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CPUs: Latency Oriented Design  

Powerful ALUs 

– Short pipeline, reduced operation 

latency 

 

Large caches 

– Convert long latency memory 

accesses to short latency cache 

accesses 

 

Sophisticated control 

– Branch prediction and return value 

prediction, speculative execution, 

etc. 

– Data forwarding for reduced data 

latency 
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GPUs: Throughput Oriented Design 

Small caches 

– To boost memory throughput 

 

Simple control 

– No branch prediction 

– No speculative execution 

– No data forwarding 

 

SIMD ALUs 
– Vector units (similar to AVX) 

– Many, long latency but heavily 

pipelined for high throughput 

 

Can have many active threads 
– Throughput oriented 

– Helps tolerate latencies 

 

DRAM 

GPU 

7 



Applications should Use Both CPU and GPU  

CPUs for sequential parts 

where latency matters 

– CPUs can be 10X+ faster 

than GPUs for sequential 

code 

 

GPUs for parallel parts 

where throughput wins 

– GPUs can be 10X+ faster 

than CPUs for parallel code 
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PROGRAMMING ALTERNATIVES TO USE 

THE GPU 



3 Ways to Accelerate Applications 
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Libraries: Easy, High-Quality Acceleration 

 

Ease of use:  Using libraries enables GPU acceleration without in-

depth knowledge of GPU programming 
 

“Drop-in”:  Many GPU-accelerated libraries follow standard APIs, 

thus enabling acceleration with minimal code changes 
 

Quality:  Libraries offer high-quality implementations of functions 

encountered in a broad range of applications  
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GPU Accelerated Libraries 

Linear Algebra 
FFT, BLAS,  

SPARSE, Matrix 

Numerical & Math 
RAND, Statistics 

Data Struct. & AI 
Sort, Scan, Zero Sum 

Visual Processing 
Image & Video 

NVIDIA 
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Vector Addition in Thrust 

 

thrust::device_vector<float> deviceInput1(inputLength); 
thrust::device_vector<float> deviceInput2(inputLength); 
thrust::device_vector<float> deviceOutput(inputLength); 

 

thrust::copy(hostInput1, hostInput1 + inputLength,   
 deviceInput1.begin());  

thrust::copy(hostInput2, hostInput2 + inputLength, 
 deviceInput2.begin()); 

 

thrust::transform(deviceInput1.begin(), deviceInput1.end(),    
  deviceInput2.begin(), deviceOutput.begin(), 

       thrust::plus<float>()); 
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Compiler Directives: Easy, Portable Acceleration 

 

Ease of use:  Compiler takes care of details of parallelism 

management and data movement 
 

Portable:  The code is generic, not specific to any type of hardware 

and can be deployed into multiple languages 

 

Uncertain: Performance of code can vary across compiler versions 
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OpenACC 

– Compiler directives for C, C++, and FORTRAN 

 

#pragma acc parallel loop 
copyin(input1[0:inputLength],input2[0:inputLength]),  
 copyout(output[0:inputLength]) 

    for(i = 0; i < inputLength; ++i) { 

        output[i] = input1[i] + input2[i]; 

    } 
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Programming Languages: Most Performance and 

Flexible Acceleration 

 

Performance:  Programmer has best control of parallelism and 

data movement 
 

Flexible:  The computation does not need to fit into a limited set of 

library patterns or directive types 

 

Verbose: The programmer often needs to express more details  
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GPU Programming Languages 

 

CUDA Fortran Fortran 

CUDA C, OpenCL C 

CUDA C++, OpenCL C++ 

PyCUDA, Copperhead, Numba Python 

Alea.cuBase F# 

MATLAB, Mathematica, LabVIEW Numerical analytics 
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GPU Programming Languages 

 

CUDA Fortran Fortran 

CUDA C, OpenCL C 

CUDA C++, OpenCL C++ 

PyCUDA, Copperhead, Numba Python 

Alea.cuBase F# 

MATLAB, Mathematica, LabVIEW Numerical analytics 
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MEMORY ALLOCATION AND DATA 

MOVEMENT API FUNCTIONS 



A[0] vector  A 

vector  B 

vector  C 

A[1] A[2] A[N-1] 

B[0] B[1] B[2] 

… 

… B[N-1] 

C[0] C[1] C[2] C[N-1] … 

+ + + + 

Data Parallelism - Vector Addition Example 
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Vector Addition – Traditional C Code 

// Compute vector sum C = A + B 

void vecAdd(float *h_A, float *h_B, float *h_C, int n) 

