
www.bsc.es

Montevideo, 21-25 October 2019

Based on material from NVIDIA’s GPU Teaching Kit

Introduction to CUDA: The Basics

Marc Jordà, Antonio J. Peña

Heterogeneous Parallel Computing

3

DRAM

MCDRAM

NVRAM

DRAM

MCDRAM

NVRAM

Heterogeneous Node

4

CPU

DRAM

GPU

DRAM

Main board GPU device

PCIe/NVLink

16~32 GB

10x more

bandwidth than

CPU  DRAM

CPU and GPU are designed very differently

CPU
Latency Oriented Cores

Chip

Core

Local Cache

Registers

ALUs

C
o
n
tro

l

GPU
Throughput Oriented Cores

Chip

Streaming Multiprocessor

Cache/Local Mem

Registers

SIMD ALUs

T
h

re
a

d
in

g

5

CPUs: Latency Oriented Design

Powerful ALUs

– Short pipeline, reduced operation

latency

Large caches

– Convert long latency memory

accesses to short latency cache

accesses

Sophisticated control

– Branch prediction and return value

prediction, speculative execution,

etc.

– Data forwarding for reduced data

latency

Cache

ALU

Control

ALU

ALU

ALU

DRAM

CPU

6

GPUs: Throughput Oriented Design

Small caches

– To boost memory throughput

Simple control

– No branch prediction

– No speculative execution

– No data forwarding

SIMD ALUs
– Vector units (similar to AVX)

– Many, long latency but heavily

pipelined for high throughput

Can have many active threads
– Throughput oriented

– Helps tolerate latencies

DRAM

GPU

7

Applications should Use Both CPU and GPU

CPUs for sequential parts

where latency matters

– CPUs can be 10X+ faster

than GPUs for sequential

code

GPUs for parallel parts

where throughput wins

– GPUs can be 10X+ faster

than CPUs for parallel code

8

PROGRAMMING ALTERNATIVES TO USE

THE GPU

3 Ways to Accelerate Applications

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

11

Libraries: Easy, High-Quality Acceleration

Ease of use: Using libraries enables GPU acceleration without in-

depth knowledge of GPU programming

“Drop-in”: Many GPU-accelerated libraries follow standard APIs,

thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions

encountered in a broad range of applications

12

GPU Accelerated Libraries

Linear Algebra
FFT, BLAS,

SPARSE, Matrix

Numerical & Math
RAND, Statistics

Data Struct. & AI
Sort, Scan, Zero Sum

Visual Processing
Image & Video

NVIDIA

cuFFT,

cuBLAS,

cuSPARSE

NVIDIA

Math

Lib

NVIDIA

cuRAND

NVIDIA

NPP

NVIDIA

Video

Encode

GPU AI –

Board

Games

GPU AI –

Path

Finding

13

Vector Addition in Thrust

thrust::device_vector<float> deviceInput1(inputLength);
thrust::device_vector<float> deviceInput2(inputLength);
thrust::device_vector<float> deviceOutput(inputLength);

thrust::copy(hostInput1, hostInput1 + inputLength,
 deviceInput1.begin());

thrust::copy(hostInput2, hostInput2 + inputLength,
 deviceInput2.begin());

thrust::transform(deviceInput1.begin(), deviceInput1.end(),
 deviceInput2.begin(), deviceOutput.begin(),

 thrust::plus<float>());

14

Compiler Directives: Easy, Portable Acceleration

Ease of use: Compiler takes care of details of parallelism

management and data movement

Portable: The code is generic, not specific to any type of hardware

and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions

15

OpenACC

– Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(input1[0:inputLength],input2[0:inputLength]),
 copyout(output[0:inputLength])

 for(i = 0; i < inputLength; ++i) {

 output[i] = input1[i] + input2[i];

