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Abstract 

The use of stabilisation technology for stabilising and recycling 
materials for pavement construction and maintenance is widely 
accepted as a cost-effective method of improving long-term 
performance and reducing whole-of-life costs of modern, 
heavily-trafficked pavements. 

Guide to Pavement Technology Part 4D: Stabilised Materials 
described in detail the: 
•  types of stabilisation undertaken in improving pavement materials 

and subgrades 

• types of binders used in stabilisation 

• types of materials suited to particular binders 

• laboratory determination of the type and quantity of binder required 
to achieve a particular type of stabilised material (mix design). 

This part of the Guide to Pavement Technology does not detail 
quality control aspects of manufacture or performance attributes of 
stabilised materials nor the safety aspects of using specific binders. 
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Summary 

Stabilisation may be defined as a process by which the intrinsic properties of a pavement material or 
earthworks materials are altered by the addition of a stabilisation binder or granular material to meet 
performance expectations in its operating, geological and climatic environment. 

Part 4D Stabilised Materials of the Austroads Guide to Pavement Technology describes in detail: 

• the types of stabilisation undertaken to improve pavement materials and earthworks materials 
• the types of binders used in stabilisation 
• the types of binders suitable for particular materials 
• the laboratory determination of the type and quantity of binder required to achieve a particular type of 

stabilised material (mix design). 

It does not detail quality control aspects of manufacture or all the performance attributes of stabilised 
materials nor the safety aspects of using specific binders. 

This Guide is an update of the guide originally published in 2006. 

Stabilisation of unsealed roads is described in Guide to Pavement Technology Part 6: Unsealed Roads. 
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1. Introduction 

Stabilisation may be defined as a process by which the intrinsic properties of pavement materials or 
earthworks materials are altered by the addition of a stabilisation binder or granular material to meet 
performance expectations in its operating, geological and climatic environment. 

The use of stabilisation technology for stabilising and recycling materials for pavement construction and 
maintenance is widely accepted as a cost-effective method of improving long-term performance and 
reducing whole-of-life costs of modern, heavily-trafficked pavements. 

This part of the Guide to Pavement Technology discusses: 

• the types of stabilised pavement and earthworks materials 
• the binders associated with various types of stabilised pavement materials 
• methodologies for the determination of the appropriate mix proportions in the manufacture of stabilised 

pavement materials 
• specification considerations for manufacture and supply of stabilised materials. 

Additional issues related to stabilisation technology are discussed in other parts of the Austroads Guide to 
Pavement Technology are listed in Table 1.1. 

Table 1.1:  References to stabilisation technology in Austroads Guide to Pavement Technology 

Technology  Guide Part  

Structural design of new stabilised pavements Part 2: Pavement Structural Design 

Surfacings for stabilised pavements Part 3: Pavement Surfacings 

Unbound granular materials Part 4A: Granular Bases and Subbase Materials 

Recycled materials Part 4E: Recycled Materials 

Bituminous binders Part 4F: Bituminous Binders 

Stabilisation of subgrades Part 4I: Earthworks Materials 

Stabilising binders Part 4L: Stabilising Binders 

Structural design of in situ stabilisation 
treatments 

Part 5: Pavement Evaluation and Treatment Design  

Stabilisation of unsealed pavements  Part 6: Unsealed Pavements  

Maintenance practices for stabilised pavements  Part 7: Pavement Maintenance 

Construction of stabilised pavements Part 8: Pavement Construction  

Stabilisation of unsealed roads is described in Guide to Pavement Technology Part 6: Unsealed Pavements 
(Austroads 2009a). 

Table 1.2 lists websites from which pertinent publications on stabilisation technology such as specifications, 
technical notes, guidelines, work tips and safety data can be obtained. 

Table 1.2: Key websites pertinent to stabilisation technology 

Organisation Website  

Austroads www.austroads.com.au 

Australian Stabilisation Industry Association www.auststab.com.au 

World Road Association (PIARC) www.piarc.org 
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2. Overview 

2.1 Purpose of Stabilisation 

Stabilisation in new road pavement construction, and the rehabilitation of existing pavements, is broadly 
undertaken for the following purposes: 

• correct any mechanical deficiencies (particle size distribution (PSD) and/or plasticity) in unbound 
granular materials and earthworks materials 

• increase the strength of a material, i.e. Unconfined Compressive Strength (UCS) and flexural strength 
• increase the modulus or bearing capacity of a material, i.e. Californian Bearing Ratio (CBR), indirect 

tensile modulus, flexural modulus and resilient modulus 
• reduce the permeability and/or moisture sensitivity, which can result in a loss of strength, of the material 
• provide cost-effective pavement configurations through the provision of stabilised pavement and 

earthworks layers 
• improve the wearing characteristics of unsealed pavements 
• provide a means by which existing pavements can be recycled 
• improve the bearing capacity of subgrades so they can accept construction traffic 
• enhance the compaction of overlying pavement materials. 

2.2 Manufacture of Stabilised Materials 

Stabilised materials can be manufactured using the following procedures. 

2.2.1 Plant-mixed 

This involves stationary pugmill mixing of a stabilisation binder with an unbound granular material sourced 
from quarrying or reclaimed construction and demolition waste (generally concrete). The quality of unbound 
granular pavement materials used in plant mixing typically conforms to road agency specifications for PSD, 
plasticity and source rock hardness. The stabilised material is delivered to the site in trucks and then paved 
or spread, compacted, shaped and cured in preparation for the placement of the overlying layers, 
e.g. additional stabilised or unbound granular layers, asphalt, concrete or thin bituminous surfacings. 

2.2.2 In situ-stabilised Materials 

This is a mobile process, during which a stabilisation binder is added to an existing pavement or earthworks 
material and mixed with a purpose-designed road recycler. 

The quality of in situ stabilised pavement materials is often variable and, in some cases, requires the addition 
of other unbound granular materials to correct deficiencies in PSD, particle shape and/or plasticity. In situ 
stabilised material is shaped then compacted and cured prior to the placement of overlying layers, 
e.g. additional stabilised or unbound granular layers or bituminous surfacing. 

In situ stabilisation of a subgrade is undertaken as either a construction expedient or to improve the design 
CBR or modulus of the top of subgrade prior to the placement of an overlying pavement. 
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2.3 Stabilisation Binders 

The binders most commonly used in road stabilisation include: 

• lime 
• Portland cement 
• cementitious blends, including lime and/or cement combined with ground granulated blast furnace 

slag (GGBFS) and/or fly ash 
• bituminous materials, including foamed bitumen and bitumen emulsions often including lime or cement 

as a secondary binder 
• granular materials, including crushed rocks, aggregates and sands 
• chemicals, including salts, organic and polymer compounds. 

2.4 Categories of Stabilised Materials 

Categories of stabilised materials described in this Part are: 

• cementitiously-modified pavement materials (Section 3.7) 
• cementitiously-bound pavement materials (Section 3.8, Section 3.9) 
• cement-treated subgrades and earthworks materials (Section 3.10) 
• lime-modified pavement materials (Section 4.5) 
• lime-stabilised subgrades and earthworks materials (Section 4.6, Section 4.7, Section 4.8) 
• foamed bitumen stabilised pavement materials (Section 5.3, Section 5.4) 
• bitumen emulsion-stabilised pavement materials (Section 5.3, Section 5.5) 
• granular stabilised materials (Section 6) 
• stabilisation using other chemical binders (Section 7). 

Table 2.1 summarises the types of stabilised materials, typical strengths achieved after stabilising and 
commonly achieved performance attributes. Table 2.1 excludes bituminous-stabilised materials which are 
discussed in Section 5. 
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Table 2.1:  Stabilisation categories and characteristics 

Category of 
stabilisation 

Indicative 
laboratory 
strength after 
stabilisation 

Binders adopted Anticipated performance attributes(5, 4) 

Subgrade and formation treatments 

Stabilised 
earthworks 
materials 

1 < UCS(2,3) ≤ 2 MPa 
or 
CBR(1) 

• Lime and/or 
cementitious binder 
(high plasticity soils) 

• Cement and/or 
cementitious binder (low 
plasticity soils) 

• Improved constructability 
• Improved subgrade CBR and modulus 
• Improved shear strength 
• Reduced heave and shrinkage 

Pavement material treatments 

Granular 
stabilisation 

CBR(1) ˃ 30% • Blending other granular 
materials which are 
classified as binders in 
the context of this Part 

• Improved pavement modulus 
• Improved shear strength 
• Improved resistance to aggregate 

breakdown 

Modified 
materials 

UCS(2) < 1 MPa • Addition of small 
quantities of cement or 
cementitious binder 

• Addition of lime 
• Addition of chemical 

binder 

• Improved long-term rut-resistance 
• Improved pavement layer modulus after 

curing 
• After curing, reduced sensitivity to loss of 

strength due to increasing moisture 
content 

• Similar to unbound granular materials, 
moisture content prior to sealing needs to 
be limited to inhibit premature distress 

• At low binder contents can be subject to 
erosion where cracking is present 

Lightly-bound 
cemented 
materials 

1 ≤ UCS(3) ≤ 2 MPa • Addition of small 
quantities of 
cementitious binder, 
commonly less than 
3% binder 

• Greater rut-resistance than modified 
materials 

• May be susceptible to fatigue cracking but 
cracking finer than bound materials 

• At low binder contents can be subject to 
erosion where cracking is present 

Bound 
cemented 
materials 

UCS(4) > 2 MPa 
and/or 
flexural modulus 
and flexural strength 

• Addition of greater 
quantities of 
cementitious binder, 
commonly binder 
content of 3% or more 

• Increased pavement modulus 
• Thickness design needs to consider 

susceptibility to fatigue cracking 
• Some binders introduce transverse 

shrinkage cracking 

1.  Four or 10-day laboratory soaked CBR. 
2. Values determined from test specimens stabilised with General Purpose (GP) cement and prepared using 

100% standard Proctor compactive effort at 100% standard optimum moisture content, normal curing for a minimum 
28 days in moist condition without soaking in water. 

3. The Unconfined Compressive Strength (UCS) criteria defining lightly-bound materials listed are those currently used 
by Queensland Department of Transport and Main Roads (TMR 2018a). These limits are currently the subject of 
Austroads research. 

4. Values determined from test specimens stabilised with GP cement and prepared using 100% standard Proctor 
compactive effort at 100% standard optimum moisture content (OMC), normal curing for a minimum 28 days. Some 
road agencies soak specimens in water prior to testing. 

5. Not all of the performance attributes may be improved by all of the common binders. 
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2.4.1 Earthworks Materials Stabilisation 

In the context of this Part, earthworks materials stabilisation implies the addition of a binder to a soil by in situ 
stabilisation. Other methods of improving subgrades, such as geofabrics or geogrids, are discussed in Guide 
to Pavement Technology Part 4G: Geotextiles and Geogrids (Austroads 2009b). 

Stabilisation of earthworks materials can be undertaken to provide a short-term higher-bearing capacity, a 
layer more capable of carrying construction traffic (construction platform), and/or a layer which will assist in 
the compaction of the subbase and base layers. In addition, the stabilised soils may be designed and 
constructed to provide long-term bearing capacity that may be considered in the structural design of the 
overlaying pavement. 

Lime stabilisation of subgrades with high plasticity is the most-commonly used stabilisation treatment 
(Section 4.6 to Section 4.8). 

Stabilisation of soils with cementitious binders is described in Section 3.10. 

2.4.2 Modified Granular Pavement Materials 

Modified granular pavement materials are those to which small quantities of cement, cementitious, lime or 
other chemical binders have been added to improve the performance attributes of the material but not to the 
extent that the stabilised material has significant tensile strength. 

As discussed in Section 4.5, lime is effective in modifying excessive plastic properties of subbase and base 
materials. Such modification of unbound granular base materials is a widely accepted and successful 
practice as it decreases moisture susceptibility. At lime contents of less than about 3%, the risk of 
undesirable shrinkage cracking is low, and it would rarely be necessary to take special measures to combat 
reflective cracking. 

Cementitious modification (Section 3.7) is adopted when it is desirable to increase rut-resistance, modulus 
and/or decrease moisture susceptibility while at the same time maintaining flexible pavement characteristics. 

The distress mechanisms of modified pavement materials are vertical deformation and shear. The intention 
is that the amount of cementitious binder used is limited so that cracking is not a distress mechanism. 

2.4.3 Cementitiously-bound Pavement Materials 

Cementitiously-bound pavement materials are produced by the addition of stabilising binders to granular 
materials in sufficient quantities to produce a material which has tensile strength, this being significantly 
higher for bound materials compared to lightly-bound materials. Binders commonly used include cement and 
cementitious materials. 

A bound material acts like a ‘beam’ in the pavement to resist traffic loading and has significantly increased 
structural capacity compared with unbound granular and modified materials. However, shrinkage and 
premature fatigue cracking in the pavement layers needs to be controlled (Figure 2.1). 
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Figure 2.1:  Example of fatigue cracking of a cementitiously-bound base 

 

Lightly-bound materials are commonly manufactured using lower quantities of cement or cementitious 
binders. These stabilised materials are also susceptible to fatigue cracking; however, the nature of the 
cracking differs from bound cemented materials (Figure 2.1). The material cracks into smaller size blocks, 
possibly due to the lower strength of the material and the use of thinner layers. As a result, crack widths tend 
to be initially smaller than for bound materials. If surface cracking of lightly-bound materials does occur, it 
may be followed by erosion caused by pumping of fines and subsequent deformation. 

In relation to the use of lightly-bound bases, surface cracking has been observed in some projects and not 
others. Further research is being undertaken to improve the characterisation of these materials to reduce the 
risk of cracking. 

2.4.4 Stabilisation using Bitumen 

Bitumen-stabilised granular materials are produced using either foamed bitumen or bitumen emulsion either 
plant-mixed or in situ stabilised. The materials treated are normally granular pavement materials, previously 
cement stabilised materials or reclaimed asphalt pavement (RAP). Where an existing pavement is recycled, 
old seals or asphalt surfacings are usually mixed with the underlying layer and treated to form a new base or 
subbase layer. 

Foamed bitumen is a mixture of air, water and bitumen. Injecting a small quantity of cold water into hot 
bitumen produces an instantaneous expansion of the bitumen to form a fine mist or foam. In this foamed 
state, the bitumen is then suitable for mixing with the host material. Foamed bitumen-stabilised pavement 
materials commonly have 2.5–3.5 % residual bitumen and 1–2% of lime or cement as the secondary binder. 
Lime is added for the following purposes (Ramanujam & Jones 2007): 

• flocculate and agglomerate the clay fines 
• stiffen the bitumen binder 
• act as an anti-stripping agent to assist the dispersion of the foamed bitumen throughout the host material 
• increase the modulus and improve the early-life rut resistance of the stabilised material. 

The most common distress mode is cracking; it may be load-induced fatigue cracking or cracking due to 
moisture changes in underlying highly expansive subgrades. 

