread per element of P

Phase 0 Use for Block (0,0) (iteration 0)

P0,1 P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3 P2,1

P1,3 P1,2

P3,0 P3,2 P3,3 P3,1

M0,1 M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3 M2,1

M1,3 M1,2

M3,0 M3,2 M3,3 M3,1

N0,1 N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3 N2,1

N1,3 N1,2

N3,0 N3,2 N3,3 N3,1

M0,1 M0,0

M1,0 M1,1

N0,1 N0,0

N1,0 N1,1

Shared Memory

Shared Memory

35

Phase 0 Use for Block (0,0) (iteration 1)

P0,1 P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3 P2,1

P1,3 P1,2

P3,0 P3,2 P3,3 P3,1

M0,1 M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3 M2,1

M1,3 M1,2

M3,0 M3,2 M3,3 M3,1

N0,1 N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3 N2,1

N1,3 N1,2

N3,0 N3,2 N3,3 N3,1

M0,1 M0,0

M1,0 M1,1

N0,1 N0,0

N1,0 N1,1

Shared Memory

Shared Memory

36

Phase 1 Load for Block (0,0)

P0,1 P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3 P2,1

P1,3 P1,2

P3,0 P3,2 P3,3 P3,1

M0,1 M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3 M2,1

M1,3 M1,2

M3,0 M3,2 M3,3 M3,1

N0,1 N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3 N2,1

N1,3 N1,2

N3,0 N3,2 N3,3 N3,1

M0,3 M0,2

M1,2 M1,3

N2,1 N2,0

N3,0 N3,1

Shared Memory

Shared Memory

37

Phase 1 Use for Block (0,0) (iteration 0)

P0,1 P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3 P2,1

P1,3 P1,2

P3,0 P3,2 P3,3 P3,1

M0,1 M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3 M2,1

M1,3 M1,2

M3,0 M3,2 M3,3 M3,1

N0,1 N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3 N2,1

N1,3 N1,2

N3,0 N3,2 N3,3 N3,1

M0,3 M0,2

M1,2 M1,3

N2,1 N2,0

N3,0 N3,1

Shared Memory

Shared Memory

38

Phase 1 Use for Block (0,0) (iteration 1)

P0,1 P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3 P2,1

P1,3 P1,2

P3,0 P3,2 P3,3 P3,1

M0,1 M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3 M2,1

M1,3 M1,2

M3,0 M3,2 M3,3 M3,1

N0,1 N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3 N2,1

N1,3 N1,2

N3,0 N3,2 N3,3 N3,1

M0,3 M0,2

M1,2 M1,3

N2,1 N2,0

N3,0 N3,1

Shared Memory

Shared Memory

39

Barrier Synchronization

– Synchronize all threads in a thread block
__syncthreads()

– All threads in the same block must reach the __syncthreads() before
any of the them can move on

– Be careful with barriers inside if conditions

– Used to coordinate the phased execution of tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase

– To ensure that all elements of a tile are consumed at the end of a phase

42

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)

{

 __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

 __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;

 int tx = threadIdx.x; int ty = threadIdx.y;

 int Row = by * blockDim.y + ty;

 int Col = bx * blockDim.x + tx;

 float Pvalue = 0;

 // Loop over the M and N tiles required to compute the P element

 for (int p = 0; p < Width/TILE_WIDTH; ++p) { // Phases

 // Collaborative loading of M and N tiles into shared memory

 ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

 ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];

 __syncthreads();

 for (int i = 0; i < TILE_WIDTH; ++i)

 Pvalue += ds_M[ty][i] * ds_N[i][tx];

 __synchthreads();

 }

 P[Row*Width+Col] = Pvalue;

}

49

Shared Memory and Threading

Shared memory size is variable across GPU models!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared

memory.

– For 16KB shared memory, one can potentially have up to 8 thread blocks
executing

– TILE_WIDTH 32 would lead to 2*32*32*4B = 8KB of shared memory usage per
thread block, allowing 2 thread blocks active at the same time

– However, the thread count limitation of 1536 threads per SM in current
generation GPUs will reduce the number of blocks per SM to one!

There are hardware constraints on the size a thread block, too
– Maximum of 1024 threads per thread block

– Will see GPU limitations in the deviceQuery lab

53

HANDLING ARBITRARY MATRIX SIZES IN

TILED ALGORITHMS

Handling Matrix of Arbitrary Size

• The tiled matrix multiplication kernel we presented so far can
handle only square matrices whose dimensions (Width) are
multiples of the tile width (TILE_WIDTH)

• However, real applications need to handle arbitrary sized matrices.

• One could pad (add elements to) the rows and columns into
multiples of the tile size, but would have significant space and data
transfer time overhead.