{ 

    int i; 

    for (i = 0; i<n; i++) h_C[i] = h_A[i] + h_B[i]; 

} 

 

int main() 

{ 

    // Memory allocation for h_A, h_B, and h_C 

   // I/O to read h_A and h_B, N elements 

   … 

    vecAdd(h_A, h_B, h_C, N); 

} 

 

22 



CPU GPU 

Part 1 

Part 3 

Heterogeneous Computing vecAdd CUDA Host Code 

#include <cuda.h> 

void vecAdd(float *h_A, float *h_B, float *h_C, int n)‏ 

{ 

   int size = n* sizeof(float);  

   float *d_A, *d_B, *d_C; 

   // Part 1 

   // Allocate device memory for A, B, and C 

   // copy A and B to device memory  
     

   // Part 2 

   // Kernel launch code – the device performs the actual vector addition 
 

   // Part 3 

   // copy C from the device memory 

   // Free device vectors 

} 

 

 

Part 2 
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Partial Overview of CUDA Memories 

– GPU threads 

– Grouped in thread blocks to 
form the thread grid  

 

– Device code can: 

– R/W per-thread registers 

– R/W all-shared global 
memory 

 

– Host code can 

– Transfer data between global 
memory and host memory 

We will cover more memory types and 

more sophisticated memory models later. 

Host 
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CUDA Device Memory Management API functions 

– cudaMalloc() 
– Allocates an object in the device 

global memory 

– Two parameters 

– Address of a pointer to the 
allocated object 

– Size of allocated object in terms 
of bytes 

– Regular C/C++ pointer, only valid in 
GPU code and CUDA copy functions 

 

– cudaFree() 
– Frees object from device global 

memory 

– One parameter 

– Pointer to freed object 

(Device) Grid 

Global 

Memory 

Block (0, 0) 

 

 

Thread (0, 0) 

Registers 

Block (0, 1) 

 

 

Thread (0, 0) 

Registers  

 

Thread (0, 1) 

Registers  

 

Thread (0, 1) 

Registers 
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Host-Device Data Transfer API functions 

– cudaMemcpy() 
– memory data transfer 

– Requires four parameters 

– Pointer to destination  

– Pointer to source 

– Number of bytes copied 

– Type/Direction of transfer 

 

– Transfer to device is asynchronous 

(Device) Grid 

Global 

Memory 

Block (0, 0) 

 

 

Thread (0, 0) 

Registers 

Block (0, 1) 

 

 

Thread (0, 0) 

Registers  

 

Thread (0, 1) 

Registers  

 

Thread (0, 1) 

Registers 
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Vector Addition Host Code 

void vecAdd(float *h_A, float *h_B, float *h_C, int n) 

{ 

    int size = n * sizeof(float); 

    float *d_A, *d_B, *d_C; 
 

    cudaMalloc((void **) &d_A, size);     

    cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); 

    cudaMalloc((void **) &d_B, size); 

    cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); 

    cudaMalloc((void **) &d_C, size); 
 

    // Kernel invocation code – to be shown later 
 

    cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); 

    cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); 

} 
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In Practice, Check for API Errors in Host Code 

cudaError_t err = cudaMalloc((void **) &d_A, size); 

 

if (err != cudaSuccess)  { 

   printf(“%s‏in‏%s‏at‏line‏%d\n”,‏‏‏cudaGetErrorString(err), __FILE__, 

   __LINE__); 

   exit(EXIT_FAILURE); 

} 

 

28 



THREADS AND KERNEL FUNCTIONS 



A[0] vector  A 

vector  B 

vector  C 

A[1] A[2] A[N-1] 

B[0] B[1] B[2] 

… 

… B[N-1] 

C[0] C[1] C[2] C[N-1] … 

+ + + + 

Data Parallelism - Vector Addition Example 
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CUDA Execution Model 

– Heterogeneous host (CPU) + device (GPU) application C program 
– Serial parts in host C code 

– Parallel parts in device SPMD (Single Program, Multiple Data) kernel code 

Serial Code (host)‏ 

. . . 

. . . 