There is currently limited use of bitumen emulsion-stabilised materials in Australia. Where they are used, the 
empirical mix design process is intended to produce modified pavement materials with enhanced modulus 
and rut-resistance but without being susceptible to fatigue cracking. 
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2.4.5 Granular Stabilisation 

Granular stabilisation is the process of adding another granular material to correct a deficiency in the intrinsic 
material properties of the parent material. These stabilising materials include natural gravels, crushed rock 
and fine-grained soils. 

Granular stabilisation alters the intrinsic properties of the parent material, e.g. PSD, particle shape, plasticity 
and aggregate hardness. The load-bearing capacity performance attributes are improved through increased 
mechanical interlock, increased inter-particle friction, decreased aggregate breakdown and increased 
resistance to weakening by water ingress (permeability). 

The common distress mechanisms for granular-stabilised pavement materials are rutting and shoving. Such 
stabilised materials remain unbound and are not susceptible to fatigue cracking. 

2.5 Pavement Configurations Incorporating Stabilised Materials 

Stabilisation treatments can be incorporated in a variety of pavement configurations including composites of 
different materials. Examples of pavement configurations with stabilised materials are shown in Figure 2.2. 

Figure 2.2: Typical pavement configurations incorporating stabilised materials 
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2.6 Binders used in Stabilisation 

2.6.1 Principal Binders and Combinations 

Stabilisation binders used in road construction are manufactured to either Australian or New Zealand 
Standards or road agency specifications. There are several ways to categorise binder types; the format used 
in this Guide is in common usage in Australia and New Zealand, viz.: 

• lime AS 1672.1-1997 
• cement AS 3972-2010, NZS 3122:1995 
• hot bitumen AS 2008-2013, NZTA M1:2011 
• bitumen emulsion AS 1160-1996, NZTA M1:2011 
• GGBFS AS 3582.2-2016 
• fly ash AS 3582.1-2016 
• chemicals commonly propriety products, therefore no recognised standards. 

In addition, granular stabilisation through the addition of gravels, sands, etc. is a common practice. 

Stabilisation binders are categorised in terms of their main constituent, viz.: 

• Lime: 

– hydrated lime [Ca(OH)2] 

– quicklime [CaO] 

• Cement: 

– general purpose (GP) cement 

– general purpose blended (GB) cement 

• Cementitious blends consisting of combinations of pozzolanic material and cement and/or lime such as: 

– lime and fly ash 

– lime and GGBFS 

– lime, GGBFS and fly ash 

– cement and GGBFS 

– cement and lime 

– cement, lime and fly ash 

– cement, GGBFS and fly ash 

Note that all blends incorporating lime require hydrated lime for the cementing process. This may be 
derived from direct addition of hydrated lime or in situ slaking of quicklime. However, it is common 
practice to simply refer to it as lime. 

• Bitumen Class 170 (C170) bitumen is typically used in stabilisation as: 

– foamed bitumen 

– bitumen emulsion. 

Foamed bitumen stabilisation usually incorporates a supplementary binder, e.g. lime or cement: 
• Other proprietary chemical products, including lignin derivatives, polymers and salts (see Section 7). 

More detailed guidance on lime, cement, fly ash and GGBFS is provided in Guide to Pavement Technology 
Part 4L: Stabilising Binders (Austroads 2009c), whilst Part 4F: Bituminous Binders (Austroads 2017a) 
provides information relating to bituminous binders. 
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2.6.2 Characteristics of Stabilisation Additives 

Table 2.2 presents an overview of the attributes associated with commonly-adopted binders/additives. 

Table 2.2:  Characteristics of various stabilising binders/additives 

Stabilisation 
binder/additive Stabilising action Stabilisation effect Applicable material types 

Cement • Cementitious inter-particle 
bonds are developed 

• Low binder content (< 2%): 
decreases susceptibility to 
moisture changes, resulting 
in modified materials 

• High binder content: 
increases modulus and 
tensile strength 
significantly, resulting in 
bound materials 

• Not limited apart from 
materials which contain 
deleterious components 
(organics, sulphates, etc.) 
which retard cement 
reactions 

• Suitable for granular 
materials but inefficient in 
predominantly one-sized 
materials and heavy clays 

• May be suitable for 
low-plasticity soils that are 
not reactive to lime 

Cementitious 
blends 

• Cementitious inter-particle 
bonds are developed but 
rate of development is slow 
compared to cement 

• Generally, like cement but 
rate of gain of strength 
similar to lime 

• Generally, reduces 
shrinkage cracking 
compared to cement 

• Similar to cement 

Lime • Cementitious inter-particle 
bonds are developed but 
rate of development is slow 
compared to cement 

• Improves handling 
properties of cohesive 
materials and initial strength 

• Higher binder content: long-
term increases in CBR, 
modulus and tensile 
strength 

• Suitable to modify granular 
materials with high plasticity 
using lower binder contents 

• Suitable to stabilise 
cohesive subgrade soils in 
the long-term if higher 
binder contents used 

• Requires clay components 
in the soil/gravel that will 
react with lime 

• Organic materials will retard 
reactions 

Bitumen 
(emulsion) 

• Agglomeration of fine 
particles 

• Decreases permeability and 
improves cohesive strength 

• Decreases moisture 
sensitivity by coating fines 

• Applicable to granular 
materials with low cohesion 
and low plasticity 

Bitumen 
(foamed) 

• Inter-particle bonds are 
developed due to bitumen 
and secondary binders 

• Increases modulus and 
tensile strength 
significantly, resulting in 
bound materials 

• Applicable to granular 
materials with low cohesion 
and low plasticity 

Granular material • Mixing two or more 
materials to achieve target 
PSD and plasticity 

• Some changes to material 
strength, permeability, 
volume stability and 
compactability 

• Materials remain granular 

• Poorly-graded soils and 
natural gravels with a 
deficiency in the particle 
shape, PSD or plasticity 

Other proprietary 
chemical products 

• Agglomeration of fine 
particles and/or chemical 
bonding 
(refer trade literature) 

• Typically, increased dry 
strength, changes in 
permeability and volume 
stability 

• Typically, poorly-graded 
soils and gravels 
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2.7 Selection of Stabilisation Type 

2.7.1 Introduction 

Table 2.3 summaries the various stabilisation treatments that may be used for earthworks and pavement 
materials assuming the binder type is selected in accordance with Table 2.4. A large number of factors 
influence whether a treatment is applicable for a project, including quality and thicknesses of existing 
pavement materials, subgrade strength, future traffic loading, climate, drainage, road geometry, availability of 
construction equipment and materials and whole-of-life costs. These issues are discussed in more detail in: 

• Guide to Pavement Technology Part 2: Pavement Structural Design (Austroads 2017b) 
• Guide to Pavement Technology Part 5: Pavement Evaluation and Treatment Design (Austroads 2011). 

For the design of pavement rehabilitation treatments (Austroads 2011), it is important that the causes and 
modes of distress are identified to enable the most cost-effective use of stabilisation treatments. 

Table 2.3:  Types of stabilisation and typical binder applicable 

Binder Subgrade 
treatment 

Pavement material treatments 

Modified 
Bound 

Lightly-bound Bound 

Cement Yes(1) Yes Yes Yes 

Cementitious blends Yes(2) Yes Yes Yes 

Lime Yes Yes No(3) No 

Bitumen No Yes Yes Yes 

Other proprietary chemical products Yes(4) Yes(4) No(5) No(5) 

1. In some situations, cement has been successfully used after an initial lime treatment to improve the subgrade 
strength. 

2. Need to use a blend with a high lime content, e.g. 70% lime and 30% GGBFS. 
3. May be used as a pre-treatment 
4. Not common. Refer trade literature. 
5. Sometimes used as a secondary binder in association with a primary cement or cementitious binder. 

2.7.2 Sampling and Testing 

It is essential with all stabilisation work that materials are thoroughly assessed and their reactions with the 
specific binder to be used in the stabilisation process be properly validated by laboratory testing before any 
field work commences. 

Stabilised pavement materials should be tested to determine their quality and uniformity. Testing 
requirements will depend on the type of stabilisation contemplated. These requirements are described in the 
sections of the Guide dealing with the relevant methods of stabilisation. 

Section 8.2 describes sampling of materials to be stabilised from existing pavements. 

2.7.3 Preliminary Binder Selection 

To gain a preliminary assessment of the type of stabilisation required for a particular material, PSD and 
plasticity are commonly used. 
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Table 2.4 provides initial guidance on the application of binder types before laboratory testing with particular 
materials and particular stabilising binders. Materials with less than 25% passing the 75 µm sieve are 
commonly used for base and upper subbase layers. In this Guide, materials with greater than 25% passing 
the 75 µm sieve are considered subgrade materials, although not all subgrade materials meet this definition 
(e.g. coarse sands). 

Binders may be used in combinations or as part of staged construction. For example: 

• bitumen and lime combined is commonly used in foamed bitumen stabilisation 
• lime stabilisation may be adopted to dry out materials and reduce their plasticity prior to the application of 

other binders. 

Table 2.4:  Preliminary selection of binder/additive type 

Particle size More than 25% passing 75 µm sieve Less than 25% passing 75 µm sieve 

Plasticity index 
(PI) 

PI < 10 10 < PI < 20 PI > 20 PI < 6  
& PI x 

%passing 
75 µm ≤ 60 

PI < 10 PI > 10 

Binder type 

Cement and 
cementitious 
blends(1,3) 

Usually 
suitable Doubtful Usually 

not suitable 
Usually 
suitable 

Usually 
suitable 

Usually 
suitable 

Lime Doubtful Usually 
suitable 

Usually 
suitable 

Usually 
not suitable Doubtful Usually 

suitable 

Bitumen Doubtful Doubtful Usually 
not suitable 

Usually 
suitable 

Usually 
suitable 

Usually 
not suitable 

Bitumen/ 
lime blends 

Usually 
suitable Doubtful Usually 

not suitable 
Usually 
suitable 

Usually 
suitable Doubtful 

Granular Usually 
suitable 

Usually 
not suitable 

Usually 
not suitable 

Usually 
suitable 

Usually 
suitable Doubtful 

Dry powder 
polymers 

Usually 
suitable 

Usually 
suitable 

Usually 
unsuitable 

Usually 
suitable 

Usually 
suitable 

Usually 
not suitable 

Other proprietary 
chemical 
products(2) 

Usually 
not suitable 

Usually 
suitable 

Usually 
suitable 

Usually 
not suitable Doubtful Usually 

suitable 

1. The use of some chemical binders as a supplementary addition can extend the effectiveness of cementitious 
binders in finer soils and soils with higher plasticity. 

2. Should be taken as a broad guideline only. Refer to trade literature for further information. 
3. TMR uses triple blend and have a method based on % passing 0.425 mm sieve and linear shrinkage (Volker & Hill 

2016). 

2.7.4 Final Selection of Binder Type and Content 

Following the selection of candidate stabilisation treatments, binder contents are determined using the mix 
design processes described in Section 3 to Section 7. 

There may be a number of feasible stabilisation methods. The decision on which to choose is generally a 
financial one, when the life cycle costs of all feasible alternatives are compared as described in Part 2 and 
Part 5 of the Guide to Pavement Technology (Austroads 2017b; Austroads 2011). 
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3. Cementitious Stabilisation 

3.1 Introduction 

Cementitious stabilisation refers to stabilisation using either cement or supplementary cementitious 
materials. Supplementary cementitious materials are mixtures of pozzolanic materials such as fly ash or 
pulverised GGBFS and lime. A pozzolan is a siliceous or alumino-siliceous material which possesses little or 
no cementitious value but which, in finely divided form, may be mixed with lime or Portland cement to form a 
cementitious material. 

The primary reaction of cementitious binders is between the binder and the water in the host material, which 
leads to the formation of cementitious material. These reactions occur almost independently of the nature of 
the granular material. It is for this reason that cementitious stabilising binders can be used to stabilise a wide 
range of materials, from cohesionless sands and gravels to silts and low-plasticity cohesive materials. 

Cementitious binders have two important effects on the behaviour of the material to be stabilised: 

• They reduce the moisture susceptibility of some host materials, giving enhanced volume and strength 
stability under variable moisture conditions. 

• For bound materials, cementitious binders can result in the development of interparticle bonds in host 
materials, endowing the stabilised material with tensile strength and high elastic modulus. 

While cement stabilisation can offer many possibilities with respect to changing host material properties, 
other factors, including construction requirements, traffic loading, shrinkage characteristics, etc. can limit its 
application. 

Lime may be considered as a cementitious material when mixed with pozzolans and this is discussed in this 
section. However, when lime is the primary stabilising binder it reacts with the natural pozzolans within the 
host material; as a result, the effect depends on the host material type more than when stabilising with 
cementitious materials. Section 4.5 discusses the use of lime without pozzolans to modify pavement 
materials. 

Most of the discussion in this section relates to the stabilisation of granular pavement materials; specifically, 
Section 3.7 covers cementitiously-modified materials, Section 3.8 lightly-bound materials and Section 3.9 
bound materials. Generally, soils with more than 25% passing the 75 µm sieve are not suitable to be 
cementitiously stabilised unless they have low plasticity (Table 2.4). The treatment of earthworks materials to 
expedite construction is discussed in Section 3.10. 

3.2 Commonly used Cements 

Cement used for stabilisation must conform to AS 3972-2010, General Purpose and Blended Cements or 
NZS 3122:1995 Specification for Portland and Blended Cements (General and Special Purpose) as 
appropriate. There are a variety of commercially-produced cement types and blends in Australia and each 
has different properties and characteristics. As discussed in Section 2.6.1, the principal cement types 
available are: 

• Type GP – general purpose cement 
• Type GB – general purpose blended cement. 

GP cements are produced from a mixture of calcium carbonate, alumina, silica and iron oxide which, when 
calcined and sintered at high temperatures, results in the production of a new group of chemical compounds 
which are capable of reacting with water. The composition of individual cements can vary depending on the 
nature and composition of the raw materials being used. AS 3972-2010 defines type GP cement as: ‘a 
hydraulic cement which is manufactured as a homogeneous product by grinding together cement clinker and 
calcium sulphate and which, at the discretion of the manufacturer, may contain up to 5% of mineral additions’. 
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Type GB cement is defined as hydraulic cement containing cement and a quantity comprised of one or both 
of the following: 

• greater than 5% of fly ash or GGBFS, or both 
• up to 10% silica fume. 

Although types GP and GB cements are used in stabilisation, there is an increasing trend towards the use of 
supplementary cementitious materials (Section 3.3) because their increased working time allows more time 
to meet specified compaction and rideability requirements. In addition, early trafficking to induce 
closely-spaced microcracks can minimise the risk of larger, wider-spaced cracks appearing later. 

Special-purpose cements are not commonly used for stabilisation in Australia. 

3.3 Supplementary Cementitious Binders 

3.3.1 General 

Fly ash, GGBFS or other pozzolanic type materials may be combined with lime to form supplementary 
cementitious materials as outlined in Section 2.6. Supplementary cementitious materials provide an 
alternative to type GP cement, on the grounds of economy or for extended working time for compaction and 
finishing. 

3.3.2 Lime 

The properties and types of lime are described in Section 4. 

