Lossless Source Coding

Lempel-Ziv Coding

Lempel-Ziv 1977 (LZ77)

1 Gadiel Seroussi - Lossless Data Compression - April 2021

The Lempel-Ziv Algorithms

O A family of data compression algorithms introduced in

[LZ77] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Trans. Inform.Theory, vol. IT-23, pp. 337-343, May 1977

[LZ78] J. Ziv and A. Lempel, “Compression of individual sequences via variable rate
coding,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 530-536, Sept. 1978.

L Many desirable features, the conjunction of which was unprecedented at
the time

® simple and elegant

® universal for individual sequences in the class of finite-state encoders
¢ Arguably, every real-life computer is a finite-state automaton

® processing is sequential, symbol by symbol, but compression ratio approaches
entropy rate in the limit for stationary ergodic sources

® string matching and dictionaries, no explicit probability model

® very practical, with fast and effective implementations applicable to a wide range
of data types and applications

2 Gadiel Seroussi - Lossless Data Compression - April 2021

Two Main Variants

A [LZ77] and [LZ78] present different algorithms with common elements

® The main mechanism in both schemes is pattern matching: find string
patterns that have occurred in the past, and compress them by encoding a
reference to the previous occurrence

Vo | | |
...restore one stone...

L Both schemes are in wide practical use

® many variations exist on each of the major schemes
¢ gzip, WinZIP, 7z, RAR, GIF, TIFF, PNG, ...

® we give a brief description of LZ77 and its properties, and then focus in more
detail on LZ78, which admits a simpler analysis with a stronger result

3 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Sliding Window Lempel-Ziv

past sequence

O Sequence xi* over alphabet 4, |A| = 2.
O Say we have already processed the sequence up to the indicated point
U Fix a window size n,, = 1

4 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Sliding Window Lempel-Ziv

past sequence

alblc|d|lejd|e|d|ale|d|afe|(d|b

! |

fixed size window (dictionary) look-ahead buffer

O Next phrase:

® find longest match to the look-ahead buffer, starting in the dictionary (but can
go into the look-ahead buffer): length L > 0

5 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Sliding Window Lempel-Ziv

2
alblc|d]|e e|d|a d b
J)
| |
nW

fixed size window (dictionary)

O Next phrase:

look-ahead buffer

® find longest match to the look-ahead buffer, starting in the dictionary (but can
go into the look-ahead buffer): length L > 0

® represent phrase as (L, A)= (length, offset) if L > 1, or (1, x;) otherwise

phrase 1

(ded)

. Y1 - (3, 2)

Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Sliding Window Lempel-Ziv

0

alblcjd|le|d|e|djale|d|afe|(d|b

! !

fixed size window (dictionary) look-ahead buffer

O Next phrase:

® find longest match to the look-ahead buffer, starting in the dictionary (but can
go into the look-ahead buffer): length L > 0

® represent phrase as (L, A)= (length, offset) if L > 1, or (1, x;) otherwise
phrase 1 (ded) Y1 =(3,2)
phrase 2 (a) Y, = (1,a)

7 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Sliding Window Lempel-Ziv

alblc|dje|d|e|d|afje|d|afe |(d|b

! |

Ny
fixed size window (dictionary) look-ahead buffer

O Next phrase:

® find longest match to the look-ahead buffer, starting in the dictionary (but can
go into the look-ahead buffer): length L > 0

® represent phrase as (L, A)= (length, offset) if L > 1, or (1, x;) otherwise
phrase 1 (ded) Y1 =(3,2)
phrase 2 (a) Y, = (1,a)
phrase 3 (edaedb):Y; = (5,3)

8 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Sliding Window Lempel-Ziv

alblc|d|le|d|e|d|aje|d|afe |(d]b

! |

nW
fixed size window (dictionary)

look-ahead buffer

O Next phrase:

® find longest match to the look-ahead buffer, starting in the dictionary (but can
go into the look-ahead buffer): length L > 0

