www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Memory and Data Locality Marc Jordà, Antonio J. Peña

Based on material from NVIDIA's GPU Teaching Kit

Montevideo, 21-25 October 2019

How about performance on a GPU

- All threads access global memory for their input matrix elements
 - One memory access (4 bytes) per floating-point addition
 - 4B/s of memory bandwidth/FLOPS
- Assume a GPU with
 - Peak floating-point rate 1,500 GFLOPS with 200 GB/s DRAM bandwidth
 - 4*1,500 = 6,000 GB/s required to achieve peak FLOPS rating
 - The 200 GB/s memory bandwidth limits the execution at 50 GFLOPS
- This limits the execution rate to 3.3% (50/1500) of the peak floating-point execution rate of the device!
- Need to drastically cut down memory accesses to get close to the 1,500 GFLOPS

Programmer View of CUDA Memories

Declaring CUDA Variables

Variable declaration	Memory	Scope	Lifetime
int LocalVar;	register	thread	thread
deviceshared int SharedVar;	shared	block	block
device int GlobalVar;	global	grid	application
deviceconstant int ConstantVar;	constant	grid	application

- <u>device</u> is optional when used with <u>shared</u>, or <u>constant</u>
- Automatic variables reside in a register
 - Except per-thread arrays that usually reside in global memory e.g. int array[10];

Example: Shared Memory Variable Declaration

__global__ void some_kernel(char* in, ...) { ___shared___ float sh_in[TILE_WIDTH][TILE_WIDTH];

Shared memory array dimension(s) must be known at compile time

Where to Declare Variables?

Shared Memory in CUDA

- A special type of memory whose contents are explicitly defined and used in the kernel source code
 - One in each SM
 - Accessed at much higher speed (in both latency and throughput) than global memory
 - Scope of access and sharing thread blocks
 - Lifetime thread block
 - contents will disappear after the corresponding thread block finishes/terminates execution
 - Accessed by memory load/store instructions
 - A form of scratchpad memory in computer architecture

Hardware View of CUDA Memories

Barcelona Supercomputing Center Centro Nacional de Supercomputación

TILED PARALLEL ALGORITHMS

Use case – Matrix Multiplication

Μ

WIDTH

- Create a 2D grid of 2D thread blocks to have one thread per output element
- Each thread computes the scalar product of its corresponding row of M and column of N

Row

Col

_global___ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y * blockDim.y + threadIdx.y;

```
// Calculate the column index of P and N
int Col = blockIdx.x * blockDim.x + threadIdx.x;
```

```
// compute element (Row, Col) of matrix P
...
```


Global Memory Access Pattern of the Basic Matrix Multiplication Kernel

Global Memory

Data reuse by different threads

Tiling/Blocking - Basic Idea

Global Memory

Divide the global memory content into tiles

Focus the computation of threads on one tile at each point in time

Tiling/Blocking - Basic Idea

Global Memory

Divide the global memory content into tiles

Focus the computation of threads on one tile at each point in time

Basic Concept of Tiling

- In a congested traffic system, significant reduction of vehicles can greatly improve the delay seen by all vehicles
 - Carpooling for commuters
 - Tiling for global memory accesses
 - drivers = threads accessing their memory data operands
 - cars = memory access requests

Carpools Need Synchronization

- Good: when people have similar schedule

Carpools Need Synchronization

- Bad: when people have very different schedule

Same with Tiling

Good: when threads have similar access timing

Bad: when threads have very different timing

Barrier Synchronization for Tiling

Tiling needs synchronization to keep threads in the same phase

- CUDA provides barriers to synchronize the threads in a thread block

Outline of Tiling Technique

- Identify a tile of global memory contents that are accessed by multiple threads
- Load the tile from global memory into on-chip memory
- Use barrier synchronization to make sure that all threads are ready to start the phase
- Have the multiple threads to access their data from the on-chip memory
- Use barrier synchronization to make sure that all threads have completed the current phase
- Move on to the next tile

Tiled Matrix Multiplication

Tiled Matrix Multiplication

- Break up the execution of each thread into phases
- so that the data accesses by the thread block in each phase are focused on <u>one tile of M and one</u> <u>tile of N</u>
- The tile is of BLOCK_WIDTH elements in each dimension

Phase 0 Load for Block (0,0)

2D Thread grid with 2D thread blocks, one thread per element of P

Phase 0 Use for Block (0,0) (iteration 0)

Phase 0 Use for Block (0,0) (iteration 1)

Phase 1 Use for Block (0,0) (iteration 0)

Phase 1 Use for Block (0,0) (iteration 1)

Barrier Synchronization

- All threads in the same block must reach the ____syncthreads() before any of the them can move on
 - Be careful with barriers inside if conditions
- Used to coordinate the phased execution of tiled algorithms
 - To ensure that all elements of a tile are loaded at the beginning of a phase
 - To ensure that all elements of a tile are consumed at the end of a phase

