LZ78: Summary so far

- □ Incremental parsing: Input sequence x_1^n parsed into c(n) distinct phrases (except maybe the very last one, which is immaterial to the main asymptotic results).
- Phrases are collected into a *dictionary*, which are conveniently represented by a *tree*.
- Upper bound on number of phrases: $\frac{c(n)}{n} = \frac{1+o(1)}{\log n}$
- □ Each phrase can be encoded with $\lceil \log c(n) \rceil + 1$ bits, yielding a total code length

$$L(x_1^n) = c(n)([\log c(n)] + 1)$$

Ziv's inequality connects the incremental parsing with *k*-th order Markov probability assignments

$$-\log Q_k(x_1, x_2, ..., x_n | s_1) \ge \sum_{l,s} c_{ls} \log c_{ls}$$

written as code lengths

log n

where c_{ls} = number of phrases of length l that occur following a given k-tuple s in x_1^n .

Universality for Individual Sequences: Theorem

<u>Theorem</u>: For any sequence x_1^n and for any *k*-th order probability assignment Q_k , we have

$$\frac{c(n)\log c(n)}{n} \le -\frac{1}{n}\log Q_k(x_1^n|s_1) + \frac{(1+o(1))k}{\log n} + O\left(\frac{\log\log n}{\log n}\right)$$

Auxiliary lemma (maximal entropy):

Let *X* be a random variable over $\mathbb{Z}_{\geq 0}$ with PMF *p* such that $E_p X = \mu$. Then H(X) is maximized when $p(x) = \exp(\lambda_0 + \lambda_1 x)$ satisfying the constraint.

• Proof: Consider a PMF *q* satisfying the constraint. Then show H(p) - H(q) = D(q||p) using $E_p X = E_q X = \mu$ and $\sum_x p(x) = \sum_x q(x) = 1$.

<u>Corollary</u>: For X as above,

 $H(X) \le (\mu + 1)\log(\mu + 1) - \mu\log\mu$

• Proof: Solve for λ_1 and λ_0 in terms of μ , and write $H_p(X)$ explicitly.

Universality for Individual Sequences: Proof

Define $\pi_{ls} \triangleq \frac{c_{ls}}{c}$. Then, $\sum_{l,s} \pi_{ls} = 1$ and $\sum_{l,s} l \pi_{ls} = \frac{n}{c}$ (recall $\sum_{l,s} c_{ls} = c$ and $\sum_{l,s} l c_{ls} = n$). Define r.v. $U, V \sim P(U = l, V = s) = \pi_{ls}$. We have $EU = \frac{n}{c}$ and $H(V) \le k$ (V defined over binary k-tuples). From Ziv's lemma:

$$-\log Q_k(x_1^n|s_1) \ge \sum_{l,s} c_{ls} \log \frac{c_{ls}c}{c} = \sum_{l,s} c_{ls} \log c + \sum_{l,s} c_{ls} \log \frac{c_{ls}}{c}$$
$$= c \log c + c \sum_{l,s} \pi_{ls} \log \pi_{ls}$$

$$\Rightarrow \qquad -\frac{1}{n}\log Q_k(x_1^n|s_1) \ge \frac{c}{n}\log c - \frac{c}{n}H(U,V)$$
$$\ge \frac{c}{n}\log c - \frac{c}{n}(H(U) + H(V)) \qquad (\star)$$

Gadiel Seroussi - Lossless Data Compression - April 2021

Universality for Individual Sequences: Proof

$$-\frac{1}{n}\log Q_k(x_1^n|s_1) \ge \frac{c}{n}\log c \ -\frac{c}{n}(H(U) + H(V))$$
(*)

