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How can we search for low dimensional structure in high dimensional data? If
the data is mainly confined to a low dimensional subspace, then simple linear
methods can be used to discover the subspace and estimate its dimensionality. More
generally, though, if the data lies on (or near) a low dimensional submanifold, then
its structure may be highly nonlinear, and linear methods are bound to fail.

Spectral methods have recently emerged as a powerful tool for nonlinear dimen-
sionality reduction and manifold learning. These methods are able to reveal low
dimensional structure in high dimensional data from the top or bottom eigenvectors
of specially constructed matrices. To analyze data that lies on a low dimensional
submanifold, the matrices are constructed from sparse weighted graphs whose ver-
tices represent input patterns and whose edges indicate neighborhood relations. The
main computations for manifold learning are based on tractable, polynomial-time
optimizations, such as shortest path problems, least squares fits, semidefinite pro-
gramming, and matrix diagonalization. This chapter provides an overview of unsu-
pervised learning algorithms that can be viewed as spectral methods for linear and
nonlinear dimensionality reduction.

1.1 Introduction

The problem of dimensionality reduction—extracting low dimensional structure
from high dimensional data—arises often in machine learning and statistical patterndimensionality

reduction recognition. High dimensional data takes many different forms: from digital image
libraries to gene expression microarrays, from neuronal population activities to
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financial time series. By formulating the problem of dimensionality reduction in a
general setting, however, we can analyze many different types of data in the same
underlying mathematical framework.

We therefore consider the following problem. Given a high dimensional data
set X = (x1, . . . , xn) of input patterns where xi ∈ Rd, how can we compute n
corresponding output patterns ψi ∈ Rm that provide a “faithful” low dimensional
representation of the original data set with m� d? By faithful, we mean generallyinputs xi ∈ Rd

outputs ψi ∈ Rm that nearby inputs are mapped to nearby outputs, while faraway inputs are mapped
to faraway outputs; we will be more precise in what follows. Ideally, an unsupervised
learning algorithm should also estimate the value of m that is required for a faithful
low dimensional representation. Without loss of generality, we assume everywhere
in this chapter that the inputs are centered on the origin, with

∑
i xi = 0 ∈ Rd.

This chapter provides a survey of so-called spectral methods for dimensionality
reduction, where the low dimensional representations are derived from the top
or bottom eigenvectors of specially constructed matrices. The aim is not to bespectral methods
exhaustive, but to describe the simplest forms of a few representative algorithms
using terminology and notation consistent with the other chapters in this book.
At best, we can only hope to provide a snapshot of the rapidly growing literature
on this subject. An excellent and somewhat more detailed survey of many of these
algorithms is given by Burges [2005]. In the interests of both brevity and clarity,
the examples of nonlinear dimensionality reduction in this chapter were chosen
specifically for their pedagogical value; more interesting applications to data sets
of images, speech, and text can be found in the original papers describing each
method.

The chapter is organized as follows. In section 1.2, we review the classical methods
of principal component analysis (PCA) and metric multidimensional scaling (MDS).
The outputs returned by these methods are related to the input patterns by a simple
linear transformation. The remainder of the chapter focuses on the more interesting
problem of nonlinear dimensionality reduction. In section 1.3, we describe several
graph-based methods that can be used to analyze high dimensional data that
has been sampled from a low dimensional submanifold. All of these graph-based
methods share a similar structure—computing nearest neighbors of the input
patterns, constructing a weighted graph based on these neighborhood relations,
deriving a matrix from this weighted graph, and producing an embedding from the
top or bottom eigenvectors of this matrix. Notwithstanding this shared structure,
however, these algorithms are based on rather different geometric intuitions and
intermediate computations. In section 1.4, we describe kernel-based methods for
nonlinear dimensionality reduction and show how to interpret graph-based methods
in this framework. Finally, in section 1.5, we conclude by contrasting the properties
of different spectral methods and highlighting various ongoing lines of research. We
also point out connections to related work on semi-supervised learning, as described
by other authors in this volume.
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1.2 Linear methods

Principal components analysis (PCA) and metric multidimensional scaling (MDS)
are simple spectral methods for linear dimensionality reduction. As we shall see in
later sections, however, the basic geometric intuitions behind PCA and MDS also
play an important role in many algorithms for nonlinear dimensionality reduction.