For lime pozzolan stabilisation and other supplementary cementitious materials, the lime and the pozzolan 
(or other component additives) are dependent variables and this requires a comprehensive testing program 
to determine the optimum lime-to-pozzolan ratio (or ratio of other components). 

In this regard the following should be considered: 

• the costs involved for each of the additive components 
• the need or otherwise for filler to correct a PSD deficiency. 

3.3.3 Pozzolanic Materials 

Cementitious binders may contain a pozzolanic additive which is a siliceous or alumino siliceous material. In 
finely divided form and in the presence of moisture, it chemically reacts at ordinary room temperatures with 
calcium hydroxide released by the hydration of cement or lime to form compounds possessing cementitious 
products. Pozzolanic additives include GGBFS and fly ash, which may be combined with lime or cement to 
form cementitious binders. 

Ground granulated blast furnace slag (GGBFS) 

GGBFS is used in road stabilisation. It is often manufactured pre-blended with lime as a proprietary product. 
It is commonly sourced from Wollongong in New South Wales (NSW) and must conform to AS 3582.2-2016. 

GGBFS, which acts as a slow-setting hydraulic cement by itself, also reacts exceptionally well with lime and 
so it is an excellent pozzolanic material. Some GGBFS materials naturally contain small amounts of free 
lime, but the minimum lime content required for the reaction is one-part lime for each 10 parts GGBFS. 

The most common combination of GGBFS/lime blends is 85:15. In addition to Accelerated Loading 
Facility (ALF) pavement trials (Jameson et al. 1995; Moffatt et al. 1998), which demonstrated good 
performance of GGBFS/lime blends in bound pavement stabilisation, it has been successfully used in NSW 
for at least the past 25 years. 
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Fly ash 

Fly ash is a product of the coal power generation industry. The type of coal used, and the mode of operation 
of the plant, determines the chemical composition and PSD of the fly ash. Consequently, not all sources of 
fly ash are suitable for stabilisation. Generally, fly ash derived from the burning of black coal is high in silica 
and alumina and low in calcium and carbon and hence it is well suited for use in stabilisation. On the other 
hand, fly ash derived from the burning of brown coal contains large percentages of calcium and magnesium 
sulphate and chlorides and other soluble salts and hence it is unsuitable for use in stabilisation. 

As unburned organic carbon breaks the continuity of contact in the cementitious reactions, its proportions 
should be limited to about 10%. 

Fly ash must conform to AS 3582.1-2016 and be a ‘fine grade type’, i.e. solid material extracted from the flue 
gases of a pulverised coal fed boiler must have at least 75% passing the 45 µm sieve and a maximum 
4% loss on ignition. 

Other ash products, such as power station bottom ash, have also been successfully used in lime stabilisation 
(e.g. Ash Development Association of Australia 2005; Chapman & Youdale 1982; Francis 1994; Jameson et 
al. 1996a, 1996b; Symons & Poli 1996). 

Bottom ash comprises about 10% of the ash produced at coal-fired power stations and, while it has a similar 
chemical composition to fly ash, it contains greater quantities of carbon and is relatively inert because it is 
coarser and more highly fused than fly ash. 

3.4 Water 

Water which would be considered as suitable for the making of concrete will also be suitable for use in 
cement stabilisation; for example, potable water is generally considered to be suitable. Water which contains 
organic matter or a high concentration of sulphates (e.g. above 0.05%) is unsuitable. Where other than 
normal potable water is to be used in construction, it is desirable to assess the effects of the water in the 
laboratory test program. 

The quantity of water added to a cement-stabilised mixture is determined by the requirements of maximum 
density. Curing water may be needed to keep the pavement moist while hydration takes place. The provision 
of an adequate supply of water is frequently a major consideration. Saline waters are generally unsuitable for 
curing. 

3.5 Deleterious Materials 

Deleterious materials are usually not present in plant-mixed quarry products or in situ granular materials 
obtained from quarries. However, there may be projects where there may be concern about the quality of the 
host material. Organic matter, excess salt contents (especially sulphates and ferrous oxide) can retard or 
prevent proper hydration of cementitious binders (Ingles & Metcalf 1972; Queensland Department of 
Transport and Main Roads (TMR) 2018a, 2018b) for the following reasons: 

• Organic matter interferes with the hydration process and also competes for available paste of 
cementitious binder and water. Uneconomical quantities of stabiliser are therefore usually required to 
achieve the required strengths. 

• Sulphates can also interfere with pozzolanic reactions due to the formation of very expansive hydrates, 
which, if formed after compaction, can result in heave. 

• Ferrous oxide can also interfere with pozzolanic reactions; however, there are no specific limits in the 
literature at this stage. Based on recent TMR experience (TMR 2018a, 2018b), contents greater than 
10% have a deleterious effect and contents above 2% should be investigated further. 

Table 3.1 lists TMR guidance on deleterious limits related to use of stabilisation with cementitious binders. 
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Table 3.1:  TMR deleterious limits related to use of stabilisation with cementitious binders 

Property Test method Limit 

Organic content TMR test method Q120B (TMR 2014a) ≤ 1.0% 

Sulphate content (water soluble) AS 1289.4.2.1-1997 ≤ 1.9 g/L (SO4) 

Ferrous oxide (FeO) Not specified ≤ 2.0% 

Note: The limits shown are a guide; advice should be obtained before stabilising materials with ferrous oxide contents 
> 2% or organic contents > 1%.  

Source: TMR (2018a, 2018b). 

3.6 Reaction of Materials with Cementitious Binders 

The primary reaction during stabilisation is the hydration reaction of the cementitious binder with the water in 
the host material. This leads to the formation of cementitious material (calcium silicate and aluminium 
hydrates as in concrete). These reactions occur almost independently of the nature of the host material and 
it is for this reason that cement can be used to stabilise materials ranging from cohesionless sands and 
gravels, to silts and low-plastic clays (Table 2.4). The hydration reaction releases hydrated lime (about 30% 
by mass of the added cement in the case of GP cement stabilisation) and this can cause secondary 
reactions with any pozzolans within the host material. The secondary reaction produces cementitious 
products similar to those from the primary reaction. 

The hydration reaction starts immediately on contact of the cementitious binder with water. It proceeds 
rapidly if cement is used and there are very significant strength gains in the first day. The secondary 
reactions with pozzolans are similar to those that occur in lime stabilisation and proceed slowly with time. 

The reactions that occur with the use of supplementary cementitious binders are similar to the secondary 
reactions that occur with cement; they take place more slowly than the reaction that occurs with cement. 

Pozzolanic reactions are usually slow but they continue over a long period provided that adequate moisture 
is present. Reactions are also temperature sensitive, the rate of reaction increasing with increasing 
temperature. Organic material and sulphates may cause retardation of the reaction. 

The effectiveness of stabilisation using supplementary cementitious binders depend on the amounts of lime, 
pozzolan and the host material. For fly ash, a ratio of about one part of lime to two parts of fly ash by volume 
will produce maximum strength of the paste. Usually the amount of lime plus fly ash added to a host material 
should not exceed about 5% by mass. These proportions should be confirmed by testing. 

3.7 Properties of Cementitiously-modified Pavement Materials 

3.7.1 General 

Cementitiously-modified pavement materials are those with small amounts of cementitious binders added to 
improve rut resistance and modulus or to correct other deficiencies (e.g. reducing plasticity) without causing 
a significant increase in tensile capacity (i.e. producing a bound material). Modified materials have a 
maximum 28-day UCS of 1.0 MPa tested after moist curing but without soaking at 100% standard Proctor 
maximum dry density (MDD) and optimum moisture content (OMC). 

For the purposes of pavement design, modified materials are treated as unbound granular materials without 
consideration of their susceptibility to cracking. 

If modification is only required to reduce the plasticity of subbase and base materials, then lime alone is 
usually a better binder option (Section 4.5). 
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3.7.2 Distress Types 

The amount of stabilising binder is limited such that the cementitiously-modified pavement material exhibits 
limited or fine cracking, unlike the widely-spaced blocking cracking of some bound materials. Low 
cementitious contents are required such that the cementitious bonds are likely to be weak with respect to the 
applied traffic and thermal stresses; they may be discontinuous. 

To address this risk of fine surface cracking of modified bases, consideration may need to be given to the 
surfacing type to inhibit moisture ingress and pumping of fines, particularly for heavily-trafficked roads in wet 
climates. Early-life trafficking can assist in the development of micro-cracking which may be beneficial in 
relation to the life of the surfacing. 

After modification these materials commonly have greater rut-resistance and higher modulus than the host 
materials from which they are produced. 

The moisture content of modified materials before sealing and trafficking needs to be limited to reduce the 
risk of premature distress. 

3.7.3 Materials Suitable for Stabilisation 

Like unbound granular materials, the performance of cementitiously-modified granular materials is highly 
dependent on the PSD and plasticity of the host material. Accordingly, for plant-mixed modified materials, 
the required host materials’ properties are often the same as for unbound granular materials (e.g. Roads and 
Maritime Services (Roads and Maritime) 2014). In relation to the stabilisation of in situ materials, there may 
be some relaxation of requirements depending on the traffic loading and the costs of importing new granular 
materials to blend with the existing materials. However, materials with more than 25% passing the 75 µm 
sieve and with a PI in excess of 10 are commonly not considered suitable. 

Finely-graded gravels, clayey gravels, silty sands (> 50% passing 425 µm sieve) and other materials without 
significant particle interlock are not suitable for use as modified basecourse materials. The life of such base 
materials will generally be short and rapid disintegration of the pavement may occur with the onset of cracking. 

The deleterious effects of organic matter and salts in retarding or preventing the hydration of cementitious 
binders is discussed in Section 3.4 and Section 3.5. 

3.7.4 Mix Design 

For cementitious binders, including cement and GGBFS/lime and fly ash/lime blends, a maximum binder 
content of 12% is typically required to achieve the structural characteristics of modified materials. It is 
important, however, to recognise that there is an upper limit on strength which, if exceeded, may lead to a 
lightly-bound or bound pavement which has different performance characteristics (see Section 3.8 and 
Section 3.9). 

Depending upon the type of binder spreader or plant-mix control used, binder contents less than 5 kg/m2 
may be difficult to apply uniformly. Consequently, construction plant limitation may result in a lower limit on 
the thickness that can be stabilised to produce a modified material. 

Table 3.2 details the mix design process for cement-modified pavement materials. 
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Table 3.2:  Mix design procedure for modified materials 

Step Activity Reference 

1 Obtain a representative sample of the untreated material to be stabilised, including any 
recycled surfacing materials. 

 

2 Measure PSD and assess whether it is necessary to improve the grading by adding other 
granular materials. 

 

3 Measure liquid limit (LL), plastic limit (PL) and PI, and assess whether the material needs to 
be pre-treated to reduce plasticity. 

 

4 Measure the organic matter, sulphates and ferric oxide contents to assess whether the 
material is suitable for chemical stabilisation. 

Section 3.5 

5 Select the binder or range of binders that may be suitable. Table 2.4 

6 Select a binder content for initial assessment and adjust in accordance with laboratory 
testing taking due consideration of practical spread rates possible. 

 

7 Combine a sample of the untreated material and the select binder content. 
Measure the standard or modified Proctor MDD and OMC. 

 

8 Mix a sample of untreated material with the selected binder content and at a moisture 
content determined from step 7. Compact UCS test specimens to a density determined 
from step 7 in accordance with road agency requirements. 

 

9 Demould the specimens and moist cure the test specimens for 28 days without soaking in 
water. 

 

10 Measure the 28-day UCS strength (Section 8.4.4) and check that it does not exceed the 
maximum allowable for a modified material. 
If the strength is excessive, either reduce the binder content and repeat steps 7 to 10 or 
select another binder and repeat steps 5 to 10. 
If a higher UCS is required, increase the binder content in increments of 0.5% and repeat 
steps 7 to 10. 

Table 2.1  

11 The following tests may also be undertaken at the design binder content (step 10): 
• shrinkage 
• capillary rise 
• working time 
• free swell 
• resilient modulus using the repeat load triaxial (RLT) testing method. 

 

3.8 Properties of Lightly-bound Pavement Materials 

Shown in Table 2.1, lightly-bound materials are treated with cementitious binders such that they have higher 
strength and modulus than cementitiously-modified materials, yet below the properties of bound materials. 
Consequently, lightly-bound materials have higher rut-resistance than modified materials; however, they are 
more likely to exhibit a network of finely-spaced cracks. Again, as for modified materials, consideration may 
need to be given to the surfacing type needed to inhibit moisture ingress and the pumping of fines, 
particularly for heavily-trafficked roads in wet climates. 

In recent years, TMR has developed design methods (TMR 2018b, 2018c) and specifications for the use of 
lightly-bound materials. The TMR mix design method is based on a requirement that the UCS be 
1–2 MPa, similar in approach to that described for modified materials. This method has been developed 
based on TMR experience with Queensland materials, environments, traffic loading, etc. It may not be 
directly applicable to other areas of Australasia. 

In relation to the materials suitable for stabilisation, the advice listed in Section 3.7.3 also applies for 
lightly-bound materials. 

Austroads research is currently being undertaken to improve understanding of the distress types, mix design 
and structural design methods of lightly-bound materials. 
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3.9 Properties of Cementitiously-bound Pavement Materials 

3.9.1 General 

Cementitiously-bound pavement materials are described as a combination of a cementitious binder, water 
and granular material which is mixed together and compacted in the early stages of the hydration process to 
form a pavement layer which is subsequently cured. In the Guide to Pavement Technology Part 2: Pavement 
Structural Design (Austroads 2017b) such materials are called cemented materials. 

The cementitious binder may consist of GP cement, GP blended cement, lime, or other chemical binder and 
may include one or more supplementary cementitious materials such as fly ash or GGBFS. The binder 
should be added in sufficient quantity to produce a bound layer with significant tensile strength. 

3.9.2 Distress Types 

Cracking is the primary and predominant distress type of cementitiously-bound materials. There are two 
principal forms of cracking: 

• cracking from hydration and drying shrinkage 
• fatigue cracking. 

Cracking created from within the layer is mainly of concern in basecourses although reflective cracking from 
lower courses may occur. 

Shrinkage cracking and erosion 

A combination of subgrade restraint, high shrinkage and tensile strength in cementitiously-bound materials 
can cause widely-spaced (commonly 0.5–5.0 m) transverse and/or block cracking to occur. Though this may 
reduce the ride quality of the pavement it usually does not lead to serious structural problems provided the 
cracks are less than 2 mm wide and are sealed, or an appropriate modified bituminous surfacing is applied. 
Geotextile reinforced seals have also been used successfully to mitigate the effects of cracking. 

If the cracks are not sealed, then moisture may enter the pavement, which may lead to pumping of fines from 
erosion and rapid deterioration of the pavement under the action of traffic. 

The likelihood of pumping of fines from the base can be minimised by ensuring an adequate binder content 
for the stabilised layer(s) that is above the erodibility limits (Howard 1990) – see Figure 3.1. 

On heavily-trafficked roads the application of a polymer modified asphalt will lessen the impact loading of 
vehicles on the cracks reducing the fretting of the cracks at the surface. 

