www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

@

OpenMP Tasking

Parallel Programming Workshop

Xavier Teruel and Xavier Martorell

EXCELENCIA

SEVERO
OCHOA

Montevideo, October 22nd, 2019

What is a task in OpenMP?

Tasks are work units whose execution may be deferred.
... or it can be executed immediately!!!

Tasks appears in OpenMP 3.0 specification (2008)

Tasks are composed of:

— code to execute (set of instructions, function calls, etc...)
— a data environment (initialized at creation time)
— internal control variables (ICVs)

In OpenMP tasks are created...

— when encounters a task construct > explicit task is created

— when encounters a taskloop construct - explicit task per chunk is created

— when encounters a target construct - target task is created

Parallel Programming Workshop

Montevideo, October 22nd, 2019

Tasking execution model

Supports unstructured parallelism
— unbounded loops

while (<expr>) { ,,*"“x\
. o3 y |m
] N
} Parallel Region = I
OBy (- II
— recursive function calls < ~——’
4 Task pool
void myCode (<args>) { ,' o
...3; myCode (<args>); ...; I‘
} \
\\ ’
Several scenarios are possible TR g

— single creator vs. multiple creators...
— but all members in the team are candidates to execute these tasks

Parallel Programming Workshop Montevideo, October 22nd, 2019

The task construct

Deferring a unit of work (executable for any member of the team)
— always attached to a structured block

#pragma omp task [clause[[,] clause]...]

{structured-block}

Where clause;

— untied

— if(scalar-expression)

— mergeable

— final(scalar-expression)

— priority(priority-value)

— depend(dependence-type: list)

Parallel Programming Workshop Montevideo, October 22nd, 2019

Task data environment: what i1s the default?

Implicit data-sharing rules for the task region
— the shared attribute is lexically inherited
— in any other case the variable is firstprivate

Parallel Programming Workshop Montevideo, October 22nd, 2019

Task default data-sharing attributes (in practice) @

int a ;

void foo (int b) {
int ¢, d ;
#pragma omp parallel private(c)
{

int e ;
#pragma omp task
{
int g;
a = <expr>;
b = <expr>;
C = <expr>;
d = <expr>;
e = <expr>;
g = <expr>;
}

Parallel Programming Workshop

— default(none) may help when you are not sure of
understand the default

Montevideo, October 22nd, 2019

Task scheduling: tied vs untied tasks (1)

Tasks are tied by default (when no untied clause present)

— tied tasks are executed always by the same thread (not necessarily creator)
— tied tasks “may” run into performance problems

Programmers may specify tasks to be untied (relax scheduling)

#pragma omp task untied
{structured-block}

— can potentially switch to any thread (of the team)
— bad mix with thread based features: thread-id, threadprivate, critical regions...
— gives the runtime more flexibility to schedule tasks

Parallel Programming Workshop Montevideo, October 22nd, 2019

Task scheduling: tied vs untied tasks (2)

Task scheduling points (and the taskyield directive)
— tasks can be suspended/resumed at these points

— some additional constraints to avoid deadlock problems
— implicit scheduling points (creation, synchronization, ...)
— explicit scheduling point: the taskyield directive

|#pragma omp taskyield

Scheduling untied tasks: example

#pragma omp parallel tied: foo() _bar
#pragma omp single ‘.:’ 2
{ _O‘:. E.O_
#pragma omp task [untied]
{
foo ();
#pragma omp taskyield untied: foo()
} bar (); _,; ‘..—
% ar 3
}

k|

Parallel Programming Workshop Montevideo, October 22nd, 2019

Controlling task scheduling (1) @

The if clause of a task construct

— allows to optimize task creation/execution - reduces parallelism but also reduces the pressure
in the runtime’s task pool
— for “very” fine grain tasks you may need to do your own (manual) if

#pragma omp task if (expresion)
{structured-block}

If the expression of the “if” clause evaluates to false

— the encountering task is suspended ,/'_;\\
— the new task is executed immediately . y —t \
— the parent task resumes when the task finishes Rotilio@epior ; = ,:'
This is known as undeferred task il % St

' 4 Task pool

]
...more combined with mergeable clause!!! \

\\

\\\ ,/

Parallel Programming Workshop Montevideo, October 22nd, 2019

Controlling task scheduling (2)