1.2.1 Principal components analysis (PCA)

PCA is based on computing the low dimensional representation of a high dimen-
sional data set that most faithfully preserves its covariance structure (up to rota-
tion). In PCA, the input patterns xi ∈ Rd are projected into the m-dimensional
subspace that minimizes the reconstruction error,

minimum
reconstruction
error

EPCA =
∑
i

∥∥∥xi −∑m

α=1
(xi · eα) eα

∥∥∥2

, (1.1)

where the vectors {eα}mα=1 define a partial orthonormal basis of the input space.
From eq. (1.1), one can easily show that the subspace with minimum reconstruction
error is also the subspace with maximum variance. The basis vectors of this subspace
are given by the top m eigenvectors of the d×d covariance matrix,

covariance
matrix

C =
1
n

∑
i

xix
>
i , (1.2)

assuming that the input patterns xi are centered on the origin. The outputs of
PCA are simply the coordinates of the input patterns in this subspace, using the
directions specified by these eigenvectors as the principal axes. Identifying eα as
the αth top eigenvector of the covariance matrix, the output ψi ∈ Rm for the input
pattern xi ∈ Rd has elements ψiα = xi · eα. The eigenvalues of the covariance
matrix in eq. (1.2) measure the projected variance of the high dimensional data
set along the principal axes. Thus, the number of significant eigenvalues measures
the dimensionality of the subspace that contains most of the data’s variance, and a
prominent gap in the eigenvalue spectrum indicates that the data is mainly confined
to a lower dimensional subspace. Fig. 1.1 shows the results of PCA applied to a toy
data set in which the inputs lie within a thin slab of three dimensional space. Here,
a simple linear projection reveals the data’s low dimensional (essentially planar)
structure. More details on PCA can be found in Jolliffe [1986]. We shall see in
section 1.3.2 that the idea of reducing dimensionality by maximizing variance is
also useful for nonlinear dimensionality reduction.

1.2.2 Metric multidimensional scaling (MDS)

Metric MDS is based on computing the low dimensional representation of a high
dimensional data set that most faithfully preserves the inner products between
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Figure 1.1 Results of PCA applied to n = 1600 input patterns in d = 3 dimensions that
lie within a thin slab. The top two eigenvectors of the covariance matrix, denoted by black
arrows, indicate the m = 2 dimensional subspace of maximum variance. The eigenvalues
of the covariance matrix are shown normalized by their sum: each eigenvalue is indicated
by a colored bar whose length reflects its partial contribution to the overall trace of the
covariance matrix. There are two dominant eigenvalues, indicating that the data is very
nearly confined to a plane.

different input patterns. The outputs ψi ∈ Rm of metric MDS are chosen to
minimize:

EMDS =
∑
ij

(xi · xj − ψi · ψj)2. (1.3)

The minimum error solution is obtained from the spectral decomposition of the
Gram matrix of inner products,

Gram
matrix Gij = xi · xj . (1.4)

Denoting the top m eigenvectors of this Gram matrix by {vα}mα=1 and their
respective eigenvalues by {λα}mα=1, the outputs of MDS are given by ψiα =

√
λαvαi.

Though MDS is designed to preserve inner products, it is often motivated by
the idea of preserving pairwise distances. Let Sij = ‖xi − xj‖2 denote the matrixdistance

preservation of squared pairwise distances between input patterns. Often the input to MDS
is specified in this form. Assuming that the inputs are centered on the origin,
a Gram matrix consistent with these squared distances can be derived from the
transformation G = − 1

2 (I − uu>)S(I − uu>), where I is the n× n identity matrix
and u = 1√

n
(1, 1, . . . , 1)> is the uniform vector of unit length. More details on MDS

can be found in Cox and Cox [1994].
Though based on a somewhat different geometric intuition, metric MDS yields

the same outputs ψi ∈ Rm as PCA—essentially a rotation of the inputs followed
by a projection into the subspace with the highest variance. (The outputs of both
algorithms are invariant to global rotations of the input patterns.) The Gram matrix
of metric MDS has the same rank and eigenvalues up to a constant factor as the
covariance matrix of PCA. In particular, letting X denote the d×n matrix of input
patterns, then C = n−1XX> and G = X>X, and the equivalence follows from
singular value decomposition. In both matrices, a large gap between the mth and
(m + 1)th eigenvalues indicates that the high dimensional input patterns lie to a
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good approximation in a lower dimensional subspace of dimensionality m. As we
shall see in sections 1.3.1 and 1.4.1, useful nonlinear generalizations of metric MDS
are obtained by substituting generalized pairwise distances and inner products in
place of Euclidean measurements.

