
www.bsc.es

Montevideo, 21-25 October 2019

Based on material from NVIDIA’s GPU Teaching Kit

CUDA Parallelism Model

Marc Jordà, Antonio J. Peña

Example: Vector Addition Kernel

// Compute vector sum C = A + B

// Each thread performs one pair-wise addition

__global__

void vecAddKernel(float* A, float* B, float* C, int n)

{

 int i = threadIdx.x+blockDim.x*blockIdx.x;

 if(i<n) C[i] = A[i] + B[i];

}

Device Code

3

Example: Vector Addition Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

 // d_A, d_B, d_C allocations and copies omitted

 // Run ceil(n/256.0) blocks of 256 threads each

 vecAddKernel<<<ceil(n/256.0),256>>>(d_A, d_B, d_C, n);

}

Host Code

The ceiling function makes sure that there

are enough threads to cover all elements.

4

More on Kernel Launch (Host Code)

void vecAdd(float* h_A, float* h_B, float* h_C, int n)

{

 dim3 DimGrid((n-1)/256 + 1, 1, 1);

 dim3 DimBlock(256, 1, 1);

 vecAddKernel<<<DimGrid,DimBlock>>>(d_A, d_B, d_C, n);

}

Host Code

This is an equivalent way to express the

ceiling function.

5

void vecAdd(…)

{

 dim3 DimGrid(ceil(n/256.0),1,1);

 dim3 DimBlock(256,1,1);

vecAddKernel<<<DimGrid,DimBlock>>>(d_A,d_B

,d_C,n);

}

Kernel execution in a nutshell

Grid Blk 0 Blk N-1
• • •

GPU M0

RAM

Mk • • •

__global__

void vecAddKernel(float *A,

 float *B, float *C, int n)

{

 int i = blockIdx.x * blockDim.x

 + threadIdx.x;

 if(i<n) C[i] = A[i]+B[i];

}

6

More on CUDA Function Declarations

− __global__ defines a kernel function

− Each “__” consists of two underscore characters

− A kernel function must return void

− __device__ and __host__ can be used together

− __host__ is optional if used alone

host host __host__ float HostFunc()

host device __global__ void KernelFunc()

device device __device__ float DeviceFunc()

Only callable from

the:

Executed on

the:

7

MULTIDIMENSIONAL KERNEL

CONFIGURATION

host device

Kernel 1

Grid 1
Block

(0, 0)

Block

(1, 1)

Block

(1, 0)

Block

(0, 1)

Grid 2

Block (1,0)

Thread

(0,0,0) Thread

(0,1,3)
Thread

(0,1,0)

Thread

(0,1,1)

Thread

(0,1,2)

Thread

(0,0,0)

Thread

(0,0,1)

Thread

(0,0,2)

Thread

(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

A Multi-Dimensional Grid Example

10

16×16 blocks

Processing a Picture with a 2D Grid

62×76 picture

11

RGB Color Image Representation

Each pixel in an image is an RGB value

The format of an image’s row is

 (r g b) (r g b) … (r g b)

RGB ranges are not distributed uniformly

Many different color spaces, here we show the

constants to convert to AdobeRGB color space

– The vertical axis (y value) and horizontal axis (x value)

show the fraction of the pixel intensity that should be

allocated to G and B. The remaining fraction (1-y–x) of

the pixel intensity that should be assigned to R

– The triangle contains all the representable colors in this

color space

17

RGB to Grayscale Conversion

A grayscale digital image is an image in which the value of each pixel carries only
intensity information.

18

Color Calculating Formula

For each pixel (r g b) at (I, J) do:

 grayPixel[I,J] = 0.21*r + 0.71*g + 0.07*b

This is just a dot product <[r,g,b],[0.21,0.71,0.07]>

with the constants being specific to input RGB space

0.21
0.71

0.07

19

RGB to Grayscale Conversion Code

#define CHANNELS 3 // we have 3 channels corresponding to RGB

// The input image is encoded as unsigned characters [0, 255]

__global__ void colorConvert(unsigned char * grayImage,

 unsigned char * rgbImage,

 int width, int height) {

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {

 // get 1D coordinate for the grayscale image

 int grayOffset = y*width + x;

 // one can think of the RGB image having

 // CHANNEL times columns than the gray scale image

 int rgbOffset = grayOffset*CHANNELS;

 unsigned char r = rgbImage[rgbOffset]; // red value for pixel

 unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel

 unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel

 // perform the rescaling and store it

 // We multiply by floating point constants

 grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

 }

}

20

RGB to Grayscale Conversion Code

#define CHANNELS 3 // we have 3 channels corresponding to RGB

// The input image is encoded as unsigned characters [0, 255]