The mergeable clause of a task construct

— allows to optimize task creation/execution (combined with the if clause)
— under certain circustances it may avoid the whole task overhead
#pragma omp task mergeable [if (expression)]

{structured-block}

if-clause evaluates to false = task is executed immediately
— But with its own data environment and ICVs

Combined with the semantic of the mergeable clause

— “a task for which the data environment (inclusive of ICVs) may be the same as that of its
generating task region”

— so the user agrees (if posible) on relaxing the previous restriction

Undeferred and mergeable task may execute as a function call
But it will never be posible when there are private variables

Parallel Programming Workshop Montevideo, October 22nd, 2019

Controlling task scheduling (3)

The final clause of a task construct
— allows to omit future task creation - reduces parallelism & overhead

#pragma omp task final (expresion)
{structured-block}

If the expression of the “final” clause evaluates to true

— the new task is created and executed normally

— in the context of this task no new tasks will be created

#pragma omp parallel
#pragma omp single

Children tasks may have

additional task constructs

#pragma omp task final(e)
{
#pragma omp task
{ code B; }
#pragma omp task
{ code_C; }
#pragma omp taskwait

}

}

Parallel Programming Workshop

Montevideo, October 22nd, 2019

Programmer’s hints for task scheduler

Programmers may specify a priority value when creating a task

#pragma omp task priority(pvalue)
{structured-block: loop}

— pvalue: the higher - the best (will be scheduled earlier)
— all ready tasks are inserted in an ordered ready queue
— once a thread becomes idle, gets one of the highest priority tasks
#pragma omp parallel
#pragma omp single
{

for (1 =0; i < SIZE; i++) {

#pragma omp task priority(1)

Parallel Region

‘——-~~

{ code_A; } P 4

4

} ’

#pragma omp task priority(100) {

{ code_C; } \
\
\\

} S R

Parallel Programming Workshop Montevideo, October 22nd, 2019

www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Task Synchronization

Parallel Programming Workshop Montevideo, October 22nd, 2019

Synchronizing the execution of tasks

Threads need “some” order in the sequence of their actions

OpenMP provides different synchronization mechanisms

— barrier directive - already explained, but...
— taskwait directive

— taskgroup construct
— depend clause

Parallel Programming Workshop Montevideo, October 22nd, 2019

The barrier directive (and tasks) @

Threads cannot proceed until all threads have reach the barrier
... and all previously generated work is completed!!!

|#pragma omp barrier

— Some constructs have an implicit barrier at the end (e.g., the parallel construct, single, sections,
{for/do} loop,...)

Using barrier to force task completion
#pragma omp parallel

{ Forces all tasks (T1) to be
#pragma omp master executed
generate_taks _T1 ();
flilgs i 1
#pragma omp barrier ':a---—p'}
"‘:.w‘:‘

#pragma omp master w .
prag P Implicit barrier: also forces s :
generate_taks T2 ()i

) 7 tasks to complete

Parallel Programming Workshop Montevideo, October 22nd, 2019

Waiting for child tasks

The taskwait directive (shalow task synchronization)
— ltis a stand-alone directive

‘#pragma omp taskwait

— wait on the completion of child tasks of the current task
— just direct children, not descendants
— includes an implicit task scheduling point

Using the taskwait directive

HPIFEENTE) Clil2 p:fwallel Children tasks may create
IR G Sl additional tasks

#pragma omp task

0’ ‘0
{ .’0 Q’.
#pragma omp task : ‘ waitfor...
Wait only for direct
#pragma omp tas descendant tasks v,

{ .}

: “’
#pragma omp taskwai
}

Parallel Programming Workshop Montevideo, October 22nd, 2019

}

Waiting for all descendant tasks

The taskgroup construct (deep task synchronization)
— always attached to a structured block

#pragma omp taskgroup
{structured-block}

— wait on the completion of all descendant tasks of the current task
— includes an implicit task scheduling point at the end of the construct

Using the taskgroup construct

#pragma omp p.arallel Children tasks may create TG }
#pragma omp single additional tasks

{

L g
& »