 }

16

Programming Languages: Most Performance and

Flexible Acceleration

Performance: Programmer has best control of parallelism and

data movement

Flexible: The computation does not need to fit into a limited set of

library patterns or directive types

Verbose: The programmer often needs to express more details

17

GPU Programming Languages

CUDA Fortran Fortran

CUDA C, OpenCL C

CUDA C++, OpenCL C++

PyCUDA, Copperhead, Numba Python

Alea.cuBase F#

MATLAB, Mathematica, LabVIEW Numerical analytics

18

GPU Programming Languages

CUDA Fortran Fortran

CUDA C, OpenCL C

CUDA C++, OpenCL C++

PyCUDA, Copperhead, Numba Python

Alea.cuBase F#

MATLAB, Mathematica, LabVIEW Numerical analytics

19

MEMORY ALLOCATION AND DATA

MOVEMENT API FUNCTIONS

A[0] vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1] …

+ + + +

Data Parallelism - Vector Addition Example

21

Vector Addition – Traditional C Code

// Compute vector sum C = A + B

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

 int i;

 for (i = 0; i<n; i++) h_C[i] = h_A[i] + h_B[i];

}

int main()

{

 // Memory allocation for h_A, h_B, and h_C

 // I/O to read h_A and h_B, N elements

 …

 vecAdd(h_A, h_B, h_C, N);

}

22

CPU GPU

Part 1

Part 3

Heterogeneous Computing vecAdd CUDA Host Code

#include <cuda.h>

void vecAdd(float *h_A, float *h_B, float *h_C, int n)‏

{

 int size = n* sizeof(float);

 float *d_A, *d_B, *d_C;

 // Part 1

 // Allocate device memory for A, B, and C

 // copy A and B to device memory

 // Part 2

 // Kernel launch code – the device performs the actual vector addition

 // Part 3

 // copy C from the device memory

 // Free device vectors

}

Part 2

23

Partial Overview of CUDA Memories

– GPU threads

– Grouped in thread blocks to
form the thread grid

– Device code can:

– R/W per-thread registers

– R/W all-shared global
memory

– Host code can

– Transfer data between global
memory and host memory

We will cover more memory types and

more sophisticated memory models later.

Host

(GPU, aka Device) Grid

Global

Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

24

Mem

CUDA Device Memory Management API functions

– cudaMalloc()
– Allocates an object in the device

global memory

– Two parameters

– Address of a pointer to the
allocated object

– Size of allocated object in terms
of bytes

– Regular C/C++ pointer, only valid in
GPU code and CUDA copy functions

– cudaFree()
– Frees object from device global

memory

– One parameter

– Pointer to freed object

(Device) Grid

Global

Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

25

Host

Mem

Host-Device Data Transfer API functions

– cudaMemcpy()
– memory data transfer

– Requires four parameters

– Pointer to destination

– Pointer to source

– Number of bytes copied

– Type/Direction of transfer

– Transfer to device is asynchronous

(Device) Grid

Global

Memory

Block (0, 0)

Thread (0, 0)

Registers

Block (0, 1)

Thread (0, 0)

Registers

Thread (0, 1)

Registers

Thread (0, 1)

Registers

26

Host

Mem

Vector Addition Host Code

void vecAdd(float *h_A, float *h_B, float *h_C, int n)

{

 int size = n * sizeof(float);

 float *d_A, *d_B, *d_C;

 cudaMalloc((void **) &d_A, size);

 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

 cudaMalloc((void **) &d_B, size);

 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

 cudaMalloc((void **) &d_C, size);

 // Kernel invocation code – to be shown later

 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);

}

27

In Practice, Check for API Errors in Host Code

cudaError_t err = cudaMalloc((void **) &d_A, size);

if (err != cudaSuccess) {

 printf(“%s‏in‏%s‏at‏line‏%d\n”,‏‏‏cudaGetErrorString(err), __FILE__,

 __LINE__);

 exit(EXIT_FAILURE);

}

28

THREADS AND KERNEL FUNCTIONS

A[0] vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1] …

+ + + +

Data Parallelism - Vector Addition Example

30

CUDA Execution Model

– Heterogeneous host (CPU) + device (GPU) application C program
– Serial parts in host C code

– Parallel parts in device SPMD (Single Program, Multiple Data) kernel code

Serial Code (host)‏

. . .

. . .

