
24

Lossless Source Coding

Lempel-Ziv Coding

Lempel-Ziv 1978 (LZ78)

Gadiel Seroussi - Lossless Data Compression - April 2021

25

LZ78

[LZ78] J. Ziv and A. Lempel, “Compression of individual sequences via
variable rate coding,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 530–536,
Sept. 1978
 The analysis here follows [Cover & Thomas ’91, ‘06] , attributed to

[Wyner & Ziv]. It differs from the original proof in [LZ78]
 The main mechanism in LZ schemes is pattern matching: find string

patterns that have occurred in the past, and compress them by encoding
a reference to the previous occurrence

 In LZ77, back references are allowed to any location in the dictionary
window

 In LZ78, back references are allowed only to certain points in the past
window, determined by incremental parsing

Gadiel Seroussi - Lossless Data Compression - April 2021

... r e s t o r e o n e s t o n e ...

26

LZ78: Incremental Parsing

 The scheme is based on the notion of incremental parsing
 Parse the input sequence ݔଵ௡ into phrases, each new phrase being the

shortest substring that has not appeared so far as a phrase
 Phrases are collected into an indexed dictionary, initialized to {0: {ߣ

 Each new phrase is of the form ݓ ,ܾݓ = a previous phrase, ܾ ∈ {0, 1}
 a new phrase can also be described as (݅, ܾ) , where ݅ = index(ݓ)

Gadiel Seroussi - Lossless Data Compression - April 2021

ܣ ଵ௡ = 1 0 1 1 0 1 0 1 0 0 0 1 0 ... (assumeݔ = {0, 1}), , , , , , ,

0: :1ߣ 12: 03: 114: 01
5: 0106: 007: 10⋮ ∶ ⋮

index: phrase index: phrase

27

Incremental Parsing (cont.)

 New phrase ܾݓ described as (݅, ܾ) , where ݅ = index(ݓ), ܾ ∈ {0, 1}

 Let ܿ(݊) = number of phrases in ݔଵ௡
 we assume, for simplicity, that the input ends at a phrase boundary (comma)

 assumption is easily removed; it does not affect the main results
 we encode by describing the sequence of phrases
 a phrase description ݅, ܾ can be encoded with ≤ 1 + ⌈log ܿ ݊ ⌉ bits
 in the example, 28 bits to describe 13 : bad deal! it gets better as ݊ → ∞
 decoding is straightforward: decoder builds the same dictionary, in lockstep

with encoder
 in practice, we do not need to know ܿ(݊) before we start encoding

 use increasing length codes that the decoder can keep track of

Gadiel Seroussi - Lossless Data Compression - April 2021

0: :1ߣ 1 (0, 1)2: 0 (0, 0)3: 11 (1, 1)4: 01 (2, 1)
5: 010 (4, 0)6: 00 (2, 0)7: 10 (1, 0)⋮ ∶ ⋮ ⋮

index: phrase descr index: phrase descr

ଵ௡ݔ = 1,0,1 1,0 1,0 1 0,0 0,1 0, ...

28

The Parsing Tree



0 1

1
0

2

3
1

4
1

0

5

6

0 0

7

coding could be made more efficient by “recycling”
codes of nodes that have a complete set of children
(e.g., 1, 2 above)
will not affect asymptotics
many (many many) tricks and hacks exist in practical

implementations

Gadiel Seroussi - Lossless Data Compression - April 2021

index phrase
0 
1 0,1
2 0,0
3 1,1
4 2,1
5 4,0
6 2,0

dictionary

 

7 1,0

ଵ௡ݔ = 1,0,1 1,0 1,0 1 0,0 0,1 0, ...

29

Incremental Parsing: How Many Phrases?

Lemma: ܿ ݊ ≤ ௡ଵିఢ೙ ୪୭୥ ௡ , ߳௡ → 0 as ݊ → ∞ [߳௡ = [(1)݋
Proof: ܿ(݊) is max when we take all phrases as short as possible.
Taking the 2 phrases of length 1, 4 of length 2, ... , up to 2݇ of length ݇, we get
overall length ݊௞ = ∑ ݆2௝ = ݇ − 1 2௞ାଵ + 2௞௝ୀଵ ,

and a number of phrases ܿ௞ = ∑ 2௝ = 2௞ାଵ − 2௞௝ୀଵ .

We have ܿ௞ ≤ ௡ೖ௞ିଵ .