Even if significant cracking does occur, provided moisture ingress into the pavement can be prevented, there 
may still be considerable life left in the pavement in the post-cracking phase, where the cementitiously-bound 
layer acts as an unbound granular or a modified granular material. This is particularly so if the layer is a 
subbase layer. This post-cracking phase life can be quantified using the design procedures in the Guide to 
the Pavement Technology Part 2: Pavement Structural Design (Austroads 2017b). 

For pavements with thin bituminous surfacings, early trafficking of cementitiously-stabilised layers is 
considered beneficial as it facilitates the development of closely-spaced fine cracks which are easier to 
manage than widely-spaced large cracks which tend to occur without early trafficking (Yamanouchi 1975). 
The increased use of slow-setting cementitious binders such as Type GB cements and supplementary 
cementitious materials, together with the careful use of curing and early trafficking and the use of improved 
crack sealing and wearing surface technologies, can reduce the adverse effects of shrinkage cracking in 
cementitiously-bound bases. 

The common practice now is to use pozzolans (Section 2.6) in cementitious binders. These are slow-setting 
and reduce cracking problems previously associated with in situ cement stabilisation of basecourses. 
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Figure 3.1:  Example of erodibility decreases as the binder content increases 

 
Source: Adapted from Howard (1990). 

Fatigue cracking 

Fatigue cracking occurs when the number of repetitions of tensile strain induced in the cementitiously-bound 
layer by the passage of traffic exceeds the capacity of that layer. Prevention of premature fatigue cracking is 
the principal criteria for the structural design of cementitiously-bound pavement courses (Austroads 2017b). 

Recent research (Austroads 2014a, 2014b) has provided improved understanding of the material properties 
that influence the fatigue of cementitiously-bound materials. Test methods were developed for the 
manufacture of test beams and the measurement of flexural modulus, flexural strength and fatigue 
(Austroads test method AGPT/T600). The structural design guide (Austroads 2017b) provides a method of 
estimating in-service fatigue life either from laboratory-measured lives or indirectly from the measured 
flexural strength and flexural modulus. The modulus alone is insufficient to predict service fatigue life. 

3.9.3 Materials Suitable for Stabilisation 

Like unbound granular materials, the performance of cementitiously-bound materials is dependent on the PSD 
and plasticity of the host material. Accordingly, for plant-mixed materials, the required host materials properties 
are often the same as for plant-mixed unbound granular materials (e.g. Roads and Maritime 2014). 

In relation to the stabilisation of in situ materials, there may be some relaxation of requirements depending on 
traffic loading and costs of importing new granular materials to blend with the existing materials. However, 
materials with more than 25% passing the 75 µm sieve and with a PI in excess of 10 are commonly not 
considered suitable. Note that the greater the deviation of PSD and plasticity from that required for plant-mixed 
materials, the greater the need for flexural strength testing for use in the pavement structural design. 

In relation to deleterious materials, the guidance in Section 3.7.3 is also relevant for cementitiously-bound 
materials. 

3.9.4 Mix Design 

For cementitious binders, including cement and GGBFS/lime and fly ash/lime blends, typically 3% or more 
binder is required to achieve the structural characteristics of cementitiously-bound pavements. 
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The principal purpose of material mix design for bound pavements is to determine the quantity of binder 
required to reach the desired fatigue properties. 

Although laboratory flexural modulus, strength and fatigue are the key parameters affecting in-service fatigue 
performance, the preparation and testing of flexural beams for mix design has yet to be implemented apart 
from test methods developed in research (Austroads 2018). Instead, the UCS test continues to be commonly 
used due to the availability of equipment, duration of testing and experience with this test. 

Austroads (2017b) contains procedures to estimate design modulus from measured UCS values. Although 
some data relating UCS and flexural strength is available (Austroads 2014a), further research is required to 
finalise the relationship to predict flexural strength from UCS. 

Table 3.3 details the mix design method for cementitiously-bound materials, noting these procedures may 
vary across Australian and New Zealand. 

In some cases, the selected binder may not meet the requirements of capillary rise and other optional tests 
but meet the UCS requirements. In these cases, engineering judgement may override the test results. 

If there is no improvement in the stabilised material after increasing the binder content, it is suggested that 
granular stabilisation (Section 6) and/or another binder type be investigated. 

Working time may need to be determined to set the time period in which mixing, compaction and trimming 
needs to be completed. 

Table 3.3:  Mix design procedure for cementitiously-bound materials 

Step Activity Reference 

1 Obtain a representative sample of the untreated material to be stabilised, including any 
recycled surfacing materials. 

 

2 Measure PSD and assess whether it is necessary to improve the gradings by adding other 
granular materials. 

 

3 Measure LL, PL and PI, and assess whether the material needs to be pre-treated.  
4 Measure the organic matter, sulphates and ferric oxide contents to assess whether the 

material is suitable for chemical stabilisation. 
Section 3.5 

5 Select the binder or range of binders that may be suitable. Table 2.4 
6 Select a binder content for initial assessment and adjust in accordance with laboratory testing 

taking due consideration of practical spread rates possible. 
 

7 Combine a sample of the untreated material and the select binder content. 
Measure the standard or modified Proctor MDD and OMC. 

 

8 Mix a sample of untreated material with the select binder content and at a moisture content 
determined from step 7. Compact UCS test specimens to a density determined from step 7 in 
accordance with road agency requirements. 

 

9 Demould the specimens and moist cure the test specimens for 28 days without soaking in 
water. 

 

10 Measure the 28-day UCS (Section 8.4.4) and check that it exceeds the minimum allowable 
value. 
If a higher UCS is required, increase the binder content in increments of 0.5% and repeat 
steps 6 to 10. 
If the UCS is unnecessarily high, either reduce the binder content and repeat steps 6 to 10 or 
select another binder and repeat steps 5 to 10. 

Table 2.1  

11 The following tests may also be undertaken at the design binder content (step 10): 
• working time 
• shrinkage 
• free swell 
• flexural strength and flexural modulus 
• laboratory beam fatigue 
• erosion. 

 



Guide to Pavement Technology Part 4D: Stabilised Materials 

 
 

Austroads 2019 | page 21 

3.10 Treatment of Earthwork Materials 

Silt and clay soils, particularly when they are wet, can be associated with construction problems. These soils 
can be soft, sticky, plastic, and difficult to compact to the extent that they are unsuitable for subgrade 
preparation. In such cases, soil stabilisation may provide a means of expediting construction. As seen from 
Table 2.4, cement can be used to treat silts and low plasticity (PI ≤ 10) clays. 

Commonly, the use of cement stabilisation on these subgrades improves stability by reducing excess 
moisture and plasticity and hence improving the ability to work and compact the subgrade. That is, it is often 
a short-term treatment aimed at expediting construction rather than necessarily resulting in long-term 
changes that can be allowed for in the thickness design of the overlying pavement. 

In such cases the amount of cement used is typically selected based on engineering judgement and 
experience in relation to the compactability of the treated soil. However, PI and laboratory CBR testing may 
provide useful insight in the workability and strength of the subgrade after treatment. Reducing the PI to a 
value of 12 to 15 has been suggested as a target (Portland Cement Association (PCA) 2008) .  

The cement application rates for such cement-modified soils usually vary from 2–5%, with the application 
rate being higher for finer-grained soils (e.g. types ML, CL) than coarser-grained sands. 

The use of cement in cohesive soils can result in shrinkage cracks occurring on the stabilised layer. The use 
of cement-stabilised soil to create low-permeability layers is therefore discouraged. 
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4. Lime Stabilisation 

4.1 Introduction 

Lime stabilisation of subgrade soils and granular bases and subbases is usually undertaken to: 

• increase bearing capacity 
• reduce plasticity and seasonal swell and shrinkage 
• reduce moisture sensitivity 
• improve compactability 
• reduce in situ moisture content (using quicklime) to provide trafficability for construction. 

Table 2.4 shows the range of materials that can be treated with lime. The advantages of using lime instead 
of a cementitious binder increases with increasing plasticity and fines content of the soil. Soils with more 
than 25% passing the 75 µm sieve and PI > 10 are the most likely candidates. Generally, soils with a PI ≤ 10 
will respond better to cementitious binders (Table 2.4). However, comparative testing is advisable. Soils with 
organics content above 1–2% by weight may not be suitable. 

For materials stabilised with lime, the rate of strength gain (tensile strength or UCS) is considerably less than 
materials stabilised with cement or cementitious binders. Stabilised materials gain strength over time 
provided curing is sustained. If high strengths are required, then careful control needs to be exercised over 
field procedures, particularly moisture control, early compaction and effective curing. Shrinkage cracking of 
lime-stabilised materials is not usually a major problem. 

If the aim of the stabilisation treatment is to modify the material to reduce its plasticity, without achieving high 
strengths, then lower binder contents are sufficient. As a consequence, the stabilised material can be 
reworked one or two days after initial compaction. 

4.2 Lime Manufacture 

The manufacture of lime involves the heating of excavated limestone in a kiln to temperatures above 900 °C, 
resulting in carbon dioxide being driven off and calcium oxide (quicklime) being produced. The chemical 
equation is as follows: 

CaCO3 + heat CaO + CO2 

(calcium carbonate) (calcium oxide) 
(limestone) (quicklime) 

Limestone feedstocks used for calcination are not pure calcium carbonate and the kilning processes have 
inherent inefficiencies. This means that commercial quicklime will never be 100% calcium oxide and typically 
yields an 80–95% Available Lime Index (Section 4.4). 

At temperatures below 350 °C, the calcium oxide component of quicklime reacts with water to produce 
hydrated lime (calcium hydroxide) as well as liberating heat. Approximately 320 litres of water are required to 
hydrate 1 tonne of calcium oxide. The chemical equation is as follows: 

CaO + H20 Ca (OH) 2 + heat 

(calcium oxide) (calcium hydroxide) 
(quicklime) (hydrated lime) 

(heat of hydration ~ 272 kcal/kg CaO) 
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For lime stabilisation, the quantity of calcium hydroxide is the active component that reacts with the host 
material. In the laboratory, hydrated lime is used to determine the amount of lime to achieve the desired 
material attributes. However, in construction, quicklime (calcium oxide) is often used which, if added at the 
laboratory-determined application rate, will result in an increased amount of calcium hydroxide being 
available. Table 4.1 indicates that quicklime has approximately 30% more effective lime for stabilisation than 
hydrated lime (i.e. equivalent Ca(OH)2/unit mass when slaked). This needs to be considered in the mix 
design of stabilised materials. 

Table 4.1:  Properties of quicklime and hydrated lime (assuming pure lime) 

Property Hydrated lime Quicklime Slurry lime 

Chemical composition Ca(OH)2 CaO* Ca(OH)2 

Form Fine powder Granular Slurry 

Equivalent Ca(OH)2 per unit mass 
(available lime) 1.00 1.32 0.56 to 0.33** 

Bulk density (t/m3) 0.45 to 0.56 1.05 1.25 

* CaO + H2O → Ca(OH)2 + heat. 

** Moisture contents of slurries could vary from 80% to over 200%. 

Note that lime can react with moisture and carbon dioxide. Careful storage is required to maintain the 
integrity of the lime to produce reliable results. 

Further details are given in Guide to Pavement Technology Part 4L: Stabilising Binders (Austroads 2009c). 

4.3 Types of Lime 

Lime comes in a number of forms: 

• hydrated (or slaked) lime (calcium hydroxide) 
• quicklime (calcium oxide) 
• dolomite lime (calcium/magnesium oxide) 
• agricultural lime (calcium carbonate) 
• limestone (calcium carbonate). 

Agricultural lime is not suitable for stabilisation and dolomitic lime is not usually as effective as hydrated lime 
or quicklime. 

All commercial lime products have impurities such as carbonates, silica, alumina, etc. which dilute the active 
additive but are not harmful to the stabilisation reaction. 

Hydrated lime comes as a dry, very fine, powder or as a slurry. The water contents of common lime slurries 
can range from 80% to over 200%. 

Quicklime and dolomitic limes are commonly much more granular than the hydrated products and are 
available only as a dry product. These forms of lime react rapidly with available water, producing hydrated 
lime and releasing considerable amounts of heat. 

Quicklime, and to a lesser extent hydrated lime, is particularly suitable for treating wet, plastic clay 
subgrades, providing effective working platforms from otherwise untraffickable situations. The process is 
based on the exothermic reaction of the lime as it hydrates, reducing the moisture content of the soil. 

Table 4.1 summarises the properties of lime (assuming pure lime). Lime contents are expressed as the 
equivalent of 100% pure hydrated lime. 
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While the type of lime does not appear to be significant in terms of determining the long-term structural 
properties of the stabilised materials, it has considerable influence on the construction processes. In 
selecting the type of lime for a project, the following should be considered: 

• Cost – the cost of quicklime per tonne is significantly less than hydrated lime. Approximately 30% less 
quicklime (by mass) compared to hydrated lime is used to achieve the same stabilisation outcome, 
therefore reducing the cost of the treatment. 

• Dust nuisance – hydrated lime can cause a dust problem, even with very light winds. Its use in urban or 
windy areas should be minimised. Generally, dust is not a serious problem with quicklime, except for 
some very fine batches. Lime slurry is dust free. 

• Steam nuisance – water is added to quicklime so that slaking occurs. The exothermic reaction 
generates some steam for a short period of time. There may be a possibility, particularly in colder 
climates, that traffic control is required if steam affects visibility. 

• Soil moisture – quicklime and hydrated lime are effective in drying out wet soils, but slurry limes cannot 
be used for this purpose. Slurry limes are very suited to dry soil conditions where water may be required 
to achieve effective compaction. Quicklime dries out materials, as it uses the soil moisture as part of the 
reaction. The exothermic reaction can also cause evaporation of excess water. 

•  Lime content –quicklime is particularly effective if the content of the additive is to be kept low. In terms 
of available Ca(OH)2 per unit mass, it is equivalent to 1.3 units (2.5 units per unit volume). The total 
amount of lime slurry will usually be limited by the soil moisture content; generally lime slurry is limited to 
low additive contents (< 3 %) and dry construction conditions. 

• Water availability – Less water is required using hydrated lime. If water availability is limited, hydrated 
lime may be preferred. 

• Lime storage – site silos hold more (approx. double) quicklime by mass than hydrated lime. Similarly, a 
delivery tanker can carry more (by mass) quicklime, unless it is a high capacity vessel. 

• Lime availability – quicklime is more readily available in large quantities than hydrated lime. There is 
often less production and storage capacity for hydrated lime. 

•  Available equipment and expertise – these factors are always important. Automated spreaders, 
adequate mixing and compaction equipment are essential to achieve good results. 

While quicklime can be immediately mixed into wet subgrades without problems, the lime should be allowed 
to hydrate before it is mixed into the subbase and base materials as unhydrated particles of quicklime may 
cause expansion with possible heaving of compacted materials. 

4.4 Available Lime Index 

As discussed in Section 4.2, calcium hydroxide is the active component that reacts with the host material. A 
complicating factor in the design and specification of lime stabilisation treatments is that the proportion of 
pure calcium oxide or calcium hydroxide in quicklime or hydrated lime respectively varies depending on the 
source of the limestone. 