Parallel Kernel (device)‏

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)‏

Parallel Kernel (device)‏

KernelB<<< nBlk, nTid >>>(args);

31

Arrays of Parallel Threads

• A CUDA kernel is executed by a grid (array) of threads

– All threads in a grid run the same kernel code (Single Program Multiple Data)‏

– Each thread has indexes that it uses to compute memory addresses and make
control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;

C[i] = A[i] + B[i];

…

0 1 2 254 255

…

34

Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations

and barrier synchronization

– Threads in different blocks do not interact

i = blockIdx.x * blockDim.x +

threadIdx.x;

C[i] = A[i] + B[i];

…

0 1 2 254 255

Thread Block 0

…

1 2 254 255

Thread Block 1

0

i = blockIdx.x * blockDim.x +

threadIdx.x;

C[i] = A[i] + B[i];

…

1 2 254 255

Thread Block N-1

0

i = blockIdx.x * blockDim.x +

threadIdx.x;

C[i] = A[i] + B[i];

…

… … …

35

blockIdx and threadIdx

• Each thread uses indices to decide what data to work
on
– blockIdx: 1D, 2D, or 3D

– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

device

Grid
Block (0, 0)

Block (1, 1) Block (1, 0)

Block (0, 1)

Block (1,1)

Thread

(0,0,0) Thread

(0,1,3)
Thread

(0,1,0)

Thread

(0,1,1)

Thread

(0,1,2)

Thread

(0,0,0)

Thread

(0,0,1)

Thread

(0,0,2)

Thread

(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

36

INTRODUCTION TO THE CUDA TOOLKIT

NVCC Compiler

– NVIDIA provides a CUDA-C compiler

– nvcc

– NVCC compiles device code then forwards code on to the host
compiler (e.g. g++)

– Can be used to compile & link host only applications

38

Hello World! with Device Code

 __global__ void mykernel(void) {

 }

 int main(void) {

 mykernel<<<1,1>>>();

 printf("Hello World!\n");

 return 0;

 }

– Notes

– mykernel does nothing

– nvcc only parses .cu files for CUDA

Output:

$ nvcc main.cu

$./a.out

Hello World!

40

Developer Tools - Debuggers

NSIGHT CUDA-GDB CUDA MEMCHECK

3rd Party

NVIDIA Provided

https://developer.nvidia.com/debugging-solutions

41

Compiler Flags

– There are two compilers being used
– NVCC: Device code

– Host Compiler: C/C++ code

– NVCC supports some host compiler flags
– If flag is unsupported, use –Xcompiler to forward to host

– e.g. –Xcompiler –fopenmp

– Debugging Flags
– -g: Include host debugging symbols

– -G: Include device debugging symbols and disables optimization of kernel code

– -lineinfo: Include line information with symbols

42

CUDA-MEMCHECK

– Memory debugging tool
– No recompilation necessary

$ cuda-memcheck --tool <memcheck|racecheck|synccheck|initcheck> ./cuda_program

– Can detect the following errors
– Memory leaks

– Memory errors (OOB, misaligned access, illegal instruction, etc)

– Race conditions

– Illegal Barriers

– Uninitialized Memory

– For line numbers use the following compiler flags:
– -G (disables device code optimization)

– -lineinfo -Xcompiler -rdynamic

http://docs.nvidia.com/cuda/cuda-memcheck

43

CUDA-GDB

– cuda-gdb is an extension of GDB
– Provides seamless debugging of CUDA and CPU code

– Works on Linux and Macintosh
– For a Windows debugger use NSIGHT Visual Studio Edition