By the maximum entropy theorem for mean-constrained r.v. applied to U,

$$\begin{aligned} \operatorname{recalling} EU &= \frac{n}{c} \operatorname{and} \frac{c}{n} = \frac{1+o(1)}{\log n} \\ H(U) &\leq \left(\frac{n}{c}+1\right) \log\left(\frac{n}{c}+1\right) - \frac{n}{c} \log\frac{n}{c} \\ &\Rightarrow \quad \frac{c}{n} H(U) \leq \left(1+\frac{c}{n}\right) \log\left(\frac{n}{c}+1\right) - \log\frac{n}{c} \\ &= \frac{c}{n} \log\left(\frac{n}{c}+1\right) + \log\left(\frac{n}{c}+1\right) - \log\frac{n}{c} \\ &= \frac{c}{n} \log\frac{n}{c} + \left[\log\left(\frac{n}{c}+1\right) - \log\frac{n}{c}\right] \left(\frac{c}{n}+1\right) = O\left(\frac{\log\log n}{\log n}\right) \\ &= O\left(\frac{\log\log n}{\log n}\right) \\ O\left(\frac{\log\log n}{\log n}\right) \\ O\left(\frac{\log\log n}{\log n}\right) \end{aligned}$$

Together with (\star) and $H(V) \leq k$,

$$-\frac{1}{n}\log Q_k(x_1^n|s_1) \ge \frac{c\log c}{n} - \frac{\left(1+o(1)\right)k}{\log n} - O\left(\frac{\log\log n}{\log n}\right)$$

Gadiel Seroussi - Lossless Data Compression - April 2021

Universality for Individual Sequences: Discussion

□ The theorem holds for any *k*-th order probability assignment Q_k , and, in particular, the *k*-th order empirical distribution of x_1^n , which gives an ideal code length equal to the empirical entropy

$$-\frac{1}{n}\log\hat{P}_k(x_1^n) = \hat{H}_k(x_1^n)$$

□ The asymptotic $O\left(\frac{\log \log n}{\log n}\right)$ term in the redundancy has been improved to $O\left(\frac{1}{\log n}\right)$ — this is the best possible upper bound

□ Universal schemes based on context modeling and arithmetic coding can achieve a faster convergence rate: $O\left(\frac{\log n}{n}\right)$ in the class of finite memory Markov sources.

Compressibility

Finite-memory compressibility

we must have $n \rightarrow \infty$ before $k \to \infty$. otherwise definitions are meaningless!

$$FM_{k}(x_{1}^{n}) = \inf_{Q_{k},s_{1}} \left(-\frac{1}{n} \log Q_{k}(x_{1}^{n}|s_{1}) \right) \quad k\text{-th order, finite sequence}$$

$$FM_{k}(x_{1}^{\infty}) = \limsup_{n \to \infty} FM_{k}(x_{1}^{n}) \quad k\text{-th order, infinite sequence}$$

$$FM(x_{1}^{\infty}) = \lim_{k \to \infty} FM_{k}(x_{1}^{n}) \quad FM \text{ compressibility}$$

Lempel-Ziv compression ratio

 $LZ(x_1^n) = \frac{1}{n}c(n)\left(\left[\log c(n)\right] + 1\right)$ $LZ(x_1^{\infty}) = \text{limsup } LZ(x_1^n)$ $n \rightarrow \infty$

finite sequence

LZ compression ratio

 Q_k is optimized for x_1^n ,

sequence

for each k

<u>Theorem</u>: For any sequence x_1^{∞} , $LZ(x_1^{\infty}) \leq FM(x_1^{\infty})$

Probabilistic Setting

<u>Theorem</u>: Let $X_{-\infty}^{\infty}$ be a stationary ergodic random process. Then, $LZ(X_1^{\infty}) \le H(X_1^{\infty})$ with probability 1

<u>Proof</u>: via approximation of the stationary ergodic process with Markov processes of increasing order, and the previous theorems.

$$Q_{k}(x_{-(k-1)}^{0}x_{1}^{n}) \triangleq P_{X}(x_{-(k-1)}^{0}) \prod_{j=1}^{n} P_{X}(x_{j} | x_{j-k}^{j-1}), \qquad X \sim P_{X}$$
$$H(X_{j} | X_{j-k}^{j-1}) \xrightarrow{k \to \infty} H(X)$$
Markov *k*-th order approximation of *X*

The LZ Probability Assignment

 $x_1^n = 1,0,1 1,0 1,0 1 0, \dots$

In general, $P(x_1^n) = \frac{1}{(c(n) + 1)!}$ $-\log P = c(n) \log c(n) + o(c(n) \log c(n))$