__global__ void colorConvert(unsigned char * grayImage,

 unsigned char * rgbImage,

 int width, int height) {

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {

 // get 1D coordinate for the grayscale image

 int grayOffset = y*width + x;

 // one can think of the RGB image having

 // CHANNEL times columns than the gray scale image

 int rgbOffset = grayOffset*CHANNELS;

 unsigned char r = rgbImage[rgbOffset]; // red value for pixel

 unsigned char g = rgbImage[rgbOffset + 1]; // green value for pixel

 unsigned char b = rgbImage[rgbOffset + 2]; // blue value for pixel

 // perform the rescaling and store it

 // We multiply by floating point constants

 grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

 }

}

21

RGB to Grayscale Conversion Code

#define CHANNELS 3 // we have 3 channels corresponding to RGB

// The input image is encoded as unsigned characters [0, 255]

__global__ void colorConvert(unsigned char * grayImage,

 unsigned char * rgbImage,

 int width, int height) {

 int x = threadIdx.x + blockIdx.x * blockDim.x;

 int y = threadIdx.y + blockIdx.y * blockDim.y;

 if (x < width && y < height) {

 // get 1D coordinate for the grayscale image

 int grayOffset = y*width + x;

 // one can think of the RGB image having

 // CHANNEL times columns than the gray scale image

 int rgbOffset = grayOffset*CHANNELS;

 unsigned char r = rgbImage[rgbOffset]; // red value for pixel

 unsigned char g = rgbImage[rgbOffset + 2]; // green value for pixel

 unsigned char b = rgbImage[rgbOffset + 3]; // blue value for pixel

 // perform the rescaling and store it

 // We multiply by floating point constants

 grayImage[grayOffset] = 0.21f*r + 0.71f*g + 0.07f*b;

 }

}

22

THREAD SCHEDULING

Transparent Scalability

Each block can execute in any order relative to others.

Hardware is free to assign blocks to any processor at any time

– A kernel scales to any number of parallel processors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Thread grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
time

29

Example: Executing Thread Blocks

– Threads are assigned to Streaming
Multiprocessors (SM) in block granularity

– Up to 8 blocks to each SM as resource allows

– Fermi SM can take up to 1536 threads

– Could be 256 (threads/block) * 6 blocks

– Or 512 (threads/block) * 3 blocks, etc.

– SM maintains thread/block idx #s

– SM manages/schedules thread execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

SM

30

The Von-Neumann Model

Memory

Control Unit

I/O

ALU
Reg

File

PC IR

Processing Unit

31

Scalar arithmetic units

The Von-Neumann Model with SIMD units

Memory

Control Unit

I/O

ALU
Reg

File

PC IR

Processing Unit

Single Instruction Multiple Data

(SIMD), aka vector arithmetic

units

32

Warps as Scheduling Units

Each Block is executed as 32-thread Warps

– An implementation decision, not part of the CUDA

programming model

– Warps are scheduling units in SM

– Threads in a warp execute in SIMD

– Future GPUs may have different number of threads in

each warp

Having Warps into account matters in terms of performance

– Threads in a warp “will wait” for other threads to finish

their work because of the SIMD nature

33

Warp Example

• If 3 blocks are assigned to an SM and each block has 256 threads,
how many Warps are there in an SM?

– Each Block is divided into 256/32 = 8 Warps

– There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…
…

t0 t1 t2 … t31
…

Block 0 Warps Block 1 Warps

…
t0 t1 t2 … t31

…
Block 2 Warps

Register File

L1 Shared Memory

34

Example: Thread Scheduling (Cont.)

SM implements zero-overhead warp scheduling
– Warps whose next instruction has its operands ready for consumption

are eligible for execution

– Eligible Warps are selected for execution based on a prioritized
scheduling policy

– All threads in a warp execute the same instruction when selected

35

Block Granularity Considerations

For Matrix Multiplication using multiple blocks, should I use
8X8, 16X16 or 32X32 blocks?

– For 8X8, we have 64 threads per Block. Since each SM
can take up to 1536 threads, which translates to 24 Blocks.
However, each SM can only take up to 8 Blocks, only 512
threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each SM
can take up to 1536 threads, it can take up to 6 Blocks and
achieve full capacity unless other resource considerations
overrule.

– For 32X32, we would have 1024 threads per Block. Only
one block can fit into an SM. Using only 2/3 of the thread
capacity of an SM.

