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How about performance on a GPU 

– All threads access global memory for their input matrix elements 
– One memory access (4 bytes) per floating-point addition 

– 4B/s of memory bandwidth/FLOPS 

 

– Assume a GPU with 
– Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth 

– 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating 

– The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS 

 

– This limits the execution rate to 3.3% (50/1500) of the peak 
floating-point execution rate of the device! 

 

– Need to drastically cut down memory accesses to get close to 
the 1,500 GFLOPS 
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Declaring CUDA Variables 

– __device__ is optional when used with  __shared__, or  __constant__ 

– Automatic variables reside in a register 

– Except per-thread arrays that usually reside in global memory 

 e.g. int array[10]; 

 

Variable declaration Memory Scope Lifetime 

int LocalVar; register thread thread 

__device__ __shared__   int SharedVar; shared block block 

__device__  int GlobalVar; global grid application 

__device__ __constant__ int ConstantVar; constant grid application 
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Example: 

Shared Memory Variable Declaration  

__global__ void some_kernel(char* in, …)  
{ 
  

 __shared__ float sh_in[TILE_WIDTH][TILE_WIDTH]; 
 
 … 
} 
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Shared memory array dimension(s) must be known at compile time 



Where to Declare Variables? 
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Shared Memory in CUDA 

– A special type of memory whose contents are explicitly defined and 
used in the kernel source code 

– One in each SM 

– Accessed at much higher speed (in both latency and throughput) than global 
memory 

– Scope of access and sharing - thread blocks 

– Lifetime – thread block 

– contents will disappear after the corresponding thread block finishes/terminates 
execution 

– Accessed by memory load/store instructions 

– A form of scratchpad memory in computer architecture 
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TILED PARALLEL ALGORITHMS 
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Use case – Matrix Multiplication 
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– Create a 2D grid of 2D thread blocks 
to have one thread per output 
element 

 

– Each thread computes the scalar 
product of its corresponding row of M 
and column of N  



A Basic Matrix Multiplication 

 

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) { 

 

  // Calculate the row index of the P element and M 

  int Row = blockIdx.y * blockDim.y + threadIdx.y; 

 

  // Calculate the column index of P and N 

  int Col = blockIdx.x * blockDim.x + threadIdx.x; 

 

  

  // compute element (Row, Col) of matrix P 

  ... 

     

} 
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Global Memory Access Pattern  

of the Basic Matrix Multiplication Kernel 
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Data reuse by different threads 



Tiling/Blocking - Basic Idea 
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Tiling/Blocking - Basic Idea 
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Global Memory 

On-chip Memory 

Divide the global memory content into tiles 

 

Focus the computation of threads on one tile at each point 

in time   



Basic Concept of Tiling 

– In a congested traffic system, significant reduction of  vehicles 
can greatly improve the delay seen by all vehicles 

– Carpooling for commuters 

– Tiling for global memory accesses 

– drivers = threads accessing their memory data operands 

– cars = memory access requests 
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Carpools Need Synchronization 

– Good: when people have similar schedule 
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25 



Carpools Need Synchronization 

– Bad: when people have very different schedule 
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Same with Tiling 

Good: when threads have similar access timing 
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Barrier Synchronization for Tiling 
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Tiling needs synchronization to keep threads in the same 
phase 

 - CUDA provides barriers to synchronize the threads in a thread block  

 



Outline of Tiling Technique 

– Identify a tile of global memory contents that are accessed by 
multiple threads 

 

– Load the tile from global memory into on-chip memory 

 

– Use barrier synchronization to make sure that all threads are ready 
to start the phase 

 

– Have the multiple threads to access their data from the on-chip 
memory 

 

– Use barrier synchronization to make sure that all threads have 
completed the current phase 

 

– Move on to the next tile 
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Tiled Matrix Multiplication 

– Data access pattern 
– Each thread: a row of M and a 

column of N 

 

– Each thread block: a strip of M and a 
strip of N 
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Tiled Matrix Multiplication 

– Break up the execution of each 
thread into phases  

– so that the data accesses by the 
thread block in each phase are 
focused on one tile of M and one 
tile of N 

– The tile is of BLOCK_WIDTH 
elements in each dimension 
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Phase 0 Load for Block (0,0) 
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Global Memory 

Global Memory Global Memory 

2D Thread grid with 2D thread 

blocks, one thread per element of P  



Phase 0 Use for Block (0,0) (iteration 0) 
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Phase 0 Use for Block (0,0) (iteration 1) 
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Phase 1 Load for Block (0,0) 
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Phase 1 Use for Block (0,0) (iteration 0) 
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Phase 1 Use for Block (0,0) (iteration 1) 
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Barrier Synchronization 

– Synchronize all threads in a thread block 
__syncthreads() 

 

– All threads in the same block must reach the __syncthreads() before 
any of the them can move on 

– Be careful with barriers inside if conditions 

 

– Used to coordinate the phased execution of tiled algorithms 
– To ensure that all elements of a tile are loaded at the beginning of a phase 

– To ensure that all elements of a tile are consumed at the end of a phase 
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Tiled Matrix Multiplication Kernel 
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width) 

{ 

  __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH]; 

  __shared__ float ds_N[TILE_WIDTH][TILE_WIDTH]; 

 

  int bx = blockIdx.x;  int by = blockIdx.y; 

  int tx = threadIdx.x; int ty = threadIdx.y; 