http://docs.nvidia.com/cuda/cuda-gdb

44

Example: cuda-gdb

http://docs.nvidia.com/cuda/cuda-gdb

%> cuda-gdb --args ./a.out
(cuda-gdb) b main //set break point at main

(cuda-gdb) r //run application

(cuda-gdb) l //print line context

(cuda-gdb) b foo //break at kernel foo

(cuda-gdb) c //continue

(cuda-gdb) cuda thread //print current thread

(cuda-gdb) cuda thread 10 //switch to thread 10

(cuda-gdb) cuda block //print current block

(cuda-gdb) cuda block 1 //switch to block 1

(cuda-gdb) d //delete all break points

(cuda-gdb) set cuda memcheck on //turn on cuda memcheck

(cuda-gdb) r //run from the beginning

45

Developer Tools - Profilers

NSIGHT NVVP NVPROF

3rd Party

NVIDIA Provided

https://developer.nvidia.com/performance-analysis-tools

VampirTrace TAU

46

NVPROF

Command Line Profiler

– Compute time in each kernel

– Compute memory transfer time

– Collect metrics and events

– Support complex process hierarchy's

– Collect profiles for NVIDIA Visual Profiler

– No need to recompile

47

Example: nvprof

1. Collect profile information

%> nvprof ./a.out

2. View available metrics

%> nvprof --query-metrics

3. View global load/store efficiency

%> nvprof --metrics gld_efficiency,gst_efficiency ./a.out

4. Store a timeline to load in NVVP

%> nvprof –o profile.timeline ./a.out

5. Store analysis metrics to load in NVVP

%> nvprof –o profile.metrics --analysis-metrics ./a.out

48

NVIDIA’s‏Visual‏Profiler‏(NVVP)

Timeline

Guided

System Analysis

49

NVTX

– Our current tools only profile API calls on the host
– What if we want to understand better what the host is doing?

– The NVTX library allows us to annotate profiles with ranges
– Add: #include <nvToolsExt.h>

– Link with: -lnvToolsExt

– Mark the start of a range
– nvtxRangePushA(“description”);

– Mark the end of a range
– nvtxRangePop();

– Ranges are allowed to overlap

http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-generate-custom-application-profile-timelines-nvtx/

50

NVTX Profile

51

NSIGHT

– CUDA enabled Integrated Development Environment
– Source code editor: syntax highlighting, code refactoring, etc

– Build Manger

– Visual Debugger

– Visual Profiler

– Linux/Macintosh
– Editor = Eclipse

– Debugger = cuda-gdb with a visual wrapper

– Profiler = NVVP

– Windows
– Integrates directly into Visual Studio

– Profiler is NSIGHT VSE

52

QUIZ

Question 1

If we want to allocate an array of v integer elements in CUDA

device global memory, what would be an appropriate

expression for the second argument of the cudaMalloc() call?

a) n

b) v

c) n * sizeof(int)

d) v * sizeof(int)

59

Question 1

If we want to allocate an array of v integer elements in CUDA

device global memory, what would be an appropriate

expression for the second argument of the cudaMalloc() call?

a) n

b) v

c) n * sizeof(int)

d) v * sizeof(int)

60

Question 2

If we want to allocate an array of n floating-point elements and

have a floating-point pointer variable d_A to point to the

allocated memory, what would be an appropriate expression

for the first argument of the cudaMalloc() call?

a) n

b) (void *) d_A

c) *d_A

d) (void **) &d_A

61

Question 2 - Answer

If we want to allocate an array of n floating-point elements and

have a floating-point pointer variable d_A to point to the

allocated memory, what would be an appropriate expression

for the first argument of the cudaMalloc() call?

a) n

b) (void *) d_A

c) *d_A

d) (void **) &d_A

Explanation: &d_A is pointer to a pointer of float. To convert it to

a generic pointer required by cudaMalloc() should use (void **)

to cast it to a generic double-level pointer.

62

Question 3

If we want to copy 3,000 bytes of data from host array h_A

(h_A is a pointer to element 0 of the source array) to device

array d_A (d_A is a pointer to element 0 of the destination

array), what would be an appropriate API call for this in

CUDA?

a) cudaMemcpy(3000, h_A, d_A, cudaMemcpyHostToDevice);

b) cudaMemcpy(h_A, d_A, 3000, cudaMemcpyDeviceTHost);

c) cudaMemcpy(d_A, h_A, 3000, cudaMemcpyHostToDevice);

d) cudaMemcpy(3000, d_A, h_A, cudaMemcpyHostToDevice);

63

Question 3 - Answer

If we want to copy 3000 bytes of data from host array h_A

(h_A is a pointer to element 0 of the source array) to device

array d_A (d_A is a pointer to element 0 of the destination

array), what would be an appropriate API call for this in

CUDA?

a) cudaMemcpy(3000, h_A, d_A, cudaMemcpyHostToDevice);

b) cudaMemcpy(h_A, d_A, 3000, cudaMemcpyDeviceTHost);

c) cudaMemcpy(d_A, h_A, 3000, cudaMemcpyHostToDevice);

d) cudaMemcpy(3000, d_A, h_A, cudaMemcpyHostToDevice);

64

www.bsc.es

Thank you!

For further information please contact

marc.jorda@bsc.es, antonio.pena@bsc.es