Choose ݇ such that ݊௞ ≤ ݊ < ݊௞ାଵ and write ݊ = ݊௞ + Δ. Add ୼௞ାଵ phrases of

length ݇ + 1, and possibly one shorter (repeated) tail phrase, to reach ݊. Then,ܿ ݊ ≤ ܿ௞ + Δ݇ + 1 + 1 ≤ ݊௞݇ − 1 + Δ݇ + 1 + 1 ≤ ݊௞ + Δ݇ − 1 + 1 = ݊ + ݇ − 1݇ − 1 ≤ ݊1 − ߳௡ log ݊
with ߳௡ = ܱ(log log ݊ / log ݊) .
[why: if ݔ = ݇ 2݇ then log ݔ − log log ݔ ≤ ݇ ≤ log ݔ − log log ݔ + (1)݋] 

Corollary: ௖ ௡௡ ≤ ଵା௢(ଵ)୪୭୥ ௡
Gadiel Seroussi - Lossless Data Compression - April 2021

30

Universality of LZ78

 To establish the universality of LZ78, we will make a connection between its
combinatorial structure (the incremental parsing), and probabilistic notions

 A ݇-th order Markov probability assignment ܳ௞ on ܣ௡ is defined by
 a distribution ܳ௜௡௜௧ ଵݏ on an initial state ݏଵ = ିݔ ௞ିଵ଴ (could be fixed, i.e., a

single-mass PMF)
 a collection of conditional probability distributionsܳ · ܽଵ௞) for all ܽଵ௞ ∈ ௞ܣ

 The probability assigned by ܳ௞ to ݔଵ௡ ∈ ௡ܣ (with initial state ݏଵ) is

ܳ௞ ,଴ݔ ,ଵݔ … , ଵݏ|௡ݔ ≜ ܳ௜௡௜௧ ଵݏ ෑ ܳ ௝ି௞௝ିଵ௡ݔ | ௝ݔ
௝ୀଵ

Gadiel Seroussi - Lossless Data Compression - April 2021

we will assume, for simplicity,
an arbitrary fixed initial state ݏଵ,
so ܳ௜௡௜௧ ଵݏ = 1.

31

Universality of LZ78 (cont.)

 Assume ݔଵ௡ is parsed into ܿ distinct phrases 1ݕ, ,2ݕ … , :Define . ܿݕ
 = ݅ݒ index of start of ݅ݕ = , ݅ݒݔ) … , (௩೔శభିଵݔ
 = ݅ݏ ,௩೔ି௞ݔ) … , (௩೔ିଵݔ = the ݇ bits preceding ݅ݕ in ݔଵ௡ (a state). We have

ܳ௞ ௜ݕ ௜ݏ = ෑ ܳ ௩೔ା௝ି௞௩೔ା௝ିଵ௩೔శభି௩೔ିଵݔ│௩೔ା௝ݔ
௝ୀ଴ܳ௞ ଵ௡ݔ ଵݏ = ෑ ܳ ௜ݔ ௜ିଵ௜ି௞ݔ = ෑ ܳ௞ ௜ݕ ௜௖ݏ

௜ୀଵ
௡

௜ୀଵ
 number of phrases = ݏ݈ܿ ݈ of length ݅ݕ and preceding state ݏ ∈ {0,1}݇
 we have ∑ ܿ௟௦ = ܿ௟,௦ and ∑ ݈ ܿ௟௦ = ݊௟,௦

Ziv’s inequality: For any distinct parsing of ݔଵ௡ , and any ܳ௞, we havelog ܳ௞ ,ଵݔ ,ଶݔ … , ௡ݔ ଵݏ ≤ − ෍ ܿ௟௦ log ܿ௟௦௟,௦
The lemma upper-bounds the probability of any sequence under any
probability assignment from the class, based on properties of any
distinct parsing of the sequence (including the incremental parsing)

Gadiel Seroussi - Lossless Data Compression - April 2021

32

Universality of LZ78 (proof of Ziv’s inequality)

Proof of Ziv’s inequality:ܳ௞ ,ଵݔ ,ଶݔ … , ௡ݔ ଵݏ = ܳ௞ ,ଵݕ ,ଶݕ … , ௖ݕ ଵݏ = ෑ ܳ ௜ݕ ௜௖ݏ
௜ୀଵlog ܳ௞ ,ଵݔ ,ଶݔ … , ௡ݔ ଵݏ = ෍ log ܳ ௜ݕ ௜௖ݏ

௜ୀଵ= ෍ ෍ log ܳ ௜ݕ :௜ݏ ௬೔ ୀ௟,௦೔ୀ௦௟,௦= ෍ ܿ௟௦௟,௦ ෍ 1ܿ௟௦ log ܳ ௜ݕ :௜ݏ ௬೔ ୀ௟,௦೔ୀ௦≤ ෍ ܿ௟௦௟,௦ log ෍ 1ܿ௟௦ ܳ ௜ݕ :௜ݏ ௬೔ ୀ௟,௦೔ୀ௦
Since the ݕ௜ are distinct, we have ∑ ܳ ௜ݕ ݏ ≤ 1௜: ௬೔ ୀ௟,௦೔ୀ௦ ⟹ log ܳ௞ ,ଵݔ ,ଶݔ … , ௡ݔ ଵݏ ≤ ෍ ܿ௟௦ log 1ܿ௟௦ = − ෍ ܿ௟௦ log ܿ௟௦௟,௦ ∎௟,௦

Gadiel Seroussi - Lossless Data Compression - April 2021

Jensen
ܧ log ܺ ≤ log ܺܧ
Here ܺ is uniformly
distributed on the ܿ௟௦
numbers (ݏ|௜ݕ)ܳ

ܧ log (ݏ|௜ݕ)ܳ
log (ݏ|௜ݕ)ܳܧ

