Lossless Source Coding

Lempel-Ziv Coding

Lempel-Ziv 1978 (LZ78)

LZ78

[LZ78] J. Ziv and A. Lempel, "Compression of individual sequences via variable rate coding," *IEEE Trans. Inform. Theory*, vol. IT-24, pp. 530–536, Sept. 1978

- □ The analysis here follows [Cover & Thomas '91, '06] , attributed to [Wyner & Ziv]. It differs from the original proof in [LZ78]
- □ The main mechanism in LZ schemes is *pattern matching*: find string patterns that have occurred in the past, and compress them by encoding a reference to the previous occurrence

- In LZ77, back references are allowed to any location in the dictionary window
- In LZ78, back references are allowed only to certain points in the past window, determined by incremental parsing

LZ78: Incremental Parsing

- □ The scheme is based on the notion of *incremental parsing*
- □ Parse the input sequence x_1^n into *phrases*, each new phrase being *the* shortest substring that has not appeared so far as a phrase
- \Box Phrases are collected into an indexed *dictionary*, initialized to $\{0: \lambda\}$

 $x_{1}^{n} = 1,0,1,1,0,1,0,1,0,0,0,1,0,...$ (assume $A = \{0,1\}$) index: phrase index: phrase 0: λ 5: 010 1: 1 6: 00 2: 0 7: 10 3: 11 :: : 4: 01 :: :

 \Box Each new phrase is of the form wb, w = a previous phrase, $b \in \{0, 1\}$

• a new phrase can also be described as (i, b), where i = index(w)

Incremental Parsing (cont.)

 $x_1^n = 1,0,1,1,0,1,0,1,0,0,0,1,0,\dots$

□ New phrase *wb* described as (i, b), where i = index(w), $b \in \{0, 1\}$

index: phrase	descr	index:	phrase	descr
0: λ		5:	010	(4,0)
1: 1	(0,1)	6:	00	(2, 0)
2: 0	(0, 0)	7:	10	(1, 0)
3: 11 4: 01	(1,1) (2,1)	÷:	:	÷

 \Box Let c(n) = number of phrases in χ_1^n

- we assume, for simplicity, that the input ends at a phrase boundary (comma)
 - assumption is easily removed; it does not affect the main results
- we encode by describing the sequence of phrases
- a phrase description (i, b) can be encoded with $\leq 1 + \lfloor \log c(n) \rfloor$ bits
- in the example, 28 bits to describe 13 : bad deal! it gets better as $n \to \infty$
- decoding is straightforward: decoder builds the same dictionary, in lockstep with encoder
- in practice, we do not need to know c(n) before we start encoding
 - use increasing length codes that the decoder can keep track of

The Parsing Tree

 $x_1^n = 1,0,1,1,0,1,0,1,0,0,0,1,0,\dots$

coding could be made n	nore efficient by "recycling"
codes of nodes that hav	e a complete set of children
(e.g., 1, <mark>2</mark> above)	

- will not affect asymptotics
- many (many many) tricks and hacks exist in practical implementations

index	phrase	
0	λ	
1	0,1	
2	0,0	
3	1,1	
4	2,1	
5	4,0	
6	2,0	
7	1,0	
dictionary		

Incremental Parsing: How Many Phrases?

Lemma: $c(n) \le \frac{n}{(1-\epsilon_n)\log n}, \ \epsilon_n \to 0 \text{ as } n \to \infty \qquad [\epsilon_n = o(1)]$

<u>Proof</u>: c(n) is max when we take all phrases as short as possible.

Taking the 2 phrases of length 1, 4 of length 2, ..., up to 2^k of length k, we get overall length $n_k = \sum_{j=1}^k j2^j = (k-1)2^{k+1} + 2$, and a number of phrases $c_k = \sum_{j=1}^k 2^j = 2^{k+1} - 2$. We have $c_k \leq \frac{n_k}{2}$

We have $c_k \leq \frac{n_k}{k-1}$.

Choose *k* such that $n_k \le n < n_{k+1}$ and write $n = n_k + \Delta$. Add $\left\lfloor \frac{\Delta}{k+1} \right\rfloor$ phrases of length k + 1, and possibly one shorter (repeated) tail phrase, to reach *n*. Then,

$$c(n) \le c_k + \frac{\Delta}{k+1} + 1 \le \frac{n_k}{k-1} + \frac{\Delta}{k+1} + 1 \le \frac{n_k + \Delta}{k-1} + 1 = \frac{n+k-1}{k-1} \le \frac{n}{(1-\epsilon_n)\log n}$$

with $\epsilon_n = O(\log \log n / \log n)$.

[why: if $x = k 2^k$ then $\log x - \log \log x \le k \le \log x - \log \log x + o(1)$]

<u>Corollary:</u> $\frac{c(n)}{n} \le \frac{1+o(1)}{\log n}$

Gadiel Seroussi - Lossless Data Compression - April 2021

Universality of LZ78

- □ To establish the universality of LZ78, we will make a connection between its combinatorial structure (the incremental parsing), and probabilistic notions
- \Box A *k*-th order Markov probability assignment Q_k on A^n is defined by
 - a distribution $Q_{init}(s_1)$ on an *initial state* $s_1 = x_{-(k-1)}^0$ (could be fixed, i.e., a single-mass PMF)
 - a collection of conditional probability distributions

 $Q(\cdot \mid a_1^k)$ for all $a_1^k \in A^k$

□ The probability assigned by Q_k to $x_1^n \in A^n$ (with initial state s_1) is

$$Q_k(x_0, x_1, \dots, x_n | s_1) \triangleq Q_{init}(s_1) \prod_{j=1}^n Q(x_j | x_{j-k}^{j-1})$$

we will assume, for single or orbitrary fixed initial

we will assume, for simplicity, an arbitrary fixed initial state s_1 , so $Q_{init}(s_1) = 1$.

Universality of LZ78 (cont.)

□ Assume x_1^n is parsed into *c* distinct phrases $y_1, y_2, ..., y_c$. Define:

- v_i = index of start of y_i = $(x_{v_i}, \dots, x_{v_{i+1}-1})$
- $s_i = (x_{v_i-k}, ..., x_{v_i-1}) = \text{the } k$ bits preceding y_i in x_1^n (a state). We have $Q_k(y_i|s_i) = \prod_{j=0}^{v_{i+1}-v_i-1} Q\left(x_{v_i+j} \mid x_{v_i+j-k}^{v_i+j-1}\right)$ $Q_k(x_1^n|s_1) = \prod_{i=1}^n Q\left(x_i \mid x_{i-1}^{i-k}\right) = \prod_{i=1}^c Q_k(y_i|s_i)$

*c*_{ls} = number of phrases *y*_i of length *l* and preceding state *s* ∈ {0,1}^k
we have Σ_{l,s} *c*_{ls} = *c* and Σ_{l,s} *l c*_{ls} = *n*

<u>Ziv's inequality</u>: For any distinct parsing of x_1^n , and any Q_k , we have

$$\log Q_k(x_1, x_2, ..., x_n | s_1) \le -\sum_{l, s} c_{ls} \log c_{ls}$$

The lemma upper-bounds the probability of *any sequence* under *any probability assignment* from the class, based on properties of *any distinct parsing* of the sequence (including the incremental parsing)

Universality of LZ78 (proof of Ziv's inequality)

