LZ78: Summary so far

- *□ Incremental parsing***: Input sequence** x_1^n **parsed into** $c(n)$ **distinct phrases** (except maybe the very last one, which is immaterial to the main asymptotic results).
- **□** Phrases are collected into a *dictionary*, which are conveniently represented by a *tree*. $\frac{\log \log n}{\log n}$
- **□** Upper bound on number of phrases:
 $\frac{c(n)}{1}$ \pmb{n} = $1 + o(1)$ $\log n$ \bm{O}
- \Box Each phrase can be encoded with $\lceil \log c(n) \rceil + 1$ bits, yielding a total code length

$$
L(x_1^n) = c(n)(\lceil \log c(n) \rceil + 1)
$$

 Ziv's inequality connects the incremental parsing with ݇*-th order Markov probability assignments*

$$
-\log Q_k(x_1, x_2, \dots, x_n | s_1) \ge \sum_{l,s} c_{ls} \log c_{ls}
$$

written as code lengths

where $c_{ls} =$ number of phrases of length l that occur following a given *k*-tuple *s* in x_1^n .

Universality for Individual Sequences: Theorem

 $\sqrt{\frac{1}{n}}$ *For any sequence* x_1^n *and for any k-th order probability assignment* ܳ, *we have*

$$
\frac{c(n)\log c(n)}{n} \le -\frac{1}{n}\log Q_k(x_1^n|s_1) + \frac{(1+o(1))k}{\log n} + O\left(\frac{\log\log n}{\log n}\right)
$$

Auxiliary lemma (maximal entropy):

 L et $\,X\,$ be a random variable over $\mathbb{Z}_{\geq 0}$ with PMF p such that $\,E_{\,p}X = \mu\,$. Then $H(X)$ is *maximized when* $p(x) = \exp (\, \lambda_{0} + \lambda_{1} x) \,$ *satisfying the constraint.*

 \bullet Proof: Consider a PMF q satisfying the constraint. Then show $H(p) - H(q) = D(q||p)$ using $E_p X = E_q X = \mu$ and $\sum_{x} p(x) = \sum_{x} q(x) = 1$.

Corollary: *For ^X as above,*

 $H(X) \leq (\mu + 1) \log(\mu + 1) - \mu \log \mu$

 \bullet Proof: Solve for λ_1 and λ_0 in terms of μ , and write $H_p(X)$ explicitly. \blacksquare

Universality for Individual Sequences: Proof

Define $\pi_{ls} \triangleq \frac{c_{ls}}{c}$. Then, $\sum_{l,s} \pi_{ls} = 1$ and $\sum_{l,s} l \, \pi_{ls} = \frac{n}{c}$ (recall $\sum_{l,s} c_{ls} = c \quad$ and $\quad \sum_{l,s} l \; c_{ls} = n$). Define r.v. $U, V \sim P(U=l, V=s) = \pi_{ls}$. We have $EU = \frac{n}{\cdot}$ C and $H(V)\leq k\;$ (V defined over binary k -tuples). From Ziv's lemma:

$$
-\log Q_k(x_1^n | s_1) \ge \sum_{l,s} c_{ls} \log \frac{c_{ls}c}{c} = \sum_{l,s} c_{ls} \log c + \sum_{l,s} c_{ls} \log \frac{c_{ls}}{c}
$$

$$
= c \log c + c \sum_{l,s} \pi_{ls} \log \pi_{ls}
$$

$$
\Rightarrow -\frac{1}{n}\log Q_{k}(x_{1}^{n}|s_{1}) \geq \frac{c}{n}\log c - \frac{c}{n}H(U,V)
$$

$$
\geq \frac{c}{n}\log c - \frac{c}{n}(H(U) + H(V)) \qquad (*)
$$

Gadiel Seroussi - Lossless Data Compression - April 2021

Universality for Individual Sequences: Proof

$$
-\frac{1}{n}\log Q_k(x_1^n|s_1) \ge \frac{c}{n}\log c - \frac{c}{n}\big(H(U) + H(V)\big) \qquad (*)
$$

