
24

Lossless Source Coding

Lempel-Ziv Coding

Lempel-Ziv 1978 (LZ78)

Gadiel Seroussi - Lossless Data Compression - April 2021

25

LZ78

[LZ78] J. Ziv and A. Lempel, “Compression of individual sequences via
variable rate coding,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 530–536,
Sept. 1978
 The analysis here follows [Cover & Thomas ’91, ‘06] , attributed to

[Wyner & Ziv]. It differs from the original proof in [LZ78]
 The main mechanism in LZ schemes is pattern matching: find string

patterns that have occurred in the past, and compress them by encoding
a reference to the previous occurrence

 In LZ77, back references are allowed to any location in the dictionary
window

 In LZ78, back references are allowed only to certain points in the past
window, determined by incremental parsing

Gadiel Seroussi - Lossless Data Compression - April 2021

... r e s t o r e o n e s t o n e ...

26

LZ78: Incremental Parsing

 The scheme is based on the notion of incremental parsing
 Parse the input sequence ݔଵ into phrases, each new phrase being the

shortest substring that has not appeared so far as a phrase
 Phrases are collected into an indexed dictionary, initialized to {0: {ߣ

 Each new phrase is of the form ݓ ,ܾݓ = a previous phrase, ܾ ∈ {0, 1}
 a new phrase can also be described as (݅, ܾ) , where ݅ = index(ݓ)

Gadiel Seroussi - Lossless Data Compression - April 2021

ܣ ଵ = 1 0 1 1 0 1 0 1 0 0 0 1 0 ... (assumeݔ = {0, 1}), , , , , , ,

0: :1ߣ 12: 03: 114: 01
5: 0106: 007: 10⋮ ∶ ⋮

index: phrase index: phrase

27

Incremental Parsing (cont.)

 New phrase ܾݓ described as (݅, ܾ) , where ݅ = index(ݓ), ܾ ∈ {0, 1}

 Let ܿ(݊) = number of phrases in ݔଵ
 we assume, for simplicity, that the input ends at a phrase boundary (comma)

 assumption is easily removed; it does not affect the main results
 we encode by describing the sequence of phrases
 a phrase description ݅, ܾ can be encoded with ≤ 1 + ⌈log ܿ ݊ ⌉ bits
 in the example, 28 bits to describe 13 : bad deal! it gets better as ݊ → ∞
 decoding is straightforward: decoder builds the same dictionary, in lockstep

with encoder
 in practice, we do not need to know ܿ(݊) before we start encoding

 use increasing length codes that the decoder can keep track of

Gadiel Seroussi - Lossless Data Compression - April 2021

0: :1ߣ 1 (0, 1)2: 0 (0, 0)3: 11 (1, 1)4: 01 (2, 1)
5: 010 (4, 0)6: 00 (2, 0)7: 10 (1, 0)⋮ ∶ ⋮ ⋮

index: phrase descr index: phrase descr

ଵݔ = 1,0,1 1,0 1,0 1 0,0 0,1 0, ...

28

The Parsing Tree

0 1

1
0

2

3
1

4
1

0

5

6

0 0

7

coding could be made more efficient by “recycling”
codes of nodes that have a complete set of children
(e.g., 1, 2 above)
will not affect asymptotics
many (many many) tricks and hacks exist in practical

implementations

Gadiel Seroussi - Lossless Data Compression - April 2021

index phrase
0
1 0,1
2 0,0
3 1,1
4 2,1
5 4,0
6 2,0

dictionary

7 1,0

ଵݔ = 1,0,1 1,0 1,0 1 0,0 0,1 0, ...

29

Incremental Parsing: How Many Phrases?

Lemma: ܿ ݊ ≤ ଵିఢ ୪୭ , ߳ → 0 as ݊ → ∞ [߳ = [(1)
Proof: ܿ(݊) is max when we take all phrases as short as possible.
Taking the 2 phrases of length 1, 4 of length 2, ... , up to 2݇ of length ݇, we get
overall length ݊ = ∑ ݆2 = ݇ − 1 2ାଵ + 2ୀଵ ,

and a number of phrases ܿ = ∑ 2 = 2ାଵ − 2ୀଵ .

We have ܿ ≤ ೖିଵ .