To allow for this variation in the proportion of active lime components, use is made of the Available Lime 
Index (ALI) which is the content of pure calcium oxide or calcium hydroxide in quicklime or hydrated lime 
respectively. It is expressed as a percentage of the total mass of lime determined in accordance with 
AS 4489.6.1-1997. 

In specifying the lime content to use in construction, allowance needs to be made for the difference in the 
ALI of the lime used in the laboratory mix design testing and that of the lime used in construction. One 
means of addressing this variation is to specify a lime content applicable to an ALI of 100% and to adjust for 
the actual ALI used at the time of construction. In addition, the specified lime content needs to allow for 
construction tolerance: an additional 0.5% may be added to the value obtained from the laboratory testing. 
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4.5 Lime Stabilisation of Pavement Materials 

Lime is effective in modifying excessive plastic properties of subbase and base materials (Table 2.4). Such 
modification of plastic natural gravels is a widely accepted and successful practice. At lime contents less 
than about 3%, the risk of undesirable shrinkage cracking due to the lime is low and it would rarely be 
necessary to take special measures to combat reflective cracking. 

If an increase in modulus and strength is required, a pozzolan may be used with the lime to produce a 
cementitiously-modified material as described in Section 3.4. 

Lime without the addition of pozzolans is not effective in cohesionless or low cohesion materials. 

The lime-pavement material reactions are slowed by lower temperatures (below 15 °C) and are impeded by 
high organic contents. 

4.6 Properties of Earthworks Materials Stabilised with Lime 

4.6.1 General 

For clayey soils, the effect of lime on the volume and moisture stability, strength and elastic behaviour, are 
similar to the effects of cement. The following sections are concerned only with those aspects of materials 
stabilised with lime that are significantly different from materials stabilised with GP cement. 

Long-term strengthening (pozzolanic reactions) occurs in a highly-alkaline environment (pH > 12.3). It 
promotes the dissolution of the clay, particularly at the edges of the clay plates and permits the formation of 
calcium silicates and aluminates in the material. These cementitious products are similar in composition to 
those of cement paste. 

The addition of lime to clay results in the following: 

• It has an immediate effect on clay, improving its grading and handling properties by promoting 
flocculation of the clay particles. The effect varies with the actual clay minerals present being large with 
montmorillonite group clays and low with kaolinite clay groups. That is, the effect is dependent on the 
degree of pozzolanic material in the soil. 

• It has longer-term effects on strength, resulting in continuing strength gains with time. This process is 
relatively slow because the available lime has to diffuse through both the matrix of the material and the 
cementitious materials produced during the treatment. 

4.6.2 Rate of Strength Gain 

For materials stabilised with lime, the rate of strength gain (tensile strength or UCS) is considerably less than 
with cementitiously-bound materials. Materials stabilised with lime and supplementary cementitious materials 
will continue to gain strength over time provided curing is sustained. 

The rate of strength gain is temperature sensitive and also depends on the lime content. Caution should 
therefore be exercised in accepting results of high-temperature accelerated testing without validation at field 
temperatures. High temperatures can cause other types of bonds to form that would not normally occur in 
the field. Accelerated curing temperatures should not exceed 40 °C. 

In laboratory UCS testing, lime-stabilised materials are usually evaluated after 7 and 28 days of curing. 
Figure 4.1 illustrates an example of the variations in strength with time and lime content. Note that high lime 
contents will not necessarily produce high early strengths. However, the ability of lime to dry out wet 
materials and reduce plasticity to make otherwise unsuitable materials useful, renders early strength gains a 
secondary consideration in some instances. 
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Figure 4.1:  Variation in compressive strength as a function of lime content and time 

 
Source: Kezdi (1979). 

4.6.3 Moisture-density Relationship 

Increasing lime contents increases the OMC and reduces the MDD of the material being stabilised 
(Figure 4.2). This effect is further increased by delaying compaction once the lime is added. 

Figure 4.2:  Effect of lime content on maximum dry density and optimum moisture content 

 
Source: Terrel et al. (1979). 
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4.7 Appropriate Conditions for Lime Stabilisation of Earthworks Materials 

4.7.1 General 

The following factors need to be considered in assessing the suitability of lime stabilisation for a project: 

• material factors, dealing with the composition of the material to be stabilised and its response to lime 
• production and construction factors. 

4.7.2 Material Factors 

For lime to be effective, the material to be stabilised must contain clay particles or pozzolanic materials that 
are reactive with lime. In general, the more plastic the clay fines and the higher the clay content, the larger 
the lime content required to produce a specific strength gain or other effect. However, the amount of bonding 
achievable with lime is limited by the amount of reactive material. Generally, soils with a PI less than 10 will 
respond better to cementitious binders. However, comparative testing is advisable. 

Sugars and reactive organic materials can retard the development of cementitious bonds with both 
cementitious binders and lime. 

For PI reduction and workability improvement using lime modification, sufficient lime should be added so that 
additional quantities of lime do not result in further changes in PI. 

Where lime stabilisation is used for long-term strength gain a Lime Demand test is required 
(Sherwood 1993). By testing the pH at different percentages of lime, a plot of lime content versus pH is 
obtained. The lime percentage where the pH of the soil-lime-water is the same as a lime-water is the 
required lime content for long-term strength gain (Figure 4.3). An additional 0.5% lime is usually used in 
construction to allow for losses and variations in host material properties, lime quality and mixing. 

Figure 4.3:  Example of Lime Demand test results 

 
Source: AustStab (2015). 

Apart from the Lime Demand test, it is important to verify the lime reactions increase strength/modulus. This 
is discussed further in Section 4.8. 
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4.7.3 Production and Construction Factors 

The following factors significantly affect the quality of lime stabilised materials: 

• quality of water 
• quality of lime 
• uniformity of mixing and curing 
• compaction. 

The addition of lime normally promotes granulation of the material being stabilised. For materials that are 
difficult to break down, the lime-material mix is sometimes moist cured – for time periods ranging from a few 
hours to a day – after light rolling to reduce contact with air, and then remixed. Lime addition may be added 
in two stages in a process called ‘mellowing’ with the second addition being undertaken between 4 and 
72 hours after the first addition. 

Lime will diffuse slowly throughout clays and stabilise the lumps. Unless high early strength is particularly 
important, it is unnecessary to seek fine granulation. It is suggested that 80 to 90% of the soil's clods should 
pass the 26.5 mm sieve. If temperatures are low at the time (< 15 °C), then more attention should be given 
to breakdown. 

The use of quicklime to establish a working platform on a wet clay is a useful construction expedient and 
utilises the exothermic reaction of the lime as it hydrates to reduce the moisture content of the soil. 

The initial rate of reaction with lime gives time to achieve adequate compaction. If high strengths are being 
sought, early compaction is necessary to achieve as high a density as possible. Delayed compaction lowers 
the density but the rate of reduction of maximum density is not as severe as with cementitious binders. 

4.8 Selecting the Lime Content for Long-term Property Changes 

For lime to be effective, the material being treated must contain clay particles or pozzolanic materials that 
react with lime. Accordingly, an important first step in selecting the lime content is to assess whether the 
pavement or earthworks material is reactive to lime. This is undertaken using the Lime Demand test which 
estimates the lime content required for the pH of the material to be stabilised to plateau, as described in 
Section 4.7.2. This will ensure that the stabilised design properties are achieved in the long term (Little 1996; 
Sherwood 1993). The presence of organic materials in acid soils will increase the amount of lime required for 
stabilisation. 

Where the objective of the lime stabilisation is a long-term strength gain, strength testing is undertaken after 
determination of the lime content to satisfy the Lime Demand test. The required lime content can be 
determined in two ways as indicated in Figure 4.4: 

• In Method A the lime content is determined such that it satisfies the Lime Demand test; it is also based 
on the content to achieve the peak UCS within the range 1 < UCS ≤ 2 after 28 days curing (Figure 4.5). 
When no peak is observed and the UCS exceeds 1 MPa, the lime content selected is that which satisfies 
the Lime Demand test and has the slowest capillary rise. This method is described in TMR Technical 
Note 151 Testing of Materials for Lime Stabilisation (2018d). 

• In Method B the minimum lime content is determined such that it satisfies the Lime Demand test. An 
additional 0.5% to 1% lime is usually specified for construction to allow for losses and variations in host 
material properties, lime quality and mixing. The laboratory soaked CBR and swell are measured on the 
lime-treated subgrade for use in the pavement structural design. Code of Practice RC 500.23 Lime 
Stabilised Earthworks Materials – Available Lime, Assigned CBR and Swell (VicRoads 2016) is an 
example of the use of this method. Consideration should also be given to measuring the CBR and swell 
of the untreated material to provide an indication of the effectiveness of the lime treatment. As specific 
requirements for material pre-treatment, preparation, compaction and CBR and swell assessment varies 
across road agencies, Figure 4.4 Method B provides a general outline of the determination of lime 
content of earthworks material using the CBR approach. 



Guide to Pavement Technology Part 4D: Stabilised Materials 

 
 

Austroads 2019 | page 29 

When assessing the CBR of lime stabilised material, consideration should also be given to measuring 
the CBR and swell of the untreated material to provide an indication of the effectiveness of the lime 
treatment. Note that it will be usually necessary to increase the lime content above that required to 
satisfy the Lime Demand test in order to comply with specified minimum CBR or maximum swell values. 

Figure 4.4:  Determination of lime content of earthworks materials 

 
1. CBR test procedures vary between road agencies in relation to moisture content  

and density of CBR specimens and soaking prior to testing. 
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Figure 4.5:  Example of lime content determined using Method A 

 
Source: TMR (2012). 

4.9 Selecting the Lime Content to Expedite Construction 

Clay soils, particularly when they are wet, can be associated with construction problems. These soils can be 
soft, sticky, plastic, and difficult to compact to the extent that they are unsuitable for subgrade preparation. In 
such cases, soil stabilisation may provide a means of expediting construction. As seen from Table 2.4, lime 
can be used to treat soils with moderate to high plasticity (PI > 10). 

For PI reduction and workability improvement using lime modification without the aim of providing long-term 
property changes, the lime content may be selected such that any additional amount does not result in a 
further decrease in PI. 

For difficult-to-compact and overly-wet subgrade materials, consideration can be given to using a lime 
content that reduces the moisture content closest to the OMC of the lime-treated subgrade. A combined 
treatment of lime and granular stabilisation may also be suitable. 
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5. Bituminous Stabilisation 

5.1 Introduction 

Bitumen-stabilised granular materials are produced using either foamed bitumen or bitumen emulsion either 
plant-mixed or in situ stabilised. The materials treated are normally granular pavement materials, previously 
cement-treated materials or reclaimed asphalt pavement (RAP). Where an existing pavement is recycled, old 
seals or asphalt surfacings are usually mixed with the underlying layer and treated to form a new base or 
subbase layer. 

Bituminous stabilisation of granular materials is usually intended either to introduce some cohesion into 
non-plastic materials or to make a cohesive material less sensitive to loss of stability with increased 
moisture. Generally, materials that are suitable for in situ stabilisation are (TMR 2018d): 

• well-graded PSD (Section 5.3) 
• good particle shape, not rounded 
• a low plasticity PI ≤ 10 or linear shrinkage ≤ 6 
• may include up to 20% RAP 
• previously stabilised materials. 

Foamed bitumen stabilisation commonly includes supplementary cementitious binders (e.g. lime, cement). 

5.2 Bitumen 

5.2.1 General 

Bituminous stabilisation may be carried out using any of the following materials: 

• foamed bitumen 
• bitumen emulsion, either as cationic or anionic emulsion. 

In association with bitumen stabilisation, secondary binders, which are generally lime or cement, are usually 
added to increase the modulus and rut-resistance of the mix. 

Approximate equivalents between Australian and New Zealand bitumen grades are shown in Table 5.1. 

Table 5.1:  Australian and New Zealand bitumen classifications 

Australian classification Minimum penetration New Zealand classification 

C170 62 80/100 

C240 53 – 

C320 40 60/70 

5.2.2 Foamed Bitumen 

Foamed bitumen is a mixture of air, water and hot bitumen. Injecting a small quantity of cold water into hot 
bitumen produces an instantaneous expansion of the bitumen – up to 15 times its original volume forming 
foam. The concept of manufacturing foamed bitumen is illustrated in Figure 5.1. 

When the bitumen is in a foamed state it is ideal for mixing with fine materials because its large surface area 
bonds to fine particles. As the foam collapses very quickly, rapid mixing is required to adequately disperse 
the bitumen throughout the material. 
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For most bitumens, a foaming agent needs to be added to the bitumen to provide the appropriate foaming 
characteristics. C170 bitumen is commonly used. 

Figure 5.1: Manufacture of foamed bitumen 

 

5.2.3 Bitumen Emulsion 

Bitumen emulsions are dispersions of fine droplets of bitumen in water. Standard grades comprise 
approximately 60% bitumen and 40% water with a small proportion of emulsifier. Some types of emulsion 
include additives such as polymer or cutter and different proportions of bitumen. The setting and curing of 
emulsions involve the separation and removal of water (‘breaking’) leaving solid bitumen. The type and 
quantity of emulsifier determines the setting characteristics of the emulsion. 

Bitumen emulsions are manufactured to comply with AS 1160-1996, which allows for the following two 
classes depending on the charge of the suspended particles: 

• anionic bitumen emulsion, where the particles of bitumen are negatively charged 
• cationic bitumen emulsion, where the particles of bitumen are positively charged. 

Both classes of bitumen emulsion are prepared in two grades: rapid setting (RS) and slow setting (SS). Only 
the slow-setting grades are suitable for use in stabilisation. 
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Whilst most manufacturers produce all classes and grades, emulsions of the same class but produced by 
different manufacturers can react differently with the same soil. It is therefore important that the same 
emulsion to be used in the field is also used in any laboratory testing program. More than one product should 
be tested to allow a fair assessment to be made of the types of bitumen proposed. 

Bitumen emulsion is normally manufactured with C170 bitumen, which is usually satisfactory for materials 
with lower fines content (0–10% passing the 75 µm sieve). For materials with higher fines content (15–25%) 
passing the 75 µm sieve, it may be necessary to use softer bitumen if difficulty in distribution is encountered. 
Under extreme conditions, emulsion containing oil may have to be used. 

Bitumen emulsions may be readily mixed with damp host materials to produce a good dispersion of bitumen 
throughout the host material. 

5.3 Materials Suitable for Bitumen Stabilisation 

The application of bituminous binder (as a foam or emulsion) in stabilisation is highly dependent on the PSD 
of the host material. Recommended distribution limits are shown in Table 5.2 and Figure 5.2. 

In the event that PSD of the host material needs to be adjusted, Section 6 describes the process of blending 
materials to achieve a target PSD. 