Tiled Matrix Multiplication Kernel

Centro Nacional de Supercomputación

```
global void MatrixMulKernel(float* M, float* N, float* P, Int Width)
   shared float ds M[TILE WIDTH][TILE WIDTH];
   shared float ds N[TILE WIDTH][TILE WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 int Row = by * blockDim.y + ty;
                                                                            Ν
 int Col = bx * blockDim.x + tx;
 float Pvalue = 0;
                                                                                                 WIDTH
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < Width/TILE WIDTH; ++p) { // Phases
   // Collaborative loading of M and N tiles into shared memory
   ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
   ds N[ty][tx] = N[(t*TILE WIDTH+ty)*Width + Col];
   syncthreads();
                                                    Μ
                                                                            Ρ
   for (int i = 0; i < TILE WIDTH; ++i)</pre>
       Pvalue += ds M[ty][i] * ds N[i][tx];
   synchthreads();
                                                                                            ILE WIDT
 P[Row*Width+Col] = Pvalue;
                                              Row
                                                                                  TILE WIDTH
                                                                                    WIDTH
                                                            WIDTH
    Barcelona
    Supercomputing
                                                                                     Col
    Center
                                                                                                  49
```

Shared Memory and Threading

Shared memory size is variable across GPU models!

- For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
- For 16KB shared memory, one can potentially have up to 8 thread blocks executing
- TILE_WIDTH 32 would lead to 2*32*32*4B = 8KB of shared memory usage per thread block, allowing 2 thread blocks active at the same time
 - However, the thread count limitation of 1536 threads per SM in current generation GPUs will reduce the number of blocks per SM to one!

There are hardware constraints on the size a thread block, too

- Maximum of 1024 threads per thread block
- Will see GPU limitations in the deviceQuery lab

Barcelona Supercomputing Center Centro Nacional de Supercomputación

HANDLING ARBITRARY MATRIX SIZES IN TILED ALGORITHMS

Handling Matrix of Arbitrary Size

- The tiled matrix multiplication kernel we presented so far can handle only square matrices whose dimensions (Width) are multiples of the tile width (TILE_WIDTH)
 - However, real applications need to handle arbitrary sized matrices.
 - One could pad (add elements to) the rows and columns into multiples of the tile size, but would have significant space and data transfer time overhead.

Phase 1 Loads for Block (0,0) for a 3x3 Example

Threads (0,1) and (1,1) need special treatment in loading M tile

Phase 1 Use for Block (0,0) (iteration 0)

Phase 1 Use for Block (0,0) (iteration 1)

All Threads need special treatment. None of them should introduce invalidate contributions to their P elements.

Major Cases in Toy Example

- Threads that do not calculate valid P elements but still need to participate in loading the input tiles
 - Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but need to participate in loading tile element N[1,2]
- Threads that calculate valid P elements may attempt to load nonexisting input elements when loading input tiles
 - Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but attempts to load non-existing N[3,0]

A "Simple" Solution

- When a thread is to load any input element, test if it is in the valid index range
 - If valid, proceed to load
 - Else, do not load, just write a 0
- Rationale: a 0 value will ensure that that the multiply-add step does not affect the final value of the output element
- The condition tested for loading input elements is different from the test for calculating output P element
 - A thread that does not calculate valid P element can still participate in loading input tile elements
- For each thread the conditions are different for
 - Loading M element
 - Loading N element
 - Calculating and storing output elements

Phase 1 Use for Block (0,0) (iteration 1)

Handling General Rectangular Matrices

- In general, the matrix multiplication is defined in terms of rectangular matrices
 - A j x k M matrix multiplied with a k x I N matrix results in a j x I P matrix
- We have presented square matrix multiplication, a special case
- The kernel function needs to be generalized to handle general rectangular matrices
 - The Width argument is replaced by three arguments: j, k, l
 - When Width is used to refer to the height of M or height of P, replace it with j
 - When Width is used to refer to the width of M or height of N, replace it with k
 - When Width is used to refer to the width of N or width of P, replace it with I

Barcelona Supercomputing Center Centro Nacional de Supercomputación

QUIZ

Question 1

- (Assume that a kernel is launched with 1,000 thread blocks each of which has 512 threads. If a variable is declared as a shared memory variable, how many versions of the variable will be created through the lifetime of the execution of the kernel?
 - a) 1
 - b) 1,000
 - c) 512
 - d) 512,000

Question 1 - Answer

- (Assume that a kernel is launched with 1000 thread blocks each of which has 512 threads. If a variable is declared as a shared memory variable, how many versions of the variable will be created through the lifetime of the execution of the kernel?
 - a) 1
 - b) 1,000
 - c) 512
 - d) 512,000

Explanation: Shared memory variables are allocated to thread blocks. So, the number of versions is the number of thread blocks, 1,000.

Question 2

- (For our tiled matrix-matrix multiplication kernel, if we use a 32x32 tile, what is the reduction of memory bandwidth usage for input matrices A and B?
 - a) 1/8 of the original usage
 - b) 1/16 of the original usage
 - c) 1/32 of the original usage
 - d) 1/64 of the original usage

Question 2 - Answer

- (For our tiled matrix-matrix multiplication kernel, if we use a 32x32 tile, what is the reduction of memory bandwidth usage for input matrices A and B?
 - a) 1/8 of the original usage
 - b) 1/16 of the original usage
 - c) 1/32 of the original usage
 - d) 1/64 of the original usage

Explanation: Each element in the tile is used 32 times

www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you!

For further information please contact marc.jorda@bsc.es, antonio.pena@bsc.es