1.3 Graph–based methods

Linear methods such as PCA and metric MDS generate faithful low dimensional
representations when the high dimensional input patterns are mainly confined to
a low dimensional subspace. If the input patterns are distributed more or less
throughout this subspace, the eigenvalue spectra from these methods also reveal the
data set’s intrinsic dimensionality—that is to say, the number of underlying modes
of variability. A more interesting case arises, however, when the input patterns lie
on or near a low dimensional submanifold of the input space. In this case, the
structure of the data set may be highly nonlinear, and linear methods are bound
to fail.

Graph-based methods have recently emerged as a powerful tool for analyzing
high dimensional data that has been sampled from a low dimensional submanifold.
These methods begin by constructing a sparse graph in which the nodes represent
input patterns and the edges represent neighborhood relations. The resulting graph
(assuming, for simplicity, that it is connected) can be viewed as a discretized approx-
imation of the submanifold sampled by the input patterns. From these graphs, one
can then construct matrices whose spectral decompositions reveal the low dimen-
sional structure of the submanifold (and sometimes even the dimensionality itself).
Though capable of revealing highly nonlinear structure, graph-based methods for
manifold learning are based on highly tractable (i.e., polynomial-time) optimiza-
tions such as shortest path problems, least squares fits, semidefinite programming,
and matrix diagonalization. In what follows, we review four broadly representative
graph-based algorithms for manifold learning: Isomap [Tenenbaum et al., 2000],
maximum variance unfolding [Weinberger and Saul, 2005, Sun et al., 2005], locally
linear embedding [Roweis and Saul, 2000, Saul and Roweis, 2003], and Laplacian
eigenmaps [Belkin and Niyogi, 2003].

1.3.1 Isomap

Isomap is based on computing the low dimensional representation of a high dimen-
sional data set that most faithfully preserves the pairwise distances between input
patterns as measured along the submanifold from which they were sampled. Thegeodesic

distances algorithm can be understood as a variant of MDS in which estimates of geodesic
distances along the submanifold are substituted for standard Euclidean distances.
Fig. 1.2 illustrates the difference between these two types of distances for input
patterns sampled from a Swiss roll.

The algorithm has three steps. The first step is to compute the k-nearest
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neighbors of each input pattern and to construct a graph whose vertices represent
input patterns and whose (undirected) edges connect k-nearest neighbors. The
edges are then assigned weights based on the Euclidean distance between nearest
neighbors. The second step is to compute the pairwise distances ∆ij between
all nodes (i, j) along shortest paths through the graph. This can be done using
Djikstra’s algorithm which scales as O(n2 log n + n2k). Finally, in the third step,
the pairwise distances ∆ij from Djikstra’s algorithm are fed as input to MDS,
as described in section 1.2.2, yielding low dimensional outputs ψi ∈ Rm for
which ‖ψi − ψj‖2 ≈ ∆2

ij . The value of m required for a faithful low dimensional
representation can be estimated by the number of significant eigenvalues in the
Gram matrix constructed by MDS.

When it succeeds, Isomap yields a low dimensional representation in which the
Euclidean distances between outputs match the geodesic distances between input
patterns on the submanifold from which they were sampled. Moreover, there are
formal guarantees of convergence [Tenenbaum et al., 2000, Donoho and Grimes,
2002] when the input patterns are sampled from a submanifold that is isometric to
a convex subset of Euclidean space—that is, if the data set has no “holes”. This
condition will be discussed further in section 1.5.