Parallel Kernel (device)‏ 

KernelA<<< nBlk, nTid >>>(args); 

Serial Code (host)‏ 

Parallel Kernel (device)‏ 

KernelB<<< nBlk, nTid >>>(args); 
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Arrays of Parallel Threads 

• A CUDA kernel is executed by a grid (array) of threads  

– All threads in a grid run the same kernel code (Single Program Multiple Data)‏ 

– Each thread has indexes that it uses to compute memory addresses and make 
control decisions 

 

i = blockIdx.x * blockDim.x + threadIdx.x; 

C[i] = A[i] + B[i]; 

… 

0 1 2 254 255 

… 
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Thread Blocks: Scalable Cooperation 

– Divide thread array into multiple blocks 
– Threads within a block cooperate via shared memory, atomic operations 

and barrier synchronization 

– Threads in different blocks do not interact 

i = blockIdx.x * blockDim.x + 

threadIdx.x; 

C[i] = A[i] + B[i]; 

… 

0 1 2 254 255 

Thread Block 0 

… 

1 2 254 255 

Thread Block 1 

0 

i = blockIdx.x * blockDim.x + 

threadIdx.x; 

C[i] = A[i] + B[i]; 

… 

1 2 254 255 

Thread Block N-1 

0 

i = blockIdx.x * blockDim.x + 

threadIdx.x; 

C[i] = A[i] + B[i]; 

… 

… … … 
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blockIdx and threadIdx 

 

• Each thread uses indices to decide what data to work 
on 
– blockIdx: 1D, 2D, or 3D 

– threadIdx: 1D, 2D, or 3D  

 

• Simplifies memory 
addressing when processing 
multidimensional data 
– Image processing 

– Solving PDEs on volumes 

– … 
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INTRODUCTION TO THE CUDA TOOLKIT 



NVCC Compiler 

– NVIDIA provides a CUDA-C compiler 

– nvcc 

 

– NVCC compiles device code then forwards code on to the host 
compiler (e.g. g++) 

 

– Can be used to compile & link host only applications 
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Hello World! with Device Code 

 __global__ void mykernel(void) { 

 } 

 

 int main(void) { 

  mykernel<<<1,1>>>(); 

  printf("Hello World!\n"); 

  return 0; 

 } 

 

 

 

 

 

 

 

– Notes 

– mykernel does nothing 

– nvcc only parses .cu files for CUDA 

 
 
 
Output: 
 

$ nvcc main.cu 

$ ./a.out 

Hello World! 
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Developer Tools - Debuggers 

NSIGHT CUDA-GDB CUDA MEMCHECK 

3rd Party  

NVIDIA Provided 

https://developer.nvidia.com/debugging-solutions 
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Compiler Flags 

– There are two compilers being used 
– NVCC: Device code 

– Host Compiler: C/C++ code 

 

– NVCC supports some host compiler flags 
– If flag is unsupported, use –Xcompiler to forward to host 

– e.g. –Xcompiler –fopenmp 

 

– Debugging Flags 
– -g:  Include host debugging symbols 

– -G: Include device debugging symbols and disables optimization of kernel code 

– -lineinfo:  Include line information with symbols 
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CUDA-MEMCHECK 

– Memory debugging tool 
– No recompilation necessary 

$ cuda-memcheck --tool <memcheck|racecheck|synccheck|initcheck> ./cuda_program 

 

– Can detect the following errors 
– Memory leaks 

– Memory errors (OOB, misaligned access, illegal instruction, etc) 

– Race conditions 

– Illegal Barriers 

– Uninitialized Memory 

 

– For line numbers use the following compiler flags: 
– -G (disables device code optimization) 

– -lineinfo -Xcompiler -rdynamic 

http://docs.nvidia.com/cuda/cuda-memcheck 

43 



CUDA-GDB 

– cuda-gdb is an extension of GDB 
– Provides seamless debugging of CUDA and CPU code 

 

– Works on Linux and Macintosh  
– For a Windows debugger use NSIGHT Visual Studio Edition 

 

 

http://docs.nvidia.com/cuda/cuda-gdb 
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Example: cuda-gdb 

 

 

http://docs.nvidia.com/cuda/cuda-gdb 

%> cuda-gdb --args ./a.out 
(cuda-gdb) b main //set break point at main 

(cuda-gdb) r       //run application 

(cuda-gdb) l       //print line context 

(cuda-gdb) b foo  //break at kernel foo 

(cuda-gdb) c       //continue 

(cuda-gdb) cuda thread  //print current thread 

(cuda-gdb) cuda thread 10 //switch to thread 10 

(cuda-gdb) cuda block  //print current block 

(cuda-gdb) cuda block 1  //switch to block 1 

(cuda-gdb) d      //delete all break points 

(cuda-gdb) set cuda memcheck on //turn on cuda memcheck 

(cuda-gdb) r      //run from the beginning 
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Developer Tools - Profilers 

