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Aggregation methods

Aggregation methods

L the data base and ĝ1, . . . , ĝM several predictors built over L

f̂ = g(ĝ1, . . . , ĝM)

Homogeneous aggregation methods (sequential and not sequential).

Not homogeneous aggregation methods (consensus methods).

M.Bourel (IMERL, UdelaR) AggMethods - TAA 2019 April 3, 2019 2 / 18



Aggregation methods

Aggregation methods
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Plan

1 Bagging

2 Random Forest

3 Boosting
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Bagging, Breiman (1996)

1 L = {(X1,Y1), . . . , (Xn,Yn)} where Xi ∈ X and Yi ∈ Y
2 For m = 1 to M:

1 We consider a bootstrap sample L∗m of size n from L.
2 We build the estimator gm : X → Y frmo L∗m.

3 Output: fM(x) = Argmaxy#{m : gm(x) = y} (classification) or

fM(x) = 1
M

M∑
m=1

gm(x) (regression).

Figure: Bagging

The Bagging estimator generally improves the result of any unstable algorithm. In
many cases the reduction of the error is important.

It loose interpretability.

The observations that are not drawn in the bootstrap sample are called “out of bag”
(OOB).

OOB error is a good approximation of the test error.
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Random Forest, Breiman 2001

1 This method combines the predictions of several trees obtained from bootstrap
samples of the data set.

2 In each node, only a small number (e.g
√
p or log(p) of the total number p) of

randomly chosen variables is taken into account to determine the best partition. This
value suggested by Breiman in classification, has been confirmed by several works
which showed its optimality in terms of performance of forests on OOB samples.

3 There is no pruning.

1 L = {(X1,Y1), . . . , (Xn,Yn)} where Xi ∈ X and Yi ∈ Y
2 For m = 1 to M:

1 We consider a bootstrap sample L∗m of size n from L.
2 We build a maximal tree Tm from L∗m (without pruning).

3 Output: fM(x) = Argmaxy#{m : Tm(x) = y} (classification) or

fM(x) = 1
M

M∑
m=1

gm(x) (regression).

Figure: Random Forest
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Random Forest, Breiman 2001
RF has a technique to determine the importance of a predictor variable that use the out
of bag observations.

1 I The OOB error of tree b is:

eb = mean
i :xi is OOB for b

(error (xi , yi ))

I The OOB error is defined as

mean
i

(
mean

b:xi is OOB for b
(error(xi ))

)
and is an estimation of the test error.

2 Consider the variable x (j). We permute the value for this variable in the OOB
sample of tree b, and recompute :

êb = mean
i :xi is OOB for b

(error (xi , yi ))

3 The difference between the original OOB error and the latter give an index of the
importance of variable j :

VI
(
x (j)
)

=
1

B

B∑
b=1

(êb − eb)

This index can also be based on the average decrease of another criterion, as example the
Gini criterion used in the construction of trees
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Random Forest, Breiman 2001
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Random Forest, Breiman 2001

Another method that is also used is the Mean Decrease in Gini coefficient that gives a
measure of how each variable contributes to the homogeneity of the nodes. For variable
x (j), we average on all the trees of the forest the change in impurity across all the nodes
that are splitted by x (j) :

VIG (xj) =
1

B

B∑
b=1

∑
t ∈ b s.t.
v(st ) = xj

p(t)∆i(st , t)

where B is the total number of trees, p(t) is the proportion of observations in node t,
v(st) is the variable used in split t and ∆i(st , t) is the change in impurity between node t
and its two child nodes for the split st .
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Random Forest, Breiman 2001

1 By using few variables in each partition, overfitting is avoided.

2 In addition, compared to large databases with a high number of variables, the model
trains more quickly than for other techniques, such as Bagging or Boosting.

3 As with Bagging, the disadvantage of this method versus CART is the loss of
interpretability.

4 But clearly, much is gained in terms of the predictive power of the model.

M.Bourel (IMERL, UdelaR) AggMethods - TAA 2019 April 3, 2019 11 / 18



Plan

1 Bagging

2 Random Forest

3 Boosting

M.Bourel (IMERL, UdelaR) AggMethods - TAA 2019 April 3, 2019 12 / 18



Adaboost
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Adaboost (Freund and Schapire, 1997)

1 L = {(X1,Y1), . . . , (XN ,YN)} where Xi ∈ X and Yi ∈ {−1, 1}
2 Initialization of the weights: w1(i) = 1

N
i = 1, . . . ,N.

3 For t = 1 to T :

I From L and weights wt(i), we build a predictor ht : X → Y that minimizes the error

εt =
N∑
i=1

wt(i)1{ht (Xi ) 6=Yi}

I Calculate αt = 1
2

log
(

1−εt
εt

)
.

I Update the weights: wt+1(i) =
wt(i)

Zt
exp (−αtYiht(Xi )) for all i = 1, . . . ,N, where

Zt =
n∑

i=1
wt(i)exp (−αtYiht(Xi ))

4 Output: fT (x) = sign

(
T∑
t=1

αtht(x)

)

Figure: Adaboost, Freund and Schapire, 1997
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Toy Example Schapire

Figure: Freund and Schapire, 1997
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Toy Example Schapire

Final classifier is

H(x) = sgn
(
0.84× h1(x) + 1.38× h2(x) + 1.72× h3(x)

)
= Argmax

y∈{−1,1}

(
0.84× 1{h1(x)=y} + 1.38× 1{h2(x)=y} + 1.72× 1{h3(x)=y}

)

M.Bourel (IMERL, UdelaR) AggMethods - TAA 2019 April 3, 2019 16 / 18



Final considerations for Adaboost

Simple and easy to implement

Single parameter: number of iterations

It can be extended to cases in which the output variable Y is multiclass and not only
for trees (any unstable algorithm).

Detection of outliers: observations with higher weights are generally outliers.

It is proved that the classification error on the training sample decays exponentially
with the number of iterations.

M.Bourel (IMERL, UdelaR) AggMethods - TAA 2019 April 3, 2019 17 / 18



Bibliography

1 Breiman, Freidman, Stone. Classification and Regression Trees, Chapman & Hall/CRC. 1984.

2 James, Witten, Hastie, Tibshirani. An introduction to Statistical Learning with application in R, Springer, 2013.

3 Hastie, Tibshirani, Friedman. The Elements of Statistical Learning, Springer, 2003.

4 Schapire, R.E and Freund, Y., Boosting : Foundations and Algorithms. Adaptive Computation and Machine Learning Series. Mit Press, 2012.

5 Freund, Y. and Schapire, E., A decision-theoretic generalization of on-line learning and application to boosting, Journal of Computer and System
Sciences, 55(1): p 119-13, 1997.

6 Breiman, L., Bagging predictors., Machine Learning 24, 123?140, 1996

7 Bourel, M., Métodos de Agregación de modelos y aplicaciones, Mémorias de trabajos de difusión cient́ıfica y técnica, Vol. 10, p. 19-32, 2012.
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