1.3.2 Maximum variance unfolding

Maximum variance unfolding [Weinberger and Saul, 2005, Sun et al., 2005] is based
on computing the low dimensional representation of a high dimensional data set that
most faithfully preserves the distances and angles between nearby input patterns.
Like Isomap, it appeals to the notion of isometry and constructs a Gram matrix

A B

A

B

Figure 1.2 Left: comparison of Euclidean and geodesic distance between two input
patterns A and B sampled from a Swiss roll. Euclidean distance is measured along the
straight line in input space from A to B; geodesic distance is estimated by the shortest path
(in bold) that only directly connects k = 12 nearest neighbors. Right: the low dimensional
representation computed by Isomap for n = 1024 inputs sampled from a Swiss roll. The
Euclidean distances between outputs match the geodesic distances between inputs.
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Figure 1.3 Input patterns sampled from a Swiss roll are “unfolded” by maximizing their
variance subject to constraints that preserve local distances and angles. The middle snap-
shots show various feasible (but non-optimal) intermediate solutions of the optimization
described in section 1.3.2.

whose top eigenvectors yield a low dimensional representation of the data set;
unlike Isomap, however, it does not involve the estimation of geodesic distances.
Instead, the algorithm attempts to “unfold” a data set by pulling the input patterns
apart as far as possible subject to distance constraints that ensure that the final
transformation from input patterns to outputs looks locally like a rotation plus
translation. To picture such a transformation from d=3 to m=2 dimensions, one
can imagine a flag being unfurled by pulling on its four corners (but not so hard as
to introduce any tears).

The first step of the algorithm is to compute the k-nearest neighbors of each
input pattern. A neighborhood-indicator matrix is defined as ηij =1 if and only if
the input patterns xi and xj are k-nearest neighbors or if there exists another input
pattern of which both are k-nearest neighbors; otherwise ηij = 0. The constraints
to preserve distances and angles between k-nearest neighbors can be written as:

‖ψi − ψj‖2 = ‖xi − xj‖2 , (1.5)

for all (i, j) such that ηij=1. To eliminate a translational degree of freedom in the
low dimensional representation, the outputs are also constrained to be centered on
the origin:∑

i

ψi = 0 ∈ Rm. (1.6)

Finally, the algorithm attempts to “unfold” the input patterns by maximizing the
variance of the outputs,

var(ψ) =
∑
i

‖ψi‖2 , (1.7)

while preserving local distances and angles, as in eq. (1.5). Fig. 1.3 illustrates the
connection between maximizing variance and reducing dimensionality.

The above optimization can be reformulated as an instance of semidefinite
programming [Vandenberghe and Boyd, 1996]. A semidefinite program is a linear
program with the additional constraint that a matrix whose elements are linear in
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the optimization variables must be positive semidefinite. Let Kij = ψi · ψj denotesemidefinite
programming the Gram matrix of the outputs. The constraints in eqs. (1.5–1.7) can be written

entirely in terms of the elements of this matrix. Maximizing the variance of
the outputs subject to these constraints turns out to be a useful surrogate for
minimizing the rank of the Gram matrix (which is computationally less tractable).
The Gram matrix K of the “unfolded” input patterns is obtained by solving the
semidefinite program:

Maximize trace(K) subject to:

1) K � 0.
2) ΣijKij = 0.
3) Kii − 2Kij +Kjj = |‖xi − xj‖2 for all (i, j) such that ηij=1.

The first constraint indicates that the matrix K is required to be positive semidef-
inite. As in MDS and Isomap, the outputs are derived from the eigenvalues and
eigenvectors of this Gram matrix, and the dimensionality of the underlying sub-
manifold (i.e., the value of m) is suggested by the number of significant eigenvalues.

1.3.3 Locally linear embedding (LLE)

LLE is based on computing the low dimensional representation of a high dimensional
data set that most faithfully preserves the local linear structure of nearby input
patterns [Roweis and Saul, 2000]. The algorithm differs significantly from Isomap
and maximum variance unfolding in that its outputs are derived from the bottom
eigenvectors of a sparse matrix, as opposed to the top eigenvectors of a (dense)
Gram matrix.