Table 5.2:  PSD envelopes for bituminous binders 

% Passing sieve 
(mm) Initial daily ESA < 1000 Initial daily ESA ≥ 1000 

37.5 100 100 

19.5 80–100 87–100 

9.5 55–90 67–88 

4.75 40–70 50–65 

2.36 30–55 38–50 

0.425 12–30 16–26 

0.075 5–20 8–16 

Figure 5.2:  Suitable PSD envelopes for bituminous binders 
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5.4 Foamed Bitumen Stabilisation Mix Design 

5.4.1 Introduction 

The foamed bitumen mix design process includes consideration of the required properties of the material to 
be stabilised, requirement in the foaming characteristics of the bitumen proposed to be used and the bitumen 
and secondary binder contents required to meet minimum indirect tensile modulus requirements. 

Table 5.3 lists the Austroads mix design test methods. 

Table 5.3:  Austroads test methods for FBS mix design 

Number Title 

AGPT/T301 Determining the Foaming Characteristics of Bitumen 

AGPT/T302 Mixing of Foamed Bitumen Stabilised Materials 

AGPT/T303 Compaction of Test Cylinders of Foamed Bitumen Stabilised Mixtures: Part 1 Dynamic 
Compaction using Marshall Drop Hammer 

AGPT/T305 Resilient Modulus of Foamed Bitumen Stabilised Mixtures 

5.4.2 Bitumen Foaming Characteristics 

Prior to the mix design being conducted it may be necessary to undertake a binder design to determine if the 
foaming characteristics of the bitumen are pertinent to the particular site conditions. When selecting a 
bitumen for foaming, the expansion ratio should not be less than ten times and the half-life at least 
20 seconds. 

This testing can only be undertaken using specially-designed laboratory apparatus (e.g. Figure 5.3) and 
experienced technicians. The Austroads test method is AGPT/T301 Determining the Foaming 
Characteristics of Bitumen. 

Binder design is undertaken to determine the half-life of the foam, i.e. the time for the foam to settle to half its 
initial height. Generally, a foaming agent is added to the water to enhance the expansion ratio, i.e. the 
increase in volume due to foaming, with a typical value being between 12 and 15 times. 

Figure 5.3:  Laboratory bitumen foaming apparatus 

 
Source: Wirtgen Group brochure WLB10S- WLM30, https://media.wirtgen-group.com. 
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The influence of water content on the foaming characteristics of bitumen affects both the expansion ratio 
(increase in volume) and the half-life (time for half the expanded volume to collapse) as shown in Figure 5.4. 

Figure 5.4:  Effect of water on foaming characteristics 

 
Source: Kendall et al. (2001). 

In addition, as the bitumen temperature decreases slightly below 180 °C the half-life duration reduces, and 
this can have an effect on the foaming process (Figure 5.5). 

Figure 5.5:  Example of the effect of temperature on foam expansion ratio and half-life  
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5.4.3 Secondary Binders 

A secondary binder, generally either lime or cement, is used to: 

• stiffen the bitumen binder 
• act as an anti-stripping agent (lime only) 
• assist in dispersion of the bitumen throughout the material 
• improve the initial modulus, and early life rut-resistance, of the stabilised pavement 
• reduce moisture sensitivity of the stabilised material. 

5.4.4 Mixing Moisture Content 

The moisture content of the loose mixture of host granular material, foamed bitumen and lime/cement affects 
the distribution of the binders, the effect of the secondary cementitious binders and, importantly, the density 
to which the test cylinders can be compacted. Accordingly, the mixing moisture content can have a very 
significant effect on the mix moduli. Figure 5.6 shows a pugmill commonly used to mix the constituents in 
accordance with Austroads test method AGPT/T302. 

It is common practice in Australia to derive the mixing moisture content by testing the laboratory compaction 
characteristics of the untreated material. The mixing moisture content is commonly either: 

• 70% standard Proctor OMC of the untreated material, or 
• 80–85% modified Proctor OMC of the untreated material. 

Figure 5.6:  Laboratory mixing using a pugmill 

 
Source: Wirtgen Group brochure WLB10S- WLM30, https://media.wirtgen-group.com 

5.4.5 Mix Design 

The mix design method for foamed bitumen stabilised mixtures is shown in Table 5.4 and Table 5.5. In 
Australia, it is common for projects to use bitumen contents of 2.5% to 3.5% and hydrated lime contents of  
1–2% for host materials with up to 20% RAP. 

Table 5.3 lists the mix design test methods. Note that the indirect tensile modulus specimens are compacted 
into a 152 mm internal diameter Marshall mould using a 10.2 kg Marshall drop hammer (Figure 5.7). 
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Table 5.4:  Selecting mix components 

Step Activity Reference 

1 Obtain a representative sample of the untreated material to be stabilised, including any 
recycled surfacing materials. 

 

2 Measure the PSD and assess whether it is necessary to improve the grading by adding other 
granular materials. 

Table 5.2 

3 Measure LL, PL and PI and assess whether the material needs to be pre-treated. Table 2.4 

4 Obtain a representative sample of C170 bitumen and determine the expansion ratio and half-
life of samples with 2, 3 and 4% moisture content. 

AGPT/T301 

5 Compare measured expansion ratio and half-life against limits. If the limits cannot be 
achieved at any moisture, assess whether a foaming agent or another bitumen is needed 
and repeat step 4. Otherwise, select the moisture content for foaming and proceed to step 6. 

 

6 Select whether the secondary binder is lime or cement, obtain a representative sample, and 
check for compliance. 

 

Table 5.5:  Determination of design bitumen content 

Step Activity References 

7 From the specification for construction, determine whether standard or modified Proctor MDD 
will be used in assessing field compaction and determine the OMC of the untreated material. 
Based on this testing, select a range of moisture contents for use in testing 
(e.g. 70% standard Proctor or 80–85% modified Proctor OMC). 

 

8 Select the trial bitumen content and a trial secondary binder content.  

9 Add water to the untreated granular material to bring it to the selected moisture content. It 
may be necessary to adjust the moisture content to allow for hydration of the secondary 
binder. 

AGPT/T302 

10 Mix the granular materials and secondary binders at a mixing moisture content and leave the 
mixture to cure for 45 minutes. 

AGPT/T302 

11 Thoroughly mix the foamed bitumen into the mixture. AGPT/T302 

12 Compact at least three test cylinders by placing the loose mixture into 152 mm diameter 
moulds and compact by applying 50 blows per face with a 10.2 kg Marshall hammer. 

AGPT/T303 

13 Cure the specimens for three hours at 25 °C and measure the initial indirect tensile modulus 
– Mi. 

AGPT/T305 

14 Dry the specimens for three days at 40 °C and measure the dry indirect tensile modulus – 
Md. 

AGPT/T305 

15 Soak the specimens in a vacuum chamber for 10 minutes at a partial vacuum and measure 
the wet indirect tensile modulus – Mw. 

AGPT/T305 

16 Measure the specimen dry densities.  

17 Calculate the ratio of wet to dry indirect tensile modulus.  

18 Compare the measured results of steps 13–17 with the specified values (e.g. Table 5.6, 
Table 5.7 and Table 5.8). If the results are below the requirements, increase the bitumen 
content and/or secondary binder and repeat steps 8–17. If the results are above the 
requirements, decrease the bitumen content and repeat steps 8–17. 

 

19 Select the design bitumen and secondary binder contents.  
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Figure 5.7:  Large-scale Marshall mould and drop hammer 

 
Source: Downer personal communication via email (1 March 2015). 

In relation to modulus requirements, Table 5.6, Table 5.7 and Table 5.8 show examples of modulus 
requirements for in situ-stabilised materials (TMR 2018d). Table 5.9 shows an example of additional 
modulus requirements for plant-mixed FBS mixes during production. 

Table 5.6:  Example of initial modulus limits for in situ stabilised foamed bitumen materials 

Average daily traffic in design year of opening 
(ESA) 

Minimum initial modulus(1,2) 
(MPa) 

< 100 500 

≥ 100 700 

1. Foamed bitumen mixes mixed and compacted at about 70% standard Proctor OMC of the untreated material. 
2. Initial sample curing time of three hours at 25º C required prior to initial resilient modulus testing being completed. 

Source: TMR (2018d, 2018e). 

Table 5.7:  Example of cured and soaked modulus limits for in situ stabilised foamed bitumen stabilised base 

Average daily traffic in 
design year of opening 

(ESA) 

Minimum three day cured 
modulus(1) 

(MPa) 

Minimum three day 
soaked modulus(1) 

(MPa) 
Minimum retained 

modulus ratio(2) 

< 100 2500 1500 0.40 

100–1000 3000 1800 0.45 

> 1000 4000 2000 0.50 

1. Foamed bitumen mixes mixed and compacted at about 70% standard Proctor OMC of the untreated material. 
2. Retained modulus ratio = three-day soaked modulus divided by the three-day cured modulus. 

Note: Base is defined as a stabilised pavement layer with a bituminous seal surfacing or less than 100 mm of asphalt 
overlying it. 

Source: TMR (2018d, 2018e). 
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Table 5.8:  Example of cured and soaked modulus limits for in situ stabilised foamed bitumen stabilised 
subbase 

Average daily traffic in 
design year of opening 

(ESA) 

Minimum three day cured 
modulus(1) 

(MPa) 

Minimum three-day 
soaked modulus(1) 

(MPa) 
Minimum retained 

modulus ratio(2) 

< 100 2500 1500 0.40 

100–1000 2500 1500 0.45 

> 1000 2500 1500 0.50 

1. Foamed bitumen mixes mixed and compacted at about 70% standard Proctor OMC of the untreated material. 
2. Retained modulus ratio = three-day soaked modulus divided by the three-day cured modulus. 

Note: Subbase is defined as a stabilised pavement layer with at least 100 mm of asphalt overlying it. 

Source: TMR (2018d, 2018e). 

Table 5.9:  Example of modulus limits for plant-mixed foamed bitumen stabilised mixes during production 

Average daily 
traffic in design 
year of opening 

(ESA) 

Minimum three-day 
cured modulus(1) 

(MPa) 

Minimum 
seven-day soaked 

modulus(1) 
(MPa) 

Minimum 14-day 
soaked modulus(1) 

(MPa) 
Minimum retained 

modulus ratio(2) 

All 1000 1400 1800 0.45 

1. Foamed bitumen mixes mixed and compacted at about 70% standard Proctor OMC of the untreated material. 
2. Retained modulus ratio = three-day soaked modulus divided by the three-day cured modulus. 

Source: TMR (2018e). 

On large projects additional testing may be undertaken including flexural fatigue and wheel tracking testing. 

5.5 Bitumen Emulsion Mix Design 

There is currently limited use of bitumen emulsion stabilised materials in Australia. Where they are being 
used, the empirical mix design process is intended to produce modified pavement materials with enhanced 
modulus and rut-resistance but without being susceptible to fatigue cracking. 

Emulsion application rates of 2–3% (by mass) of residual binder are commonly used. Lower rates of about 
0.5–1% may be satisfactory for well-graded materials in dry climates (Roads & Traffic Authority (RTA) 
NSW 1995). Lower application rates, when added to granular base materials, can be useful as a 
construction expedient to reduce raveling and potholing under traffic. In any case, the application rate should 
be determined by laboratory testing. 

In some applications cement or lime is added as a secondary binder. For example, bitumen emulsion 
stabilised-subbase limestone has been used in Western Australia, for many years. A typical application rate 
would be 2% residual binder, coupled with about 1% cement or lime for some projects. 
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6. Granular Stabilisation 

6.1 Introduction 

The improvement of one material by blending it with one or more granular materials is referred to as granular 
or mechanical stabilisation. This type of stabilisation provides a direct means of altering the PSD. Plasticity 
changes may also result. 

Granular stabilisation may involve the following: 

• mixing of materials from various parts of a deposit at the source of supply 
• mixing of selected, imported material with in situ materials 
•  mixing two or more selected, imported natural gravels, soils and/or quarry products on site or in a mixing 

plant 
• mixing recycled materials with existing pavements. 

Materials produced by granular stabilisation have properties similar to conventional unbound materials and 
can be evaluated by conventional methods. 

Some typical applications of granular stabilisation are: 

• correction of PSD generally associated with gap-graded or high fines-content gravels 
• correction of PSD and increasing plasticity of dune or river-deposited sands which are often single sized 
• correction of PSD and/or plasticity of crushed products, quarry wastes and environmentally acceptable 

industrial by-products 
• correction of particle shape by adding crushed products to round gravels 
• decrease in particle breakdown of soft aggregate through the addition of harder aggregate. 

6.2 Materials 

Materials requiring granular stabilisation have properties which make them deficient to be used as base or 
subbase materials. Typically, such materials are: 

• poorly-graded products 
• poorly-shaped aggregates (e.g. uncrushed river gravels) 
•  dune or river deposited sands 
• scoria, shales 
• silty sands, sandy clays, silty clays 
• crusher run products 
• waste quarry products 
• industrial by-products 
• high plasticity granular materials. 

6.3 Design Criteria for Granular Stabilisation 

6.3.1 Introduction 

The principal properties affecting the load bearing capacity of base and subbase materials are internal 
friction and cohesion. 

Internal friction is generated primarily because of the characteristics of the coarser soil particles and the 
PSD. 
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Cohesion (and shrinkage, swelling and compressibility) results primarily from the quantity and nature of the 
clay fraction as indicated by the plastic properties, Sand Equivalent and Maximum Dry Compressive 
Strength (MDCS). 

Preliminary mix design is usually based on that required to achieve a target PSD, particle shape and plastic 
properties. Strength testing is generally undertaken using the CBR test and/or triaxial shear test. 

The resilient modulus of granular stabilised materials (used in mechanistic-empirical pavement design) can 
be determined using AS 1289.6.8.1-1995. 

6.3.2 Required PSD 

The strength of a granular material is derived solely from the mechanical interlock of particles throughout the 
particle size spectrum. While maximum frictional strength does not necessarily coincide with maximum 
density, achieving high density will generally provide high friction. This is often referred to as the ‘maximum 
density PSD principle’ in which successively smaller-sized particles fit into the remaining void space thereby 
reducing the void space to a minimum (maximising density). 

Figure 6.1 provides broad guidance on appropriate and inappropriate uses of granular pavement materials 
with various PSDs. 

Figure 6.1:  Examples of PSDs of unbound granular materials 

 
Source: Wooltorton (1954). 

Road agency PSD specifications for base and subbase materials reflect the characteristic suited to local 
jurisdiction conditions. These specifications are useful in developing a target PSD for the stabilisation design 
of pavement materials. 
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6.3.3 Required of Plasticity Properties 

The volume stability of subgrades and pavement materials is dependent upon the amount of clay present 
and its plasticity. These two parameters are linked to express potential volume stability in the Weighted 
Plasticity Index defined as: 

Weighted Plasticity Index (WPI) = % passing 0.425 mm x Plasticity Index (PI) 

Example values of WPI for granular pavement layers specified by road agencies are shown in Table 6.1. 

Table 6.1:  Examples of limits on plasticity  

Material Weighted plasticity index 

High-quality basecourse < 100 

Standard-quality basecourse < 200 

Subbase < 400 

Selected subgrade material, fill < 1500 

In addition to stability, the plasticity of a basecourse can influence the performance of a bituminous seal in 
terms of adhesion of the bitumen to the surface of the base layer and resistance to raveling under traffic 
during construction. 

