
CMSC 451: Reductions & NP-completeness

Slides By: Carl Kingsford

Department of Computer Science

University of Maryland, College Park

Based on Section 8.1 of Algorithm Design by Kleinberg & Tardos.

Reductions as tool for hardness

We want prove some problems are computationally difficult.

As a first step, we settle for relative judgements:

Problem X is at least as hard as problem Y

To prove such a statement, we reduce problem Y to problem X :

If you had a black box that can solve instances of
problem X, how can you solve any instance of Y using
polynomial number of steps, plus a polynomial number of
calls to the black box that solves X?

Polynomial Reductions

• If problem Y can be reduced to problem X , we denote this by
Y ≤P X .

• This means “Y is polynomal-time reducible to X .”

• It also means that X is at least as hard as Y because if you
can solve X , you can solve Y .

• Note: We reduce to the problem we want to show is the
harder problem.

Polynomial Problems

Suppose:

• Y ≤P X , and

• there is an polynomial time
algorithm for X .

Then, there is a polynomial time
algorithm for Y .

Why?

Because polynomials
compose.

Call X

Call X

Polynomial Problems

Suppose:

• Y ≤P X , and

• there is an polynomial time
algorithm for X .

Then, there is a polynomial time
algorithm for Y .

Why? Because polynomials
compose.

Call X

Call X

We’ve Seen Reductions Before

Examples of Reductions:

• Max Bipartite Matching ≤P Max Network Flow.

• Image Segmentation ≤P Min-Cut.

• Survey Design ≤P Max Network Flow.

• Disjoint Paths ≤P Max Network Flow.

Reductions for Hardness

Theorem

If Y ≤P X and Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.

Why? If we could solve X in polynomial time, then we’d be able to
solve Y in polynomial time using the reduction, contradicting the
assumption.

So: If we could find one hard problem Y , we could prove that
another problem X is hard by reducing Y to X .

Vertex Cover

Def. A vertex cover of a graph is a set S of nodes such that every
edge has at least one endpoint in S .

In other words, we try to “cover” each of the edges by choosing at
least one of its vertices.

Vertex Cover

Given a graph G and a number k, does G contain a vertex cover
of size at most k.

Independent Set to Vertex Cover

Independent Set

Given graph G and a number k, does G contain a set of at least k
independent vertices?

Can we reduce independent set to vertex cover?

Vertex Cover

Given a graph G and a number k, does G contain a vertex cover
of size at most k.

Relation btw Vertex Cover and Indep. Set

Theorem

If G = (V , E) is a graph, then S is an independent set ⇐⇒
V − S is a vertex cover.

Proof. =⇒ Suppose S is an independent set, and let e = (u, v)
be some edge. Only one of u, v can be in S . Hence, at least one of
u, v is in V − S . So, V − S is a vertex cover.

⇐= Suppose V − S is a vertex cover, and let u, v ∈ S . There
can’t be an edge between u and v (otherwise, that edge wouldn’t
be covered in V − S). So, S is an independent set. �

Independent Set ≤P Vertex Cover

Independent Set ≤P Vertex Cover

To show this, we change any instance of Independent Set into an
instance of Vertex Cover:

• Given an instance of Independent Set 〈G , k〉,
• We ask our Vertex Cover black box if there is a vertex cover

V − S of size ≤ |V | − k.

By our previous theorem, S is an independent set iff V − S is a
vertex cover. If the Vertex Cover black box said:

yes: then S must be an independent set of size ≥ k.
no: then there is no vertex cover V − S of size
≤ |V | − k, hence there is no independent set of size ≥ k.

Vertex Cover ≤P Independent Set

Actually, we also have:

Vertex Cover ≤P Independent Set

Proof. To decide if G has an vertex cover of size k, we ask if it has
an independent set of size n − k . �

So: Vertex Cover and Independent Set are equivalently
difficult.

NP-completeness

Def. We say X is NP-complete if:

• X ∈ NP

• for all Y ∈ NP, Y ≤P X .

If these hold, then X can be used to
solve every problem in NP.

Therefore, X is definitely at least as
hard as every problem in NP.

NP

X

Y1
Y2

Y3

Y4P

NP-completeness and P=NP

Theorem

If X is NP-complete, then X is solvable in polynomial time if and
only if P = NP.

Proof. If P = NP, then X can be solved in polytime.

Suppose X is solvable in polytime, and let Y be any problem in
NP. We can solve Y in polynomial time: reduce it to X .

Therefore, every problem in NP has a polytime algorithm and
P = NP.

Reductions and NP-completeness

Theorem

If Y is NP-complete, and

1 X is in NP

2 Y ≤P X

then X is NP-complete.

In other words, we can prove a new problem is NP-complete by
reducing some other NP-complete problem to it.

Proof. Let Z be any problem in NP. Since Y is NP-complete,
Z ≤P Y . By assumption, Y ≤P X . Therefore: Z ≤P Y ≤P X . �

Some First NP-complete problem

We need to find some first NP-complete problem.

Finding the first NP-complete problem was the result of the
Cook-Levin theorem.

We’ll deal with this later. For now, trust me that:

• Independent Set is a packing problem and is NP-complete.

• Vertex Cover is a covering problem and is NP-complete.

Set Cover

Another very general and useful covering problem:

Set Cover

Given a set U of elements and a collection S1, . . . ,Sm of subsets of
U, is there a collection of at most k of these sets whose union
equals U?

We will show that

Set Cover ∈ NP
Vertex Cover ≤P Set Cover

And therefore that Set Cover is NP-complete.

Set Cover, Figure

Set Cover, Figure

Vertex Cover ≤P Set Cover

Thm. Vertex Cover ≤P Set Cover

Proof. Let G = (V , E) and k be an instance of Vertex Cover.
Create an instance of Set Cover:

• U = E

• Create a Su for for each u ∈ V , where Su contains the edges
adjacent to u.

U can be covered by ≤ k sets iff G has a vertex cover of size ≤ k .

Why? If k sets Su1 , . . . ,Suk
cover U then every edge is adjacent to

at least one of the vertices u1, . . . , uk , yielding a vertex cover of
size k.

If u1, . . . , uk is a vertex cover, then sets Su1 , . . . ,Suk
cover U. �

Last Step:

We still have to show that Set Cover is in NP!

The certificate is a list of k sets from the given collection.

We can check in polytime whether they cover all of U.

Since we have a certificate that can be checked in polynomial time,
Set Cover is in NP.

Summary

You can prove a problem is NP-complete by reducing a known
NP-complete problem to it.

We know the following problems are NP-complete:

• Vertex Cover

• Independent Set

• Set Cover

Warning: You should reduce the known NP-complete problem to
the problem you are interested in. (You will mistakenly do this
backwards sometimes.)

	Reductions & NP-completeness
	Reductions
	NP-completeness