0 ‘
fpragma omp task

wait for... _ : j
tpragma omp task Wait only for all < >
descendant tasks @ @

} \

#pragma omp taskgroup

{

Parallel Programming Workshop Montevideo, October 22nd, 2019

Using task dependences

The depend clause of the task construct

#pragma omp task depend(dependence-type: list)
{structured-block}

— used to compute dependences, but actually it is not a dependence
— specify the data directionality of a list of variables

Where dependence-type can be:

— in: the task only reads from the data specified
— out: the task only writes to the data specified

— inout: the task reads from and writes to the data

And where list items are
— variables, a named data storage block (memory address)

— array sections, a designated subset of the elements of an array
» Allower:length]

Parallel Programming Workshop Montevideo, October 22nd, 2019

Computing task dependences (1) @

If a task does “in” on a given data variable

— the task will depend on all previously generated sibling tasks that reference at least one of the
list items in an out or inout dependence list

If a task does “out” or “inout” on a given data variable
— on both out and inout dependence types, the task will depend on all previously generated

sibling tasks that reference at least one of list items in an in, out or inout dependence list
#pragma omp parallel

#pragma omp single

{

dependences

#pragma omp task domain
{
#pragma omp task depend(out:a)

&
& L g

{..} r %

#pragma omp task depend(in:a)

L 4 L 4
0’ ‘0
0’ ’0
(.1 dependence
#pragma omp taskwait RaW
}
0: “0‘

Parallel Programming Workshop Montevideo, October 22nd, 2019

}

Computing task dependences (2)

Computing dependences between one writer and n-readers

{
{

#pragma omp parallel
#pragma omp single

#pragma omp task

#pragma omp task depend(out:a)
{..}

#pragma omp task depend(in:a)

{..}

#pragma omp task depend(in:a)

{..}

}

}

#pragma omp taskwait

Parallel Programming Workshop

dependences ‘
domain

O

a4
" K 4
" = ¢

Q‘] .0
= 2 dependences
RaW
*
0: “‘

OO

© ©

Montevideo, October 22nd, 2019

Computing task dependences (3)

Computing dependences between n-readers and one writer

#pragma omp parallel dependences
fpragma omp single domain
#pragma omp task
{ ‘¢": ’o.
#pragma omp task depend(in:a) ‘." . ”..
{..} : _
#pragma omp task depend(in:a) 2 anti-dependences
{..} WaR
#pragma omp task depend(out:a)
Lo} i,
eee 4 *
#pragma omp taskwait
}
}

Parallel Programming Workshop Montevideo, October 22nd, 2019

Computing task dependences (4)

Computing dependences between 2 writers

#pragma omp parallel
#pragma omp single
{

#pragma omp task

{

#pragma omp task depend(out:a)
{..}

#pragma omp task depend(out:a)

{.}

#pragma omp taskwait

}

}

Parallel Programming Workshop

@ domain

L 4
£ 4
L 4

dependences

2
4
*

output-dependence
WaW

OO

Montevideo, October 22nd, 2019

Using task dependences (cont.)

The depend clause of the task construct

#pragma omp task depend(dependence-type: list)
{structured-block}

Restrictions on list items

— list items used in depend clauses of the same task or sibling tasks must indicate identical
storage or disjoint storage

— list items used in depend clauses cannot be zero-length array sections

— a variable that is part of another variable (such as a field of a structure) but is not an array
element or an array section cannot appear in a depend clause

t#tdefine N 100

#pragma omp task depend(out: a[0:N])
{..}

#pragma omp task depend(in: a[25:50])
{..}

) &

Parallel Programming Workshop Montevideo, October 22nd, 2019

Example: matrix multiply (dependences)

void matmul block (int N, int BS, float *A, float *B, float *C) ; — avoid “blocks” to be written

// Assume BS divides N perfectly _before read _ _
void matmul (int N, int BS, float A[NJ[N], float B[N][N], float c[N]J[N]) — input deps useless in this
{ particular example (still
#pragma omp parallel recommended)
?p"agma omp single — example on a matrix of 2x2
int 4, j, k; blocks:

for (i =0; i< N; i+=BS) {

for (j = 95 j < N; j+=BS) {

for (k = 9; k < N; k+=BS) { @@@@

ttpragma omp task depend (in:A[i:BS][k:BS],B[k:BS][j:BS])\
depend (inout:C[i:BS][j:BS])
matmul_block (N, BS, &A[i][k], &B[k][jl, &C[i][3j]);

}

} @@ EE
}

Parallel Programming Workshop Montevideo, October 22nd, 2019

www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Task Loop

Parallel Programming Workshop Montevideo, October 22nd, 2019

Task leop: motivation

Loop (worksharing) construct restrictions

— all threads (in the current team) must reach the worksharing construct
— taskloop constructs comes to break this specific restriction (using tasks)

So if we are executing a single or a section...