6.3.4 Required Aggregate Hardness and Durability 

The use of soft aggregates in granular pavements can result in particle breakdown and subsequent rutting of 
the surface. This degradation can also, in some rock types, result in the release of highly-expansive clay 
minerals, resulting in an increase in the plasticity of the crushed rock. Some soft and fissile sedimentary rock 
types can also exhibit excessive swell if broken from the rock mass and subjected to compaction in the 
roadbed. 

As a typical example, particle breakdown from stabilisation mixing and heavy compaction of soft sandstones 
may result in poor compacted density. Blending in harder aggregates provides protection for the soft 
aggregate, resulting in higher bearing capacity. 

6.3.5 Required Strength and Rut-resistance 

For strength tests, such as the Modified Texas Triaxial test and the CBR test, the criteria normally specified 
for base and subbase materials should be used. Repeated load triaxial (RLT) testing may also be utilised to 
characterise the elastic and permanent deformation characteristics of granular stabilised materials. 

An alternative, recently developed method of characterising permanent deformation properties is using a 
wheel-tracking device. This method is described in Austroads test method AGTP/T054 Determination of 
Permanent Deformation Characteristics of Unbound Granular Materials by the Wheel-tracking Test. 

The selection of design criteria, particularly for lightly-trafficked roads, should take into account local 
experience. Some materials that do not meet 'normal' specifications perform well in lightly-trafficked, 
well-drained situations. 
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6.4 Mix Design 

The mix design process is based on blending the existing material with one or more other materials to 
achieve the required PSD properties (Section 6.3.2), plasticity (Section 6.3.3) and hardness/durability 
(Section 6.3.4). 

The first step in the mix design process is to identify suitable materials to stabilise the existing material. The 
PSD, plasticity and other relevant properties of these materials are then measured. 

A trial blend of these materials is then selected, and an assessment made as to whether the required 
properties are attained. If the required properties are not achieved, additional trial blends are evaluated. 

As illustrated in the worked example in Appendix A, the PSD resulting from a trial blend of materials is a 
simple proportion calculation of the percentage of the constituent materials passing respective sieves. For 
instance, when two materials are blended, the PSD of this blend can be determined using Equation 1. 

[(A% x Apass)/100] + [(B% x Bpass)/100] 1 

where    

A% = percentage of material A being added by mass  

Apass = percentage of material A passing allocated sieve by mass  

B% = percentage of material B being added by mass  

Bpass = percentage of material B passing allocated sieve by mass  

Note: as there are two materials A% + B% =100.  

Where blending is undertaken to correct plasticity or aggregate hardness, a similar proportionate calculation 
is undertaken. However, it is not as reliable as PSD corrections and so it may be necessary to test a trial 
blend for these properties to confirm the calculations. In addition, where two materials are blended to alter 
plasticity or aggregate hardness, the PSD should also be checked to ensure that it remains satisfactory. 

After the PSD, plasticity and other relevant properties have been corrected, strength tests or repeat load 
triaxial testing to determine modulus and permanent deformation characteristics may also be required 
depending on the road agency specification. 
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7. Other Forms of Chemical Stabilisation 

7.1 Introduction 

The vast majority of pavement stabilisation carried out in Australasia is conducted using cement, lime or 
bituminous stabilisers or blends of these stabilising binders. However, there are other forms of stabilisation 
used and these are briefly described in this section. Many of these proprietary chemical binders have been 
used successfully as dust suppressants but may also have the ability to alter other properties such as 
strength and permeability. These binders should be assessed for their ability to improve the structural 
performance of pavements in a similar way to the cementitious, lime and bituminous binders. 

One application where other methods of stabilisation are used is for unsealed pavements or pavements 
under construction to reduce dust nuisance and improve safety. This is an application that is continuously 
developing, and individual stabilising binders should be assessed on the merits of their performance for a 
particular project. Stabilisation of unsealed roads is described in the Guide to Pavement Technology Part 6: 
Unsealed Pavements (Austroads 2009a). 

Broad guidance for the application of other stabilisation binders for sealed roads follows. 

7.2 Structural Improvement 

There are a number of proprietary products being promoted for stabilisation of base and subbase courses. 
The two most promising products of this type are: 

• polymer in a dry powder form 
• polymer additives used in conjunction with lime. 

These act in significantly different ways. 

7.2.1 Dry Powder Polymers 

Dry powder polymers (DPP) consist of a high-grade polymer thermally bound to an ‘inert fine carrier’ such as 
fly ash. It is handled in the same way as other powdered products, being delivered by bulk tanker and placed 
through a conventional cement spreader. 

The product distributed through the pavement material will improve volume stability and reduce capillary rise, 
pore pressure and moisture-induced shrinkage. This is achieved by altering the physical properties of the soil 
and not by cementitious action. Hence, the pavement is not subject to shrinkage. 

Materials successfully modified will retain a high proportion of their dry strength and bearing capacity even 
after lengthy soaked conditions. After stabilisation, the material may continue to behave as an unbound 
material. 

7.2.2 Additives to Lime and Cementitious Binders 

In some applications DPP are used in conjunction with hydrated lime. The lime is added to flocculate and 
prepare clay particles for adhesion to the polymer. The lime is not coated with polymer. 
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7.3 Mix Design 

The large variety of proprietary products available and classified as chemical or polymer binders, coupled 
with varying degrees of quality performance data, make them less definitive in their selection compared to 
cement, cementitious, lime or bituminous binders. 

Information available from product literature together with field examples may provide insight about binder 
application rates. In addition, the following performance properties may also to be considered in selecting 
chemical binders: 

• increased rut-resistance 
• resistance to erosion 
• capillary rise 
• swell 
• resistance to leaching 
• long-term durability. 

In deciding the relevant mix design for each product, elements of the design processes for cementitious 
(Section 3), lime (Section 4) and bituminous stabilisation (Section 5) may be adapted. 
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8. Sampling and Testing for Mix Design 

8.1 Introduction 

The determination of the most appropriate binder and quantity required to meet the selected type of 
stabilised pavement material (i.e. granular, modified, lightly-bound or bound) should be undertaken through a 
laboratory test program using specialist laboratories or, for small projects, on the basis of significant 
experience with binders and specific pavement materials or soils. 

In mix design it is important to recognise the fact that the cost of the binder is often more than 40% of the 
total cost of the in situ stabilisation. Therefore, in addition to determining the desired engineering parameters, 
the selection of the most efficient binder type as well as quantity can significantly affect the viability of 
stabilisation as a pavement option. 

Details of the sampling and laboratory testing associated with stabilisation mix design are described below. 

8.2 Field Sampling for In Situ Stabilisation 

When undertaking a mix design for in situ stabilisation, the samples of pavement material selected for testing 
must be representative of the material to be stabilised. There can be significant variability between sampling 
sites because of: 

• intermittent maintenance applications (patching and section reseals) 
• material variations, particularly where natural gravels are encountered 
• PSD variations resulting from construction operations such as grid rolling and rock busting 
• pavement thickness variations, both longitudinally and transversely 
• natural subgrade variability due to topography and geomorphology 
• seasonal variations in pavements and subgrades (wet or dry environments) 
• the use of existing subbase/subgrade materials with base materials for lightly-trafficked roads 
• sampling under sealed shoulders rather than in the traffic lane 
• construction issues, e.g. shape control (the lifting of levels or changing the cross fall to correct drainage 

or level control to improve ride quality). 

The selection of representative samples for testing therefore requires bulk samples to be classified according 
to a visual description and the results of standard laboratory classification tests (i.e. PSD and plasticity). 

8.3 Laboratory Sample Preparation 

8.3.1 Particle Breakdown During Construction 

During in situ stabilisation, the mixing action typically takes place at a rate of 150–200 rpm using current 
rotors consisting of ‘bullet’ style engaging ends on long apertures. Some pavement materials with ‘soft’ 
coarse aggregates, such as tuff and sandstone, may break down under the mixing process, resulting in a 
finer PSD. The rotor speed can be reduced to minimise this breakdown. During site investigations these ‘soft’ 
gravels should be identified. 

A pre-treatment of the material to be stabilised by repeated compaction in the laboratory can usually take 
into consideration this effect in the field (e.g. Roads and Maritime 2012a, 2012b). When sampling, some 
practitioners have sought to use profiler attachments on skid-steer loader as a way of simulating the PSD of 
the material after mixing. 
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8.3.2 Water Quality 

In most cases water is obtained from town water supplies. However, during prolonged drought periods, the 
use of treated waste water effluent can be considered provided it does not impact on the strength or 
durability of the stabilised material. 

It is essential that, where possible, the actual water source to be used in the field is also used for the 
laboratory testing program. If required, a Materials Safety Data Sheet should be provided. 

An example standard for stabilisation of water supply (Roads and Maritime 2015): 

Water must be free from amounts of materials which are injurious to the stabilisation 
process such as oils, salts, acids, alkalis and vegetable substances. Water taken from 
other than a town water supply system must not contain more than: 

(a) 600 parts per million of chloride ion in accordance with RMS T1004 (RMS 2012c) 

(b) 400 parts per million of sulphate ion in accordance with RMS T1014 (RMS 2012d) 

(c) 1% by mass of undissolved solids in accordance with AS 3550.4-1990. 

8.3.3 Binders 

It is essential that the binder/s proposed for construction is of the same brand and quality as that used in the 
laboratory mix design process, except for quicklime, which is not commonly used in laboratory due to 
occupational health and safety considerations. Fresh supplies of binder should also be obtained prior to 
undertaking laboratory testing and testing for compliance with road agency specifications. 

Grouped samples may represent particular sections of the project and, when tested, may require different 
binder contents to match the various sections. However, it is not common practice to change binder types in 
these circumstances unless the test results show significant differences in the desired stabilisation strength. 

It is also noted that, for the type of stabilised pavement selected, a number of binders and binder contents 
can achieve the same target strength, but each may have different performance characteristics 
(e.g. potential of cementitious binders to crack or aversion to capillary rise). 

8.3.4 Laboratory Compaction of Lime-stabilised Subgrade Test Specimens 

In Australia, field compaction of earthworks materials is commonly expressed relative to the standard Proctor 
MDD (AS 1289.5.1.1-2017). Accordingly, the laboratory test specimens for strength evaluation are 
compacted to a density related to the standard Proctor MDD of the lime-treated subgrade. 

When Method A (Section 4.8) is used to determine the lime content, the UCS test specimens are compacted 
to 97% standard Proctor MDD according to TMR practice (TMR Technical Note 151 (TMR 2018d)). 

Similarly, when Method B (Section 4.8) is used to determine the lime content, the CBR test specimens are 
compacted to 95% standard Proctor MDD according to VicRoads practice (VicRoads 2017). 

8.3.5 Laboratory Compaction of Cementitiously-stabilised Pavement Test Specimens 

The laboratory compaction method for sample preparation and compliance varies across Australia. Some 
road agencies express field compaction in terms standard Proctor MDD (AS 1289.5.1.1-2017), while others 
use modified Proctor (AS 1289.5.2.1-2017). Most of the documented experience and research work in 
Australia has been based on specimens compacted to 100% standard Proctor MDD and the associated 
OMC. There is no agreement regarding the conversion of test values for samples compacted using modified 
compaction to standard compaction. 
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Practitioners should always take note of the relevant laboratory compaction method specified by the road 
agency for mix design testing. The guiding principal is that the level of compaction in the laboratory testing 
should be similar to the specified compliance level in the works. The default compaction level is 
100% standard Proctor MDD. 

8.3.6 Laboratory Compaction of Bituminous-stabilised Pavement Test Specimens 

In Australia, field compaction of bitumen-stabilised pavement materials varies across Australia. Some road 
agencies express compaction in terms standard Proctor (AS 1289.5.1.1-2017), while others use modified 
Proctor (AS 1289.5.2.1-2017). 

In relation to the preparation of the design of foamed bitumen-stabilised mixes, indirect tensile modulus 
specimens, 152 mm in diameter, are compacted using a heavy (10.2 kg) Marshall hammer as described in 
Austroads test method AGPT/T305. It is suggested that the density of these modulus specimens is 
measured as part of the mix design testing to enable comparison to field compaction values. 

8.4 Laboratory Tests Associated with Stabilisation Mix Design 

8.4.1 General 

The principal reasons why a laboratory evaluation of stabilised materials is conducted are to: 

• determine the most appropriate binder type in terms of compatibility with the host material, i.e. does the 
binder work? 

• determine the optimum binder content to achieve the type of stabilised pavement required, i.e. how much 
binder is required? 

• provide parameters for the empirical or mechanistic-empirical design of the road pavement. 

In undertaking laboratory testing for the determination of the mix design there are some tests specifically 
associated with the binder type and other tests (generally structural in nature) associated with all binders. 
Table 8.1 lists Austroads and national standard test procedures appropriate to the evaluation of stabilised 
pavement materials. Note, however, that local road agencies may also have their own version of these test 
procedures. 

In relation to the properties of the materials to be stabilised, properties such as PSD, particle shape, 
durability and plasticity, are described in Guide to Pavement Technology Part 4A: Granular Bases and 
Subbase Materials (Austroads 2008). The standard and modified Proctor laboratory compaction methods are 
also described. 