® represent phrase as (L, A)= (length, offset) if L > 1, or (1, x;) otherwise
phrase 1 (ded) Y1 =(3,2)

phrase 2 (a) Y, = (1,a)
phrase 3 (edaedb):Y; = (5,3)
phrase 4 (b) Y, =(1,b)

9

Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Decoding

d Given Y;, Y,, Vs, ... , we can reconstruct x7'
L Say we have already decoded the sequence up to the indicated point

past sequence

Encoder sent Y,=(3, 2), Y, =(1,a), Y3=(5,3), Y, =(1,b), ...
® ¥, = (L,A)= (length, offset) if L > 1, or (1, x;) otherwise

10 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Decoding

past sequence

Yl == (3, 2)

Encodersent Y;=(3,2), ¥, =(1,a), Y35=(5,3), Yo.=(1,b), ...
® ¥, = (L,A)= (length, offset) if L > 1, or (1, x;) otherwise

11 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Decoding

past sequence

Yl == (3, 2)

Encodersent Y;=(3,2), ¥, =(1,a), Y35=(5,3), Yo.=(1,b), ...
® ¥, = (L,A)= (length, offset) if L > 1, or (1, x;) otherwise

12 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Decoding

past sequence

Encodersent Y;=(3,2), ¥, =(1,a), Y35=(5,3), Yo.=(1,b), ...
® ¥, = (L,A)= (length, offset) if L > 1, or (1, x;) otherwise

13 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Decoding

past sequence
<< YZ = (17 a)

Encodersent Y;=(3,2), ¥, =(1,a), Y35=(5,3), Yo.=(1,b), ...
® ¥, = (L,A)= (length, offset) if L > 1, or (1, x;) otherwise

14 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Decoding

past sequence

Encodersent Y;=(3,2), ¥, =(1,a), Y35=(5,3), Yo.=(1,b), ...
® ¥, = (L,A)= (length, offset) if L > 1, or (1, x;) otherwise

15 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Decoding

past sequence
4 Y4- = (1; b)

Encodersent Y;=(3,2), ¥, =(1,a), Y35=(5,3), Yo.=(1,b), ...
® ¥, = (L,A)= (length, offset) if L > 1, or (1, x;) otherwise

16 Gadiel Seroussi - Lossless Data Compression - April 2021

LZ77: Binary Encoding of Phrases

O Phrase Y; = (L,A) with L > 1, or Y; = (1, x;)

OA: [log n,, | bits (log in base 2)
® [, : use prefix-free, variable length code for nonnegative integers
Example: let £ = [log(L + 1)], €' = [log(£ + 1)]

represent L as 0° ~11-binary(#) - binary(L)

¢ o
total length for L ~ logL + 2loglog L

x; . [log|A|] bits

U Appropriate conventions are needed for the first n,, symbols
O Let £, (x1') = total length (in bits) of representations of 13, Y,,Y;, ...

Q Compression ratio: Ry, n(x™) = %an (x™) (bits/symbol)

17 Gadiel Seroussi - Lossless Data Compression - April 2021

Optimality of LZ77

O Let X{°~P be a stationary ergodic process over A.

J Recall
n-th order entropy rate: H,,(X{*) = — %ane an P(x1") log P(x7)

entropy rate: H(X{°) = lim H,,(X{*) (in bits/symbol, limit exists)
n—-oo
LZ77 average compression ratio: R, . = Ep|Rp, (X1)]

d Theorem ~
lim limR, ,=H

TLW—>OO n—00o

® Opfimal due to Shannon’s lower bound

® Universal: achieves optimal compression ratio without any prior knowledge
of P

® Proof: A. D. Wyner and J. Ziv, “The sliding-window Lempel-Ziv algorithm is
asymptotically optimal,” Proc. IEEE, vol. 82, pp. 872--877, June 1994.

® Original LZ77 paper did not show optimality in a stochastic sense

18 Gadiel Seroussi - Lossless Data Compression - April 2021

gzip: An application of LZ77 (+Huffman)

L A popular lossless compression program available in most computing
platforms (Windows, Linux, MacQOS, etc.)