By the maximum entropy theorem for mean-constrained r.v. applied to U ,

recalling
$$
EU = \frac{n}{c}
$$
 and $\frac{c}{n} = \frac{1+o(1)}{\log n}$
\n
$$
H(U) \leq {n \choose c} + 1 \log {n \choose c} + 1 - \frac{n}{c} \log \frac{n}{c}
$$
\n
$$
\Rightarrow \frac{c}{n}H(U) \leq (1 + \frac{c}{n}) \log (\frac{n}{c} + 1) - \log \frac{n}{c}
$$
\n
$$
= \frac{c}{n} \log (\frac{n}{c} + 1) + \log (\frac{n}{c} + 1) - \log \frac{n}{c}
$$
\n
$$
= \frac{c}{n} \log \frac{n}{c} + \left[\log (\frac{n}{c} + 1) - \log \frac{n}{c} \right] \left(\frac{c}{n} + 1 \right) = O\left(\frac{\log \log n}{\log n}\right)
$$
\n
$$
= O\left(\frac{\log \log n}{\log n}\right)
$$
\n
$$
= O\left(\frac{\log \log n}{\log n}\right)
$$
\n
$$
= O\left(\frac{\log \log n}{\log n}\right)
$$

Together with (\star) and $H(V) \leq k$,

$$
-\frac{1}{n}\log Q_k(x_1^n|s_1) \ge \frac{c\log c}{n} - \frac{\left(1 + o(1)\right)k}{\log n} - O\left(\frac{\log\log n}{\log n}\right)
$$

Gadiel Seroussi - Lossless Data Compression - April 2021

▉

Universality for Individual Sequences: Discussion

 \square The theorem holds for *any k-th order probability assignment* Q_k , and, in particular, the k -th order empirical distribution of x_1^n , which gives an ideal code length equal to the empirical entropy

$$
-\frac{1}{n}\log \widehat{P}_k(x_1^n) = \widehat{H}_k(x_1^n)
$$

 \Box The asymptotic $O\left(\frac{\log \log n}{\log n}\right)$ term in the redundancy has been improved to $\mathit{O}\left(\frac{1}{\log n}\right)$ — this is the best possible upper bound

□ Universal schemes based on context modeling and arithmetic coding can achieve a faster convergence rate: $O\left(\frac{\log n}{n}\right)$ in the class of finite memory Markov sources.

Compressibility

Finite-memory compressibility

we must have $n\to\infty$ before $k\to\infty$, otherwisedefinitions aremeaningless!

$$
FM_k(x_1^n) = \inf_{Q_k, s_1} \left(-\frac{1}{n} \log Q_k(x_1^n | s_1) \right) \quad k\text{-th order, finite sequence}
$$

$$
FM_k(x_1^{\infty}) = \limsup_{n \to \infty} FM_k(x_1^n) \qquad k\text{-th order, infinite sequence}
$$

FM compressibility

for each \it{k}

 Q_k is optimized for x_1^n,\dots

Lempel-Ziv compression ratio

 $FM(x_1^{\infty}) = \lim_{k \to \infty}$

 $LZ(x_1^n) = \frac{1}{n}c(n)\Bigl(\lceil \log c(n) \rceil + 1\Bigr)$ finite sequence $LZ(x_1^{\infty}) =$ limsup $LZ(x_1^n)$ $n\rightarrow\infty$ ܮܼ)ݔଵ) *LZ compression ratio*

Theorem: For any sequence x_1^{∞} , $LZ(x_1^{\infty}) \le FM(x_1^{\infty})$

Probabilistic Setting

<u>Theorem</u>: Let $X_{-\infty}^\infty$ be a stationary ergodic random process. Then, $LZ(X_1^\infty)\leq H(X_1^\infty)$ with probability 1

Proof: via approximation of the stationary ergodic process with Markov processes of increasing order, and the previous theorems.

$$
Q_k(x_{-(k-1)}^0 x_1^n) \triangleq P_X(x_{-(k-1)}^0) \prod_{j=1}^n P_X(x_j | x_{j-k}^{j-1}), \qquad X \sim P_X
$$

$$
H(X_j | X_{j-k}^{j-1}) \xrightarrow{k \to \infty} H(X)
$$

Markov k-th order approximation of X

The LZ Probability Assignment

*x*₁^{*n*} = 1,0,1 1,0 1,0 1 0, ...