Table 8.1:  Laboratory test methods for stabilised materials 

Test Test method reference 

Commonly used classification tests 

PSD AS 1289.3.6.1-2009, AS 1141.11-2009, NZS 
4407:1991 

Plasticity (LL, PL, PI, LS) AS 1289.3.1.1-2015, .3.2.1-2009, .3.3.2-2009, 
.3.4.1-2008, .3.9.1-2015 

Particle shape AS 1141.14-2007, .15-1999, .16-2007, .18-1996 

Los Angeles abrasion (LA), crushing value, wet/dry strength 
variation 

AS 1141.21-1997, .22-2008, .23-2009 .24-2013, NZS 
4407:1991 

Compaction (standard Proctor and modified Proctor) AS 1289.5.1.1-2017, .5.2.1-2017, NZS 4407:1991 
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Test Test method reference 

Modified granular mix design 

Californian bearing ratio (CBR) AS 1289.6.1.1-2014, .6.1.2-1998, NZS 4407:1991 

Unconfined compressive strength (UCS) AS 5101.4-2008 

Compressive resilient modulus Austroads AGPT/T053, AS 1289.6.8.1-1995 

Permanent deformation Austroads AGPT/T053, AS 1289.6.8.1-1995, 
Austroads AGPT/T054 

Triaxial shear strength and Texas triaxial test AS 1289.6.4.1-2014, Roads and Maritime 2012e, 
NZS 4402:1986 

Lime and cement content AS 5101.3.1-2008, AS 5101.3.2-2008, AS 5101.3.3-
2008 

Vertical saturation Department of Planning, Transport and Infrastructure 
2014 

Binder leaching AS 4439.3-1997 

Erodibility Roads and Maritime 2012f 

Lightly-bound and bound mix design 

Unconfined compressive strength (UCS) AS 5101.4-2008 

Flexural beam test methods for cemented materials Austroads AGPT/T600 

Indirect tensile modulus AS/NZS 2891.13.1-2013 

Drying shrinkage of stabilised pavement materials AS 1289.3.4.1-2008 

Cement content AS 5101.3.1-2008, AS 5101.3.2-2008, AS 5101.3.3-
2008 

Lime demand Roads and Maritime 2012g 

Available lime AS 4489.6.1-1997 Rec:2016 

Working time TMR 2017, Roads and Maritime 2012h 

Lime stabilised mix design 

Californian bearing ratio (CBR) AS 1289.6.1.1-2014, .6.1.2-1998, NZS 4407:1991 

Unconfined compressive strength (UCS) AS 5101.4-2008 

Lime demand Roads and Maritime 2012g, TMR 2014b, 
VicRoads 2013 

Available lime AS 4489.6.1-1997 Rec:2016 

Capillary rise, absorption and swell AS 5104.5-2008 

Lime content AS 5101.3.1-2008, .3.2-2008 

Foamed bitumen stabilisation mix design 

Determining the foaming characteristics of bitumen Austroads AGPT/T301 

Mixing of foamed bitumen stabilised materials Austroads AGPT/T302 

Compaction of test cylinders of foamed bitumen stabilised 
materials Part 1: dynamic compaction using Marshall drop 
hammer 

Austroads AGPT/T303 

Resilient modulus of foamed bitumen stabilised materials Austroads AGPT/T305 

Working time TMR 2017b 

8.4.2 Lime Demand Test 

The aim of the Lime Demand Test is to identify the quantity of lime needed to reach a pH plateau to produce 
long-term reactions (Figure 4.3). Some materials may not gain strength due to a dominant ion exchange 
process in the presence of organic substances in the material. 
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Typically, testing in the laboratory will involve hydrated lime whilst contractors may use quicklime in the field. 
Therefore, the application rate of quicklime needs to be converted from the rate of hydrated lime used in the 
testing. 

8.4.3 California Bearing Ratio (CBR) 

The California Bearing Ratio (CBR) test (AS 1289.6.1.1-2014) was originally devised to provide a method of 
comparing natural gravel and crushed rock bases, and subsequently developed as a means of assessing 
subgrades for pavement design purposes. In the context of stabilised materials, the test is most commonly 
associated with granular stabilisation of pavement and earthworks materials. It is also used as part of the 
Method B lime stabilisation mix design process (Section 4.8). 

In the laboratory test a cylindrical plunger is penetrated at a standard rate into a compacted, confined sample 
(refer Figure 8.1). The CBR is calculated by expressing the load required to cause a specific penetration as a 
percentage of 13.344 kN, the load required to cause the same penetration in a standard material. The 
standard material, which was a crushed Californian limestone, is defined as having a CBR of 100%. 

The CBR is an empirical value, which unlike modulus, does not accurately relate to any fundamental 
engineering property. Since the material in the test is predominantly subject to shear deformation, the test 
can be regarded as an indirect measure of the shear strength. The test is normally carried out on material 
passing the 19 mm sieve. However, the repeatability on medium- to coarse-grained soils is not as good as 
on fine-grained soils. The advantage of the test lies in the confidence that can be placed in its application as 
a result of its successful use in the field over a long period of time, and under a wide range of conditions. 

Although the standard laboratory test (AS 1289.6.1.1-2014) is usually carried out on soaked specimens, the 
procedure allows samples to be tested at whatever moisture content and density is considered appropriate 
to field conditions (AS 1289.6.1.2-1998 (R2013)). The CBR value will vary according to the conditions of test. 

Figure 8.1: Laboratory measurement of California Bearing Ratio (CBR) 

 
Source: Austroads (2008). 

Tests are undertaken under a condition of both moulded moisture content (generally OMC) and after four or 
10 days of soaking. In addition to the actual CBR value, other useful information includes the increase in 
moisture content under soaking and any vertical swell that has occurred. 
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8.4.4 Unconfined Compressive Strength (UCS) 

The UCS test (AS 5101.4-2008) provides a measure of the maximum vertical stress an unconfined 
cylindrical specimen of rock or bound material can withstand before crushing or collapsing. Test specimens, 
typically with a height to diameter ratio of 2:1 must be capable of standing unsupported in the test equipment 
(Figure 8.2). 

Figure 8.2: UCS test 

 
Source: AustStab (2015). 

This is a simple test to assess the strength of material and for that reason it is commonly used in 
specifications for stabilised materials and also used to define the stabilisation category, viz. modification, 
lightly-bound or bound as detailed in Table 2.1. 

The test can be used to indicate the gain in strength over time associated with cementitious binders, in 
particular slow-setting binders. In addition, the test can also be used to assess the strength development of 
different binders when the pavement temperature is cooler in winter (or warmer in summer). 

Some road agency test methods require the test to be undertaken after soaking in water. 

8.4.5 Repeated Load Triaxial Test 

Engineering considerations of the load-carrying ability of granular stabilised and modified granular materials 
operating under dynamic loading relate to their permanent deformation and resilient modulus. The behaviour 
of a granular material under dynamic wheel stress is complex as it depends not only on the material type but 
also on the moisture/density condition and the way in which the stress is applied. 

In AS 1289.6.8.1-1995 – repeated load triaxial (RLT) laboratory test method (Figure 8.3) – a compacted 
cylindrical specimen of the test material is placed in a triaxial cell in which both the lateral stress and vertical 
stress are applied dynamically. This method uses simple repeated load triaxial equipment which applies 
static confining pressure and uses dynamic vertical stress. 
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Figure 8.3: Repeated load triaxial test equipment 

 
Source: Austroads (2008). 

The same sample preparation and loading apparatus are utilised to determine both the permanent 
deformation and resilient compressive modulus properties from a single specimen prepared to a specified 
density and moisture condition. The permanent deformation measures the vertical permanent strain at three 
stress conditions using three levels of repeated vertical stress and a static lateral stress. Each stress 
condition consists of 10 000 repetitions of vertical stress application. 

A cylindrical sample, 100 mm diameter and 200 mm high, is used, which allows for testing up to 20 mm 
maximum particle size. (Note: there is increasing interest in testing materials up to a maximum size of 
37.5 mm, which requires samples 150 mm in diameter and 300 mm high.) The approximated stress 
conditions include static confining pressure and a range of stress levels for base, upper subbase and lower 
subbase materials. For simplicity, off-sample vertical strain measurement is adopted. This test has been 
found to produce acceptable accuracy of modulus determination up to a maximum of 700–1000 MPa. This 
Austroads test method is not accurate for lightly-bound and bound materials. 

The resilient compressive modulus determination characterises the vertical resilient strain response over 
66 stress conditions using combinations of applied repeated vertical and static lateral stresses. Based on the 
test results, stress-dependent characteristics of both permanent strain and resilient modulus for the 
specimen can be determined. 

8.4.6 Wheel-tracking Test 

For modified materials and granular stabilised materials, the newly-developed wheel-tracking test method 
(AGPT/T054) may be used to characterise resistance to permanent deformation under a rolling wheel load. 

 The test material is compacted into rectangular mould to an appropriate density level using segmental roller 
(Figure 8.4). For each test slab up to 40 000 cycles of loading are applied using a pneumatic tyre loaded to 
8 kN (Figure 8.5). The surface shape is periodically measured. 
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Figure 8.4: Compaction of wheel-tracking test specimens 

 
Source: Austroads (2017c). 

Figure 8.5: Application of rolling wheel load 

 

Source: Austroads (2017c). 
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8.4.7 Indirect Tensile Modulus 

For lightly-bound materials and bound materials, the indirect tensile modulus may be used to determine the 
resilient modulus of cylinders in a similar manner as used for asphalt. Indirect tensile modulus is carried out 
in accordance with AS/NZS 2891.13.1-2013 (Figure 8.6, Figure 8.7). A repeated vertical compressive force 
is applied parallel to and along the vertical diametrical plane and the horizontal displacements are measured 
mid-height through the horizontal diameter. 

Austroads test method AGPT/T305 details the measurement of the indirect tensile modulus of foamed 
bitumen stabilised materials. 

Figure 8.6: Indirect tensile modulus test 

 
Source: AustStab (2015). 

Figure 8.7: Diagrammatic representation of indirect tensile test  

 
Source: Austroads (2014c). 

8.4.8 Flexural Modulus, Strength and Fatigue 

The in-service fatigue performance of cement bound materials can be estimated from their flexural modulus, 
flexural strength and flexural fatigue testing (Austroads 2014a, 2014b, 2018). 

Test slabs are compacted by placing the loose mixture into a rectangular mould 400 mm long x 320 mm 
wide x 145 mm high and compacting the material using a segmental roller, a similar manner to the process 
used to compact asphalt slabs for wheel-tracker testing (Figure 8.8). 
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Test beams, 100 mm square and 400 mm long, are cut from the slabs. 

Figure 8.9 shows the apparatus used to measure the flexural modulus, flexural strength and fatigue life 
(Austroads Test method in press). 

Figure 8.8: Compaction of test slabs from which test beams are sawn 

 
Source; Austroads (2014a). 

Figure 8.9: Flexural modulus, strength and fatigue test 

 
Source: Austroads (2014a). 
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8.4.9 Capillary Rise 

The Capillary Rise test (Figure 8.10) is associated with lime, cement, cementitious and chemical binders. It is 
defined as the ratio, in per cent, of the capillary rise in the specimen to the initial specimen height. 

There is no absolute level of acceptance for capillary rise of stabilised materials. Capillary rise testing is 
currently being undertaken for comparative purposes on large projects for the selection of binder types or 
contents. In addition, current research is studying the rate of capillary rise as well as the absolute value. 

The Australian Standard test (AS 5101.5-2008 (R2017) for capillary rise also determines the absorptivity and 
the swell of the specimen, thus providing additional data. 

Figure 8.10: Capillary rise test 

  
Source: Georgees and Hassan (2017). 

Moisture infiltration effects are critically dependent on: 

• the distribution of air trapped in voids, which varies with the initial moisture content and the time after 
initial wetting 

• the initial moisture content of the soil, i.e. the drier the soil the greater the increase in the rate of wetting 
of the sample 

• the infiltration process, which slows as the period after wetting has commenced becomes longer. 

Remoulding pavement and earthworks material in the laboratory may remove structural discontinuities, 
which, in the field, would greatly accelerate infiltration. 

8.4.10 Vertical Saturation 

The South Australian Department of Planning, Transport and Infrastructure (DPTI) has developed an 
empirical test to determine the effectiveness of a binder and the treated material’s sensitivity to moisture 
(DPTI 2014). 

The method measures the effect of dripping water onto a compacted specimen of stabilised material. The 
effectiveness of the binder is judged by monitoring the time for the specimen to collapse under an annular 
surcharge (Figure 8.11). 
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The method has been developed with particular reference to the evaluation of the suitability of various types 
of proprietary chemical binders (Section 7). 

Figure 8.11: Vertical saturation test 

 
Source: AustStab (2015) based on DPTI (2014). 

8.4.11 Working Time 

Materials stabilised with cement and other cementitious blends need to be compacted before the bonding of 
the particles reaches a stage which inhibits proper compaction. The time available to work the material is 
termed the ‘working time’. 

Whilst several definitions of ‘working time’ appear to be in use, one of the most common in mix design is: 

The nominated working time for any proposed mix is the time measured from the 
commencement of the addition of the binder to the compaction of the stabilised material, 
which corresponds to 80% of the mean value of three determinations of UCS, for 
samples compacted one hour after incorporation of the binder. 

However, other definitions supplement strength with density reduction. For example, TMR test method 
Q136A (TMR 2017a) also defines working time as the time at which the density decreases to 97% of a 
reference density. 

Working time is determined from preparing loose stabilised material sealed in an airtight container and cured 
for designated times at which the density and UCS is to be determined. 

Generally, curing temperatures are specified as 23±2 oC. However, in cool climates a winter-simulated curing 
may be considered, e.g. May to September: 10 o C to 15 o C. 

The determination of working time is illustrated in Figure 8.12. 
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Figure 8.12: Diagrammatic representation for working time of cemented materials 

 
Source: AustStab (2015). 

Materials stabilised with foamed bitumen also need to be compacted within a certain time to ensure uniform 
distribution of the bitumen binder. TMR test method Q136B is an example of the testing process. In this 
method the working time is defined as the time when the three-day soaked indirect tensile modulus is 80% of 
the mean modulus determined on samples compacted one hour after incorporation of the binder. 

The working time is a function of the material and also the ambient conditions and, as a result, allowance 
should be made for temperature and humidity. 

8.4.12 Erodibility 

Erodibility is generally described as a loss of material; it is therefore reported in units of grams/minute to the 
nearest whole number. 

There are no specifications or guidelines published for erosion limits, except for the case where erosion of a 
material needs to be reduced as much as possible, in which case the requirement is for nil erosion. 
However, it may not be possible to achieve such a material state and increasing the amount of binder may 
cause other problems associated with the pavement field performance. An example is increased drying 
shrinkage, which may exacerbate the erosion potential of the pavement by permitting additional moisture into 
the pavement. 

As erosion is sensitive to compaction, it is recommended that, where erosion is considered possible, testing 
be undertaken at a range of densities below the normal testing regime density. 

The only Australian road agency erosion test method is Roads and Maritime test method T186 (Roads and 
Maritime 2012f) (Figure 8.13). Other test methods exist and have been used in Australia and internationally 
(refer Jameson 1995). The Roads and Maritime test method, in its draft form, refers to the collection of ‘fines’ 
from the eroded sample but does not specify a limiting size to the collected fines which are weighed to 
determine the erodibility of the sample. It is suggested that, unless further information is available, the fines 
used for the determination of erodibility be that proportion which passes the 2.36 mm sieve. 
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8.4.13 Leaching 

Leachate concentration, particularly where chemical binders are being considered, can be determined in 
accordance with AS 4439.3-1997. However, this test method is based on a loose sample and results in a 
conservative test result compared to the leaching of compacted material in the roadbed. 

Figure 8.13: Roads and Maritime erodibility test 

 
Source: AustStab (2015). 
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Appendix A Worked Example of Blending Materials to 
Achieve Specification Requirements 

This Appendix presents a worked example in which 70% material ‘A’ (coarse product) is combined with 
30% material ‘B’ (fine product) to achieve a combination PSD to meet a typical basecourse specification. 
Simple spreadsheets can be developed to perform these analyses as shown in Table A 1. 

An example combination particle size analysis is shown in Figure A 1. 

Table A 1: Example calculation – blending two materials 

Material type Mix proportions (%) 
Sieve size (mm) and per cent finer by mass 

0.075 0.300 1.18 2.36 4.75 9.50 19.0 26.5 

PSD of Material A 70 8.0 14.0 27.0 35.0 47.0 74.0 99.0 100.0 

PSD of Material B 30 12.0 27.0 58.0 86.0 100.0 100.0 100.0 100.0 

Combination A +B 70/30 9.2 17.9 36.3 50.3 62.9 81.8 99.3 100.0 

Figure A 1: Example combination particle size analysis 
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