The algorithm has three steps. The first step, as usual, is to compute the
k-nearest neighbors of each high dimensional input pattern xi. In LLE, however,
one constructs a directed graph whose edges indicate nearest neighbor relations
(which may or may not be symmetric). The second step of the algorithm assigns
weights Wij to the edges in this graph. Here, LLE appeals to the intuition that
each input pattern and its k-nearest neighbors can be viewed as samples from a
small linear “patch” on a low dimensional submanifold. Weights Wij are computed
by reconstructing each input pattern xi from its k-nearest neighbors. Specifically,local linear

reconstructions they are chosen to minimize the reconstruction error:

EW =
∑
i

∥∥∥xi −∑
j
Wijxj

∥∥∥2

. (1.8)

The minimization is performed subject to two constraints: (i) Wij = 0 if xj is not
among the k-nearest neighbors of xi; (ii)

∑
jWij = 1 for all i. (A regularizer

can also be added to the reconstruction error if its minimum is not otherwise
well-defined.) The weights thus constitute a sparse matrix W that encodes local
geometric properties of the data set by specifying the relation of each input pattern
xi to its k-nearest neighbors.
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In the third step, LLE derives outputs ψi ∈ Rm that respect (as faithfully as
possible) these same relations to their k-nearest neighbors. Specifically, the outputs
are chosen to minimize the cost function:

Eψ =
∑
i

∥∥∥ψi −∑
j
Wijψj

∥∥∥2

. (1.9)

The minimization is performed subject to two constraints that prevent degenerate
solutions: (i) the outputs are centered,

∑
i ψi = 0 ∈ Rm, and (ii) the outputs have

unit covariance matrix. The d-dimensional embedding that minimizes eq. (1.9) sub-
ject to these constraints is obtained by computing the bottom m+ 1 eigenvectorssparse eigenvalue

problem of the matrix (I−W )>(I−W ). The bottom (constant) eigenvector is discarded,
and the remaining m eigenvectors (each of size n) then yield the low dimensional
outputs ψi ∈Rm. Unlike the top eigenvalues of the Gram matrices in Isomap and
maximum variance unfolding, the bottom eigenvalues of the matrix (I−W )>(I−W )
in LLE do not have a telltale gap that indicates the dimensionality of the under-
lying manifold. Thus the LLE algorithm has two free parameters: the number of
nearest neighbors k and the target dimensionality m.

Fig. 1.4 illustrates one particular intuition behind LLE. The leftmost panel shows
n = 2000 inputs sampled from a Swiss roll, while the rightmost panel shows the two
dimensional representation discovered by LLE, obtained by minimizing eq. (1.9)
subject to centering and orthogonality constraints. The middle panels show the
results of minimizing eq. (1.9) without centering and orthogonality constraints, but
with ` < n randomly chosen outputs constrained to be equal to their corresponding
inputs. Note that in these middle panels, the outputs have the same dimensionality
as the inputs. Thus, the goal of the optimization in the middle panels is not
dimensionality reduction; rather, it is locally linear reconstruction of the entire data
set from a small sub-sample. For sufficiently large `, this alternative optimization
is well-posed, and minimizing eq. (1.9) over the remaining n− ` outputs is done by
solving a simple least squares problem. For ` = n, the outputs of this optimization
are equal to the original inputs; for smaller `, they resemble the inputs, but with
slight errors due to the linear nature of the reconstructions; finally, as ` is decreased
further, the outputs provide an increasingly linearized representation of the original
data set. LLE (shown in the rightmost panel) can be viewed a limit of this procedure
as `→ 0, with none of the outputs clamped to the inputs, but with other constraints
imposed to ensure that the optimization is well-defined.

1.3.4 Laplacian eigenmaps

Laplacian eigenmaps are based on computing the low dimensional representation
of a high dimensional data set that most faithfully preserves proximity relations,
mapping nearby input patterns to nearby outputs. The algorithm has a similar
structure as LLE. First, one computes the k-nearest neighbors of each high dimen-
sional input pattern xi and constructs the symmetric undirected graph whose n
nodes represent input patterns and whose edges indicate neighborhood relations
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Figure 1.4 Intuition behind LLE. Left: n = 2000 input patterns sampled from a Swiss
roll. Middle: results of minimizing of eq. (1.9) with k = 20 nearest neighbors and ` = 25,
` = 15, and ` = 10 randomly chosen outputs (indicated by black landmarks) clamped to
the locations of their corresponding inputs. Right: two dimensional representation obtained
by minimizing eq. (1.9) with no outputs clamped to inputs, but subject to the centering
and orthogonality constraints of LLE.