36

QUIZ

Question 1

If we need to use each thread to calculate one output element

of a vector addition, what would be the expression for

mapping the thread/block indices to data index:

a) i = threadIdx.x + threadIdx.y;

b) i = blockIdx.x + threadIdx.x;

c) i = blockIdx.x * blockDim.x + threadIdx.x;

d) i = blockIdx.x * threadIdx.x;

38

Question 1 - Answer

If we need to use each thread to calculate one output element

of a vector addition, what would be the expression for

mapping the thread/block indices to data index:

a) i = threadIdx.x + threadIdx.y;

b) i = blockIdx.x + threadIdx.x;

c) i = blockIdx.x * blockDim.x + threadIdx.x;

d) i = blockIdx.x * threadIdx.x;

39

Question 2

We want to use each thread to calculate two (adjacent) output

elements of a vector addition. Assume that variable i should

be the index for the first element to be processed by a thread.

What would be the expression for mapping the thread/block

indices to data index of the first element?

a) i = blockIdx.x * blockDim.x + threadIdx.x + 2

b) i = blockIdx.x * threadIdx.x * 2

c) i = (blockIdx.x * blockDim.x + threadIdx.x) * 2

d) i = blockIdx.x * blockDim.x * 2 + threadIdx.x

40

Question 2 - Answer

We want to use each thread to calculate two (adjacent) output
elements of a vector addition. Assume that variable i should be the
index for the first element to be processed by a thread. What would
be the expression for mapping the thread/block indices to data
index of the first element?

a) i = blockIdx.x * blockDim.x + threadIdx.x + 2

b) i = blockIdx.x * threadIdx.x * 2

c) i = (blockIdx.x * blockDim.x + threadIdx.x) * 2

d) i = blockIdx.x * blockDim.x * 2 + threadIdx.x

Explanation: Every thread covers two adjacent output elements. The
starting data index is simply twice the global thread index. Another
way to look at it is that all previous blocks cover
(blockIdx.x*blockDim.x)*2. Within the block, each thread covers 2
elements so the beginning position for a thread is threadIdx.x*2.

41

Question 3

We want to use each thread to calculate two output elements
of a vector addition. Each thread block processes
2*blockDim.x consecutive elements that form two sections. All
threads in each block will first process a section, each
processing one element. They will then all move to the next
section, again each processing one element. Assume that
variable i should be the index for the first element to be
processed by a thread. What would be the expression for
mapping the thread/block indices to data index of the first
element?

a) i = blockIdx.x * blockDim.x + threadIdx.x + 2

b) i = blockIdx.x * threadIdx.x * 2

c) i = (blockIdx.x * blockDim.x + threadIdx.x) * 2

d) i = blockIdx.x * blockDim.x * 2 + threadIdx.x

42

Question 3 - Answer

We want to use each thread to calculate two output elements of a
vector addition. Each thread block processes 2*blockDim.x
consecutive elements that form two sections. All threads in each
block will first process a section, each processing one element.
They will then all move to the next section, again each processing
one element. Assume that variable i should be the index for the first
element to be processed by a thread. What would be the
expression for mapping the thread/block indices to data index of the
first element?

a) i = blockIdx.x * blockDim.x + threadIdx.x + 2

b) i = blockIdx.x * threadIdx.x * 2

c) i = (blockIdx.x * blockDim.x + threadIdx.x) * 2

d) i = blockIdx.x * blockDim.x * 2 + threadIdx.x

Explanation: Each previous block covers (blockIdx.x*blockDim.x)*2.
The beginning elements of the threads are consecutive in this case so
just add threadIdx.x to it.

43

Question 4

For a vector addition, assume that the vector length is 8,000,

each thread calculates one output element, and the thread

block size is 1,024 threads. The programmer configures the

kernel launch to have a minimal number of thread blocks to

cover all output elements. How many threads will be in the

grid?

a) 8,000

b) 8,196

c) 8,192

d) 8,200

44

Question 4 - Answer

For a vector addition, assume that the vector length is 8,000,
each thread calculates one output element, and the thread
block size is 1,024 threads. The programmer configures the
kernel launch to have a minimal number of thread blocks to
cover all output elements. How many threads will be in the
grid?

a) 8,000

b) 8,196

c) 8,192

d) 8,200

Explanation: ceil(8000/1024)*1024 = 8 * 1024 = 8192. Another
way to look at it is the minimal multiple of 1,024 to cover 8,000 is
1024*8 = 8192.

45

www.bsc.es

Thank you!

For further information please contact

marc.jorda@bsc.es, antonio.pena@bsc.es

