CMSC 451: Reductions & NP-completeness

Slides By: Carl Kingsford

[ERSIF
3 »
= o

o) ES

18)i!s

R
Department of Computer Science
University of Maryland, College Park

Based on Section 8.1 of Algorithm Design by Kleinberg & Tardos.

Reductions as tool for hardness

We want prove some problems are computationally difficult.

As a first step, we settle for relative judgements:
Problem X is at least as hard as problem Y

To prove such a statement, we reduce problem Y to problem X:

If you had a black box that can solve instances of
problem X, how can you solve any instance of Y using
polynomial number of steps, plus a polynomial number of
calls to the black box that solves X7

Polynomial Reductions

If problem Y can be reduced to problem X, we denote this by
Y <p X.

This means "Y is polynomal-time reducible to X.”

It also means that X is at least as hard as Y because if you
can solve X, you can solve Y.

Note: We reduce to the problem we want to show is the
harder problem.

Polynomial Problems

Suppose:
e Y <p X, and

e there is an polynomial time
algorithm for X.

Then, there is a polynomial time
algorithm for Y.

Why?

Polynomial Problems

Suppose:
e Y <p X, and

e there is an polynomial time
algorithm for X.

Then, there is a polynomial time
algorithm for Y.

Why? Because polynomials
compose.

Call X

Hgigipl

Call X

We’ve Seen Reductions Before

Examples of Reductions:

e MAX BIPARTITE MATCHING <p MAX NETWORK FLOW.
e IMAGE SEGMENTATION <p MIN-CUT.
e SURVEY DESIGN <p MAX NETWORK FLOW.

e DI1sJOINT PATHS <p MAX NETWORK FLOW.

Reductions for Hardness

Theorem

IfY <p X and Y cannot be solved in polynomial time, then X
cannot be solved in polynomial time.

Why? If we could solve X in polynomial time, then we'd be able to
solve Y in polynomial time using the reduction, contradicting the
assumption.

So: If we could find one hard problem Y, we could prove that
another problem X is hard by reducing Y to X.

Vertex Cover

Def. A vertex cover of a graph is a set S of nodes such that every
edge has at least one endpoint in S.

In other words, we try to “cover” each of the edges by choosing at
least one of its vertices.

Vertex Cover
Given a graph G and a number k, does G contain a vertex cover
of size at most k.

Independent Set to Vertex Cover

Independent Set

Given graph G and a number k, does G contain a set of at least k
independent vertices?

Can we reduce independent set to vertex cover?

Vertex Cover
Given a graph G and a number k, does G contain a vertex cover
of size at most k.

Relation btw Vertex Cover and Indep. Set

Theorem

If G =(V,E) is a graph, then S is an independent set <=
V — S is a vertex cover.

Proof. = Suppose S is an independent set, and let e = (u, v)
be some edge. Only one of u,v can be in 5. Hence, at least one of
u,visin V—S5. So, V — S is a vertex cover.

<— Suppose V — S is a vertex cover, and let u,v € S. There
can't be an edge between u and v (otherwise, that edge wouldn't
be covered in V — S). So, S is an independent set. [

Independent Set <p Vertex Cover

Independent Set <p Vertex Cover

To show this, we change any instance of Independent Set into an
instance of Vertex Cover:

¢ Given an instance of Independent Set (G, k),

e We ask our Vertex Cover black box if there is a vertex cover
V — S of size < |V|— k.

By our previous theorem, S is an independent set iff V — S is a
vertex cover. If the Vertex Cover black box said:

yes: then S must be an independent set of size > k.
no: then there is no vertex cover V. — S of size
< |V| — k, hence there is no independent set of size > k.

Vertex Cover <p Independent Set

Actually, we also have:

Vertex Cover <p Independent Set

Proof. To decide if G has an vertex cover of size k, we ask if it has
an independent set of size n — k. [

So: VERTEX COVER and INDEPENDENT SET are equivalently
difficult.

NP-completeness

Def. We say X is NP-complete if:

e X NP @

e forall Y e NP, Y <p X. 2

If these hold, then X can be used to
- NP
solve every problem in NP.

Therefore, X is definitely at least as @
hard as every problem in NP.

NP-completeness and P=NP

Theorem

If X is NP-complete, then X is solvable in polynomial time if and
only if P = NP.

Proof. If P = NP, then X can be solved in polytime.

Suppose X is solvable in polytime, and let Y be any problem in
NP. We can solve Y in polynomial time: reduce it to X.

Therefore, every problem in NP has a polytime algorithm and
P = NP.

Reductions and NP-completeness

Theorem

If'Y is NP-complete, and
® X isin NP
®Y<pX

then X is NP-complete.

In other words, we can prove a new problem is NP-complete by
reducing some other NP-complete problem to it.

Proof. Let Z be any problem in NP. Since Y is NP-complete,
Z <p Y. By assumption, Y <p X. Therefore: Z <p Y <p X. U

Some First NP-complete problem

We need to find some first NP-complete problem.

Finding the first NP-complete problem was the result of the
Cook-Levin theorem.

We'll deal with this later. For now, trust me that:

e Independent Set is a packing problem and is NP-complete.

e Vertex Cover is a covering problem and is NP-complete.

Set Cover

Another very general and useful covering problem:

Set Cover

Given a set U of elements and a collection 53, ..., S, of subsets of
U, is there a collection of at most k of these sets whose union
equals U?

We will show that

SET COVER € NP
VERTEX COVER <p SET COVER

And therefore that SET COVER is NP-complete.

Vertex Cover <p Set Cover

Thm. Vertex Cover <p Set Cover

Proof. Let G = (V, E) and k be an instance of VERTEX COVER.
Create an instance of SET COVER:

[] U = E
e Create a S, for for each u € V, where S, contains the edges
adjacent to u.

U can be covered by < k sets iff G has a vertex cover of size < k.

Why? If k sets Sy, ..., Sy, cover U then every edge is adjacent to
at least one of the vertices vy, ..., Uk, yielding a vertex cover of
size k.

If ui,...,ux is a vertex cover, then sets S,,...,S,, cover U. J

Last Step:

We still have to show that Set Cover is in NP!
The certificate is a list of k sets from the given collection.
We can check in polytime whether they cover all of U.

Since we have a certificate that can be checked in polynomial time,
Set Cover is in NP.

Summary

You can prove a problem is NP-complete by reducing a known
NP-complete problem to it.

We know the following problems are NP-complete:

e Vertex Cover
¢ Independent Set

e Set Cover

Warning: You should reduce the known NP-complete problem to
the problem you are interested in. (You will mistakenly do this
backwards sometimes.)

	Reductions & NP-completeness
	Reductions
	NP-completeness