1 Used for general purpose file compression

O The main compression algorithm in gzip is called deflate, a variant of
LZ77 (+Huffman)

® blocks of data can also be stored uncompressed
® deflate also at the core of zip, PKzip, Winzip, PNG, and others

J Main elements of deflate:

® a block of data is encoded as a sequence of tokens

® cach token is encoded with a prefix-free (Huffman) code, and can represent
¢ a literal byte (0 .. 255)
¢ alength in a <length, offset> pair (3 .. 258) minimal match length is 3

¢ an offset in a <length, offset> pair (1 .. 215)

® Two alphabets, and two Huffman codes are used
¢ one for literals and match lengths (merged into one alphabet)
¢ one for offsets

® Huffman codes can be fixed (pre-defined defaults) or dynamic (described in
the encoded stream)

19 Gadiel Seroussi - Lossless Data Compression - April 2021

Encoding of literals/match lengths

Codes 0 .. 255: literal bytes
Code 256: end of block
Codes 257.. 285: match lengths

Extra Extra Extra
Code Bits Length(s) Code Bits Lengths Code Bits Length(s)

257 0 3 267 1 15,16 277 4 67-82
258 0 4 268 1 17,18 278 4 83-98
259 0 5 269 2 19-22 279 4 99-114
260 0 6 270 2 23-26 280 4 115-130
2601 0 7 271 2 27-30 281 5 131-162
262 0 8 272 2 31-34 282 5 163-194
263 0 9 273 3 35-42 283 5 195-226
264 0 10 274 3 43-50 284 5 227-257
265 1 11,12 275 3 51-58 285 0 258
266 1 13,14 276 3 59-66

The extra bits should be interpreted as a machine integer
stored with the most-significant bit first, e.g., bits 1110
represent the value 14.

A Huffman code over the alphabet {0,1, ..., 285} is used for these codes
+ an appropriate number of extra bits

20 Gadiel Seroussi - Lossless Data Compression - April 2021

Encoding of offsets

Extra Extra
Code Bits Dist Code Bits
0 0 1 10 4
1 0 2 11 4
2 0 3 12 5
3 0 4 13 5
4 1 5,6 14 6
5 1 7,8 15 6
6 2 9-12 16 7
7 2 13-16 17 7
8 3 17-24 18 8
9 3 25-32 19 8 7

129-192
193-256
257-384
385-512
513-768
69-1024

Extra
Code Bits Distance

20 9
21 9
22 10
23 10
24 11
25 11
26 12

1025-1536
1537-2048
2049-3072
3073-4096
4097-60144
6145-8192
8193-12288

27 12 12289-16384
28 13 16385-24576
29 13 24577-327768

A Huffman code over the alphabet {0,1, ..., 29} is used for these codes +

an appropriate number of extra bits

21

Gadiel Seroussi - Lossless Data Compression - April 2021

Encoding algorithm

O The description so far specifies how the encoded stream is interpreted,
not how it is generated

 There are many ways to generate gzip-compliant streams

® in case of multiple matches, prefer the closest one (smaller offsets will tend to
have shorter Huffman codes)

® matches described need not be maximal : decoder will not complain!

® /azy matching :

¢ find longest match from current position i, then check for longest match from
position i+ 1

¢ Choose the most economical encoding: describe match starting at position i, or
describe x; as literal + match starting at position i + 1

L4 L

A A

Xi | Xi+1

\ J

L, second option may be better if L, > L,

22 Gadiel Seroussi - Lossless Data Compression - April 2021

Some comparisons

O Input file: Don Quijote de la Mancha, HTML
file size: 2,261,865 bytes

Output bytes bits/symbol

Huffman 1,284,323 4.54
vanilla LZ77 1,310,561 4.63
gzip -1 994,295 3.52

gzip -9 816,909 2.89

23 Gadiel Seroussi - Lossless Data Compression - April 2021