Choose ݇ such that ݊ ≤ ݊ < ݊ାଵ and write ݊ = ݊ + Δ. Add ାଵ phrases of

length ݇ + 1, and possibly one shorter (repeated) tail phrase, to reach ݊. Then,ܿ ݊ ≤ ܿ + Δ݇ + 1 + 1 ≤ ݊݇ − 1 + Δ݇ + 1 + 1 ≤ ݊ + Δ݇ − 1 + 1 = ݊ + ݇ − 1݇ − 1 ≤ ݊1 − ߳ log ݊
with ߳ = ܱ(log log ݊ / log ݊) .
[why: if ݔ = ݇ 2݇ then log ݔ − log log ݔ ≤ ݇ ≤ log ݔ − log log ݔ + (1)]

Corollary: ≤ ଵା(ଵ)୪୭
Gadiel Seroussi - Lossless Data Compression - April 2021

30

Universality of LZ78

 To establish the universality of LZ78, we will make a connection between its
combinatorial structure (the incremental parsing), and probabilistic notions

 A ݇-th order Markov probability assignment ܳ on ܣ is defined by
 a distribution ܳ௧ ଵݏ on an initial state ݏଵ = ିݔ ିଵ (could be fixed, i.e., a

single-mass PMF)
 a collection of conditional probability distributionsܳ · ܽଵ) for all ܽଵ ∈ ܣ

 The probability assigned by ܳ to ݔଵ ∈ ܣ (with initial state ݏଵ) is

ܳ ,ݔ ,ଵݔ … , ଵݏ|ݔ ≜ ܳ௧ ଵݏ ෑ ܳ ିିଵݔ | ݔ
ୀଵ

Gadiel Seroussi - Lossless Data Compression - April 2021

we will assume, for simplicity,
an arbitrary fixed initial state ݏଵ,
so ܳ௧ ଵݏ = 1.

31

Universality of LZ78 (cont.)

 Assume ݔଵ is parsed into ܿ distinct phrases 1ݕ, ,2ݕ … , :Define . ܿݕ
 = ݅ݒ index of start of ݅ݕ = , ݅ݒݔ) … , (௩శభିଵݔ
 = ݅ݏ ,௩ିݔ) … , (௩ିଵݔ = the ݇ bits preceding ݅ݕ in ݔଵ (a state). We have

ܳ ݕ ݏ = ෑ ܳ ௩ାି௩ାିଵ௩శభି௩ିଵݔ│௩ାݔ
ୀܳ ଵݔ ଵݏ = ෑ ܳ ݔ ିଵିݔ = ෑ ܳ ݕ ݏ

ୀଵ

ୀଵ
 number of phrases = ݏ݈ܿ ݈ of length ݅ݕ and preceding state ݏ ∈ {0,1}݇
 we have ∑ ܿ௦ = ܿ,௦ and ∑ ݈ ܿ௦ = ݊,௦

Ziv’s inequality: For any distinct parsing of ݔଵ , and any ܳ, we havelog ܳ ,ଵݔ ,ଶݔ … , ݔ ଵݏ ≤ − ܿ௦ log ܿ௦,௦
The lemma upper-bounds the probability of any sequence under any
probability assignment from the class, based on properties of any
distinct parsing of the sequence (including the incremental parsing)

Gadiel Seroussi - Lossless Data Compression - April 2021

32

Universality of LZ78 (proof of Ziv’s inequality)

Proof of Ziv’s inequality:ܳ ,ଵݔ ,ଶݔ … , ݔ ଵݏ = ܳ ,ଵݕ ,ଶݕ … , ݕ ଵݏ = ෑ ܳ ݕ ݏ
ୀଵlog ܳ ,ଵݔ ,ଶݔ … , ݔ ଵݏ = log ܳ ݕ ݏ

ୀଵ= log ܳ ݕ :ݏ ௬ ୀ,௦ୀ௦,௦= ܿ௦,௦ 1ܿ௦ log ܳ ݕ :ݏ ௬ ୀ,௦ୀ௦≤ ܿ௦,௦ log 1ܿ௦ ܳ ݕ :ݏ ௬ ୀ,௦ୀ௦
Since the ݕ are distinct, we have ∑ ܳ ݕ ݏ ≤ 1: ௬ ୀ,௦ୀ௦ ⟹ log ܳ ,ଵݔ ,ଶݔ … , ݔ ଵݏ ≤ ܿ௦ log 1ܿ௦ = − ܿ௦ log ܿ௦,௦ ∎,௦

Gadiel Seroussi - Lossless Data Compression - April 2021

Jensen
ܧ log ܺ ≤ log ܺܧ
Here ܺ is uniformly
distributed on the ܿ௦
numbers (ݏ|ݕ)ܳ

ܧ log (ݏ|ݕ)ܳ
log (ݏ|ݕ)ܳܧ