In general, $P(x_1^n) =$ 1 $c(n) + 1$! $-\log P = c(n) \log c(n) + o(c(n) \log c(n))$

- **□** Slightly different tree evolution *anticipatory parsing*: when a new phrase is parsed, add both children to the tree (keps it *complete*)
- **□ A** weight is kept at every node
	- number of times the node was traversed through + 1
- \Box A node act as a conditioning state, assigning to its children probabilities proportional to their weight

■ Example: string <u>101101010</u> 011

 $P(0|s) = 4/7$ *s* $P(1|s0) = 3/4$ $P(1|s01) = 1/3$ *P*(011|*s*) = (4/7)*(3/4)*(1/3) = 1/7 *Notice `telescoping'*

 \Box Similarly, P(010|101101) = 1/6, etc.

 \Box $\Box \Rightarrow P(\text{s}011) = 1/(7!)$

every lossless compression algorithm defines a prob. assignment, even if it wasn't meant to!

Other Properties

 \Box Individual sequences result applies also to FSM probability assignments

- **The "worst sequence"**
	- *counting sequence* 0 1 00 01 10 11 000 001 010 011 100 101 110 111 ..
	- \bullet maximizes $c(n)$, incompressible with LZ78
- **□** Generalization to larger alphabets is straightforward

 Data structure must be efficient to accommodate possibly small subsets of the alphabet occurring at each node

Other Properties

 LZW modification: extension symbol *b* not sent. It is determined by the first symbol of the next phrase instead [Welch 1984]

- dictionary is initialized with all single-symbol strings
- works very well in practice
- breakthrough in popularization of LZ, led to UNIX *compress*
- **□** In real life we use *bounded dictionaries*, and need to reset them from time to time
	- \bullet E.g.: a dictionary for 2^{16} entries. Once all the entries are used, we may
		- \blacklozenge freeze the dictionary and continue with it until the input is exhausted
		- \blacklozenge erase the dictionary and start from scratch (full reset)
		- \blacklozenge erase part of the dictionary and fill with new entries
		- \blacklozenge delay the reset until compression ratio deteriorates
		- …

Lempel-Ziv in the Real World

 \Box The most popular data compression algorithm in use

- virtually every computer in the world runs some variant of LZ
- \bullet LZ78
	- ◆ compress
	- ◆ GIF
	- \blacklozenge TIFF
- \bullet LZ77
	- ◆ gzip, pkzip (LZ77 + Huffman for pointers and symbols)
	- \blacklozenge png
	- \triangleleft 7-zip
- \bullet many more implementations in software and hardware
	- \blacklozenge most modern operating systems include compression libraries with <code>LZ</code>
	- ◆ software distribution
	- \triangle tape drives
	- ◆ printers
	- ◆ network routers
	- ◆ various commercially available VLSI designs
	- \blacklozenge ...

Some comparisons

\Box Input file: Don Quijote de la Mancha, HTML file size: 2,261,865 bytes

Some comparisons

\Box Input file: Don Quijote de la Mancha, HTML file size: 2,261,865 bytes

Some comparisons

\Box Input file: Don Quijote de la Mancha, HTML file size: 2,261,865 bytes

Universality is great, but …

 \Box Input file: Mars rock image file size: 693,904 bytes

Universality is great, but …

 \Box Input file: Tools image file size: 1,828,817 bytes