55

Phase 1 Loads for Block (0,0) for a 3x3 Example

P0,1 P0,0

P1,0

P0,2

P1,1

P2,0 P2,2 P2,1

P1,2

M0,1 M0,0

M1,0

M0,2

M1,1

M2,0 M2,2 M2,1

M1,2

N0,1 N0,0

N1,0

N0,2

N1,1

N2,0 N2,2 N2,1

N1,2

M0,2

M1,2

N2,1 N2,0 Shared Memory

Shared Memory

Threads (1,0) and (1,1) need special

treatment in loading N tile

Threads (0,1) and (1,1) need

special treatment in loading M tile

56

Phase 1 Use for Block (0,0) (iteration 0)

P0,1 P0,0

P1,0

P0,2

P1,1

P2,0 P2,2 P2,1

P1,2

M0,1 M0,0

M1,0

M0,2

M1,1

M2,0 M2,2 M2,1

M1,2

N0,1 N0,0

N1,0

N0,2

N1,1

N2,0 N2,2 N2,1

N1,2

M0,2

M1,2

N2,1 N2,0 Shared Memory

Shared Memory

57

Phase 1 Use for Block (0,0) (iteration 1)

P0,1 P0,0

P1,0

P0,2

P1,1

P2,0 P2,2 P2,1

P1,2

M0,1 M0,0

M1,0

M0,2

M1,1

M2,0 M2,2 M2,1

M1,2

N0,1 N0,0

N1,0

N0,2

N1,1

N2,0 N2,2 N2,1

N1,2

M0,2

M1,2

N2,1 N2,0 Shared Memory

Shared Memory

All Threads need special

treatment. None of them should

introduce invalidate contributions

to their P elements.

58

Major Cases in Toy Example

– Threads that do not calculate valid P elements but still need to
participate in loading the input tiles

– Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but
need to participate in loading tile element N[1,2]

– Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles

– Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but
attempts to load non-existing N[3,0]

60

A “Simple” Solution

– When a thread is to load any input element, test if it is in the valid index
range

– If valid, proceed to load

– Else, do not load, just write a 0

– Rationale: a 0 value will ensure that that the multiply-add step does not
affect the final value of the output element

– The condition tested for loading input elements is different from the test
for calculating output P element

– A thread that does not calculate valid P element can still participate in loading input tile
elements

– For each thread the conditions are different for
– Loading M element

– Loading N element

– Calculating and storing output elements

61

Phase 1 Use for Block (0,0) (iteration 1)

P0,1 P0,0

P1,0

P0,2

P1,1

P2,0 P2,2 P2,1

P1,2

M0,1 M0,0

M1,0

M0,2

M1,1

M2,0 M2,2 M2,1

M1,2

N0,1 N0,0

N1,0

N0,2

N1,1

N2,0 N2,2 N2,1

N1,2

0 M0,2

M1,2 0

N2,1 N2,0

0 0
Shared Memory

Shared Memory

62

Handling General Rectangular Matrices

– In general, the matrix multiplication is defined in terms of rectangular
matrices

– A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix

– We have presented square matrix multiplication, a special case

– The kernel function needs to be generalized to handle general
rectangular matrices

– The Width argument is replaced by three arguments: j, k, l

– When Width is used to refer to the height of M or height of P, replace it with j

– When Width is used to refer to the width of M or height of N, replace it with k

– When Width is used to refer to the width of N or width of P, replace it with l

68

QUIZ

Question 1

Assume that a kernel is launched with 1,000 thread blocks

each of which has 512 threads. If a variable is declared as a

shared memory variable, how many versions of the variable

will be created through the lifetime of the execution of the

kernel?

a) 1

b) 1,000

c) 512

d) 512,000

70

Question 1 - Answer

Assume that a kernel is launched with 1000 thread blocks
each of which has 512 threads. If a variable is declared as a
shared memory variable, how many versions of the variable
will be created through the lifetime of the execution of the
kernel?

a) 1

b) 1,000

c) 512

d) 512,000

Explanation: Shared memory variables are allocated to thread
blocks. So, the number of versions is the number of thread
blocks, 1,000.

71

Question 2

For our tiled matrix-matrix multiplication kernel, if we use a

32x32 tile, what is the reduction of memory bandwidth usage

for input matrices A and B?

a) 1/8 of the original usage

b) 1/16 of the original usage

c) 1/32 of the original usage

d) 1/64 of the original usage

72

Question 2 - Answer

For our tiled matrix-matrix multiplication kernel, if we use a

32x32 tile, what is the reduction of memory bandwidth usage

for input matrices A and B?

a) 1/8 of the original usage

b) 1/16 of the original usage

c) 1/32 of the original usage

d) 1/64 of the original usage

Explanation: Each element in the tile is used 32 times

73

www.bsc.es

Thank you!

For further information please contact

marc.jorda@bsc.es, antonio.pena@bsc.es