NSIGHT NVVP NVPROF 

3rd Party  

NVIDIA Provided 

https://developer.nvidia.com/performance-analysis-tools 

VampirTrace TAU 
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NVPROF 

Command Line Profiler 

– Compute time in each kernel 

– Compute memory transfer time 

– Collect metrics and events 

– Support complex process hierarchy's 

– Collect profiles for NVIDIA Visual Profiler 

– No need to recompile 
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Example: nvprof  

1. Collect profile information 

%> nvprof ./a.out 

2. View available metrics 

%> nvprof --query-metrics 

3. View global load/store efficiency 

%> nvprof --metrics gld_efficiency,gst_efficiency ./a.out 

4. Store a timeline to load in NVVP 

%> nvprof –o profile.timeline ./a.out 

5. Store analysis metrics to load in NVVP 

%> nvprof –o profile.metrics --analysis-metrics ./a.out 
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NVIDIA’s‏Visual‏Profiler‏(NVVP) 

Timeline 

Guided 

System Analysis 
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NVTX 

– Our current tools only profile API calls on the host 
– What if we want to understand better what the host is doing? 

– The NVTX library allows us to annotate profiles with ranges 
– Add: #include <nvToolsExt.h> 

– Link with:  -lnvToolsExt 

– Mark the start of a range 
– nvtxRangePushA(“description”); 

– Mark the end of a range 
– nvtxRangePop(); 

– Ranges are allowed to overlap 

 

http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/ 

50 



NVTX Profile 
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NSIGHT 

– CUDA enabled Integrated Development Environment 
– Source code editor: syntax highlighting, code refactoring, etc 

– Build Manger 

– Visual Debugger 

– Visual Profiler 

– Linux/Macintosh 
– Editor = Eclipse 

– Debugger = cuda-gdb with a visual wrapper 

– Profiler = NVVP 

– Windows 
– Integrates directly into Visual Studio 

– Profiler is NSIGHT VSE 
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QUIZ 



Question 1 

If we want to allocate an array of v integer elements in CUDA 

device global memory, what would be an appropriate 

expression for the second argument of the cudaMalloc() call? 

 

a) n 

b) v 

c) n * sizeof(int) 

d) v * sizeof(int) 
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Question 1 

If we want to allocate an array of v integer elements in CUDA 

device global memory, what would be an appropriate 

expression for the second argument of the cudaMalloc() call? 

 

a) n 

b) v 

c) n * sizeof(int) 

d) v * sizeof(int) 
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Question 2 

If we want to allocate an array of n floating-point elements and 

have a floating-point pointer variable d_A to point to the 

allocated memory, what would be an appropriate expression 

for the first argument of the cudaMalloc() call?  

 

a) n 

b) (void *) d_A 

c) *d_A 

d) (void **) &d_A 
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Question 2 - Answer 

If we want to allocate an array of n floating-point elements and 

have a floating-point pointer variable d_A to point to the 

allocated memory, what would be an appropriate expression 

for the first argument of the cudaMalloc() call?  

 

a) n 

b) (void *) d_A 

c) *d_A 

d) (void **) &d_A 

 

Explanation: &d_A is pointer to a pointer of float. To convert it to 

a generic pointer required by cudaMalloc() should use (void **) 

to cast it to a generic double-level pointer. 
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Question 3 

If we want to copy 3,000 bytes of data from host array h_A 

(h_A is a pointer to element 0 of the source array) to device 

array d_A (d_A is a pointer to element 0 of the destination 

array), what would be an appropriate API call for this in 

CUDA? 

 

a) cudaMemcpy(3000, h_A, d_A, cudaMemcpyHostToDevice); 

b) cudaMemcpy(h_A, d_A, 3000, cudaMemcpyDeviceTHost); 

c) cudaMemcpy(d_A, h_A, 3000, cudaMemcpyHostToDevice); 

d) cudaMemcpy(3000, d_A, h_A, cudaMemcpyHostToDevice); 
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Question 3 - Answer 

If we want to copy 3000 bytes of data from host array h_A 

(h_A is a pointer to element 0 of the source array) to device 

array d_A (d_A is a pointer to element 0 of the destination 

array), what would be an appropriate API call for this in 

CUDA? 

 

a) cudaMemcpy(3000, h_A, d_A, cudaMemcpyHostToDevice); 

b) cudaMemcpy(h_A, d_A, 3000, cudaMemcpyDeviceTHost); 

c) cudaMemcpy(d_A, h_A, 3000, cudaMemcpyHostToDevice); 

d) cudaMemcpy(3000, d_A, h_A, cudaMemcpyHostToDevice); 
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Thank you! 

For further information please contact 

marc.jorda@bsc.es, antonio.pena@bsc.es 