#Hinclude "synthetic.n”

void main (void)
{
#pragma omp parallel
#pragma omp sections
{
#pragma omp section
synthetic_phasel();
#pragma omp section
synthetic_phase2();
#pragma omp section
synthetic_phase3();

#include "synthetic.h”

void synthetic_phase2()

{

}

H#ipragma omp for
for(i=0;i<N;i++){...}

) &

#include "synthetic.h”

void synthetic_phase2()

{

}

H#ipragma omp taskloop
for(i=0;i<N;i++){...}

Parallel Programming Workshop

Montevideo, October 22nd, 2019

The taskloop construct

Deferring several units of work (exec. for any team member)
— always attached to a “for” loop (“do” in Fortran)

#pragma omp taskloop [clause[[,] clause]...]
{structured-block: loop}

Where clause:

— grainsize(grain-size) and num_tasks(num-tasks)

— nogroup

Parallel Programming Workshop Montevideo, October 22nd, 2019

Using grainsize in taskloop construct

The grainsize clause of the taskloop construct

#pragma omp taskloop grainsize (<grain-size>)
{structured-block: loop}

— allow to specify the grain size of the generated chunks (tasks)
» greater or equal than min(grain-size, iters)

» lessthan two times grain-size (2 x grain-size) /"_-~\\
[\‘
— cannot be combined with num_tasks clause Rarallel egian -
_ ,a’—--"N .,l
#include "synthetic.h“ ,/' S’
/ Task pool
void synthetic_phase2() { {
#pragma omp taskloop grainsize(10) \
for(i=0;i<N;i++){...} \\\
} \\~~-__—'¢’,

Philosophy: amount of work that is worthy to execute as a task

Parallel Programming Workshop Montevideo, October 22nd, 2019

Using num_tasks In taskloop construct

The num_tasks clause of the taskloop construct

#pragma omp taskloop num tasks (<num-tasks>)
{structured-block: loop}

— allow to specify the number of chunks (tasks)
» greater or equal than min(num-tasks, iters)

» each task should have as minimum one iteration /" -"\\
\
. . . - m-)
— cannot be combined with the grainsize clause RorgllelRegion -
PR it T /
-, ’
#include "synthetic.n” /’ S’
; Task pool
void synthetic_phase2() { I’
#pragma omp taskloop num_tasks(10) 1
for(i=0;i<N;i++){...} ‘\
AN
~ 4
} s~~-__—’,/

Philosophy: amount of parallelism we want to create

Parallel Programming Workshop Montevideo, October 22nd, 2019

Taskgroup associated with a taskloop

#include "synthetic.h”
void synthetic_phase2()
{

#pragma omp taskgroup

#pragma omp taskloop nogroup

for(i=0;i<N;i++){..} wait for.

foo();
bar(); O O

The nogroup clause of the taskloop construct

#fpragma omp taskloop nogroup
{structured-block: loop}

}

— allow to continue the execution of the encountering task without waiting for all created tasks

Parallel Programming Workshop Montevideo, October 22nd, 2019

www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Intellectual Property Rights Notice

The User may only download, make and retain a copy of the materials for his/her use for non-commercial and
research purposes.

The User may not commercially use the material, unless has been granted prior written consent by the Licensor to do
so, and cannotremove, obscure or modify copyright notices, text acknowledging or other means of identification or

disclaimers as they appear.

For further details, please contact BSC-CNS.

Parallel Programming Workshop Montevideo, October 22nd, 2019

www.bsc.es

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

Thank you!

For further information please visit/contact
http://www.linkedin.com/in/xteruel
xavier.teruel@bsc.es

Parallel Programming Workshop Montevideo, October 22nd, 2019