- Slightly different tree evolution anticipatory parsing: when a new phrase is parsed, add both children to the tree (keps it complete)
- A *weight* is kept at every node
 - number of times the node was traversed through + 1
- A node act as a conditioning state, assigning to its children probabilities proportional to their weight

□ Example: string <u>101101010</u>011

P(0|s) = 4/7 s P(1|s0) = 3/4 P(1|s01) = 1/3 $P(011|s) = (4/7)^{*}(3/4)^{*}(1/3) = 1/7$ Notice `telescoping'

□ Similarly, P(010|101101) = 1/6, etc.

 $\square \implies P(s011) = 1/(7!)$

every lossless compression algorithm defines a prob. assignment, even if it wasn't meant to!

Other Properties

□ Individual sequences result applies also to FSM probability assignments

- □ The "worst sequence"
 - counting sequence 0 1 00 01 10 11 000 001 010 011 100 101 110 111 ...
 - maximizes c(n), incompressible with LZ78
- Generalization to larger alphabets is straightforward

 Data structure must be efficient to accommodate possibly small subsets of the alphabet occurring at each node

Other Properties

LZW modification: extension symbol b not sent. It is determined by the first symbol of the next phrase instead [Welch 1984]

- dictionary is initialized with all single-symbol strings
- works very well in practice
- breakthrough in popularization of LZ, led to UNIX compress
- In real life we use *bounded dictionaries*, and need to reset them from time to time
 - E.g.: a dictionary for 2¹⁶ entries. Once all the entries are used, we may
 - freeze the dictionary and continue with it until the input is exhausted
 - erase the dictionary and start from scratch (full reset)
 - erase part of the dictionary and fill with new entries
 - delay the reset until compression ratio deteriorates
 - **•** ...

Lempel-Ziv in the Real World

The most popular data compression algorithm in use

- virtually every computer in the world runs some variant of LZ
- LZ78
 - compress
 - ♦ GIF
 - ♦ TIFF
- LZ77
 - gzip, pkzip (LZ77 + Huffman for pointers and symbols)
 - png
 - ♦ 7-zip
- many more implementations in software and hardware
 - most modern operating systems include compression libraries with LZ
 - software distribution
 - tape drives
 - printers
 - network routers
 - various commercially available VLSI designs
 - **♦** ...

Some comparisons

Input file: Don Quijote de la Mancha, HTML file size: 2,261,865 bytes

Compressor	Output bytes	bits/symbol
Huffman	1,284,323	4.54
vanilla LZ77	1,310,561	4.63
gzip -1	994,295	3.52
gzip -9	816,909	2.89

Some comparisons

Input file: Don Quijote de la Mancha, HTML file size: 2,261,865 bytes

Compressor	Output bytes	bits/symbol
Huffman	1,284,323	4.54
vanilla LZ77	1,310,561	4.63
gzip -1	994,295	3.52
gzip -9	816,909	2.89
LZ78 (LZW with 16 bit dict)	839,560	2.97

Some comparisons

Input file: Don Quijote de la Mancha, HTML file size: 2,261,865 bytes

Compressor	Output bytes	bits/symbol
Huffman	1,284,323	4.54
vanilla LZ77	1,310,561	4.63
gzip -1	994,295	3.52
gzip -9	816,909	2.89
LZ78 (LZW with 16 bit dict)	839,560	2.97
LZMA (7z)	639,295	2.26

Universality is great, but ...

Input file: Mars rock image file size: 693,904 bytes

Compressor	Output bytes	bits/symbol
Uncompressed	693,904	8.00
gzip-9	627,858	7.23
LZW	668,327	7.70
7-Zip	524,622	6.05
JPEG-LS	465,353	5.36

Universality is great, but ...

Input file: Tools image file size: 1,828,817 bytes

Compressor	Output bytes	bits/symbol
Uncompressed	1,828,817	8.00
gzip-9	1,639,673	7.17
LZW	1,775,923	7.77
7-Zip	1,367,617	5.98
JPEG-LS	1,235,563	5.40