 

  int Row = by * blockDim.y + ty; 

  int Col = bx * blockDim.x + tx; 

  float Pvalue = 0; 

 

 // Loop over the M and N tiles required to compute the P element 

 for (int p = 0; p < Width/TILE_WIDTH; ++p) {  // Phases 

    // Collaborative loading of M and N tiles into shared memory 

    ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx]; 

    ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col]; 

    __syncthreads(); 

 

    for (int i = 0; i < TILE_WIDTH; ++i) 

  Pvalue += ds_M[ty][i] * ds_N[i][tx]; 

    __synchthreads(); 

  }  

  P[Row*Width+Col] = Pvalue; 

} 
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Shared Memory and Threading 

Shared memory size is variable across GPU models! 
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared 

memory.  

 

– For 16KB shared memory, one can potentially have up to 8 thread blocks 
executing 

 

– TILE_WIDTH 32 would lead to 2*32*32*4B = 8KB of shared memory usage per 
thread block, allowing 2 thread blocks active at the same time  

– However, the thread count limitation of 1536 threads per SM in current 
generation GPUs will reduce the number of blocks per SM to one! 

 

There are hardware constraints on the size a thread block, too 
– Maximum of 1024 threads per thread block 

 

– Will see GPU limitations in the deviceQuery lab 
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HANDLING ARBITRARY MATRIX SIZES IN 

TILED ALGORITHMS 



Handling Matrix of Arbitrary Size 

• The tiled matrix multiplication kernel we presented so far can 
handle only square matrices whose dimensions (Width) are 
multiples of the tile width (TILE_WIDTH) 

• However, real applications need to handle arbitrary sized matrices. 

 

• One could pad (add elements to) the rows and columns into 
multiples of the tile size, but would have significant space and data 
transfer time overhead. 
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Phase 1 Loads for Block (0,0) for a 3x3 Example  
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Threads (1,0) and (1,1) need special 

treatment in loading N tile  

Threads (0,1) and (1,1) need 

special treatment in loading M tile 
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Phase 1 Use for Block (0,0) (iteration 0) 
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Phase 1 Use for Block (0,0) (iteration 1) 
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All Threads need special 

treatment. None of them should 

introduce invalidate contributions 

to their P elements. 
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Major Cases in Toy Example 

 

– Threads that do not calculate valid P elements but still need to 
participate in loading the input tiles 

– Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but 
need to participate in loading tile element N[1,2]  

 

– Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles 

– Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but 
attempts to load non-existing N[3,0] 
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A “Simple” Solution 

– When a thread is to load any input element, test if it is in the valid index 
range 

– If valid, proceed to load 

– Else, do not load, just write a 0 

 

– Rationale: a 0 value will ensure that that the multiply-add step does not 
affect the final value of the output element 

 

– The condition tested for loading input elements is different from the test 
for calculating output P element 

– A thread that does not calculate valid P element can still participate in loading input tile 
elements 

 

– For each thread the conditions are different for  
– Loading M element 

– Loading N element 

– Calculating and storing output elements 
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Phase 1 Use for Block (0,0) (iteration 1) 
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Handling General Rectangular Matrices 

– In general, the matrix multiplication is defined in terms of rectangular 
matrices 

– A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix 

 

– We have presented square matrix multiplication, a special case 

 

– The kernel function needs to be generalized to handle general 
rectangular matrices 

– The Width argument is replaced by three arguments: j, k, l 

– When Width is used to refer to the height of M or height of P, replace it with j 

– When Width is used to refer to the width of M or height of N, replace it with k 

– When Width is used to refer to the width of N or width of P, replace it with l 
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QUIZ 



Question 1 

Assume that a kernel is launched with 1,000 thread blocks 

each of which has 512 threads. If a variable is declared as a 

shared memory variable, how many versions of the variable 

will be created through the lifetime of the execution of the 

kernel? 

 

a) 1 

b) 1,000 

c) 512 

d) 512,000 
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Question 1 - Answer 

Assume that a kernel is launched with 1000 thread blocks 
each of which has 512 threads. If a variable is declared as a 
shared memory variable, how many versions of the variable 
will be created through the lifetime of the execution of the 
kernel? 

 
a) 1 

b) 1,000 

c) 512 

d) 512,000 

 

Explanation: Shared memory variables are allocated to thread 
blocks. So, the number of versions is the number of thread 
blocks, 1,000. 
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Question 2 

For our tiled matrix-matrix multiplication kernel, if we use a 

32x32 tile, what is the reduction of memory bandwidth usage 

for input matrices A and B? 

 

a) 1/8 of the original usage 

b) 1/16 of the original usage 

c) 1/32 of the original usage 

d) 1/64 of the original usage 
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Question 2 - Answer 

For our tiled matrix-matrix multiplication kernel, if we use a 

32x32 tile, what is the reduction of memory bandwidth usage 

for input matrices A and B? 

 

a) 1/8 of the original usage 

b) 1/16 of the original usage 

c) 1/32 of the original usage 

d) 1/64 of the original usage 

 

Explanation: Each element in the tile is used 32 times 
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Thank you! 

For further information please contact 

marc.jorda@bsc.es, antonio.pena@bsc.es 