(in either direction). Second, one assigns positive weights Wij to the edges of this
graph; typically, the values of the weights are either chosen to be constant, say
Wij = 1/k, or exponentially decaying, as Wij = exp(−‖xi − xj‖2/σ2) where σ2 is
a scale parameter. Let D denote the diagonal matrix with elements Dii =

∑
jWij .

In the third step of the algorithm, one obtains the outputs ψi ∈ Rm by minimizing
the cost function:

EL =
∑
ij

Wij ‖ψi − ψj‖2√
DiiDjj

. (1.10)

This cost function encourages nearby input patterns to be mapped to nearby
outputs, with “nearness” measured by the weight matrix W. As in LLE, theproximity-

preserving
embedding

minimization is performed subject to constraints that the outputs are centered and
have unit covariance. The minimum of eq. (1.10) is computed from the bottomm+1
eigenvectors of the matrix L = I −D− 1

2 WD− 1
2 . The matrix L is a symmetrized,

normalized form of the graph Laplacian, given by D−W. As in LLE, the bottom
(constant) eigenvector is discarded, and the remaining m eigenvectors (each of
size n) yield the low dimensional outputs ψi ∈ Rm. Again, the optimization is a
sparse eigenvalue problem that scales relatively well to large data sets.

1.4 Kernel Methods

Suppose we are given a real-valued function k : Rd×Rd → R with the property that
there exists a map Φ : Rd → H into a dot product “feature” space H such that for
all x, x′ ∈ Rd, we have Φ(x) · Φ(x′) = k(x, x′). The kernel function k(x, x′) can be
viewed as a nonlinear similarity measure. Examples of kernel functions that satisfy
the above criteria include the polynomial kernels k(x, x′) = (1+x ·x′)p for positive
integers p and the Gaussian kernels k(x, x′) = exp(−‖x − x′‖2/σ2). Many linear
methods in statistical learning can be generalized to nonlinear settings by employing
the so-called “kernel trick” — namely, substituting these generalized dot products
in feature space for Euclidean dot products in the space of input patterns [Schölkopf
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and Smola, 2002]. In section 1.4.1, we review the nonlinear generalization of
PCA [Schölkopf et al., 1998] obtained in this way, and in section 1.4.2, we discuss the
relation between kernel PCA and the manifold learning algorithms of section 1.3.
Our treatment closely follows that of Ham et al. [2004].

1.4.1 Kernel PCA

Given input patterns (x1, . . . , xn) where xi ∈ Rd, kernel PCA computes the
principal components of the feature vectors (Φ(x1), . . . ,Φ(xn)), where Φ(xi) ∈ H.
Since in general H may be infinite-dimensional, we cannot explicitly construct the
covariance matrix in feature space; instead we must reformulate the problem so
that it can be solved in terms of the kernel function k(x, x′). Assuming that the
data has zero mean in the feature space H, its covariance matrix is given by:

C =
1
n

n∑
i=1

Φ(xi)Φ(xi)>. (1.11)

To find the top eigenvectors of C, we can exploit the duality of PCA and MDS
mentioned earlier in section 1.2.2. Observe that all solutions to Ce = νe with
ν 6= 0 must lie in the span of (Φ(x1), . . . ,Φ(xn)). Expanding the αth eigenvector
as eα =

∑
i vαiΦ(xi) and substituting this expansion into the eigenvalue equation,

we obtain a dual eigenvalue problem for the coefficients vαi, given by Kvα = λαvα,
where λα = nνα and Kij = k(xi, xj) is the so-called kernel matrix—that is, the
Gram matrix in feature space. We can thus interpret kernel PCA as a nonlinear
version of MDS that results from substituting generalized dot products in feature
space for Euclidean dot products in input space [Williams, 2001]. Following the
prescription for MDS in section 1.2.2, we compute the top m eigenvalues and
eigenvectors of the kernel matrix. The low dimensional outputs ψi ∈ Rm of kernel
PCA (or equivalently, kernel MDS) are then given by ψiα =

√
λαvαi.

One modification to the above procedure often arises in practice. In (1.11),
we have assumed that the feature vectors in H have zero mean. In general, we
cannot assume this, and therefore we need to subtract the mean (1/n)

∑
i Φ(xi)

from each feature vector before computing the covariance matrix in eq. (1.11).
This leads to a slightly different eigenvalue problem, where we diagonalize K ′ =
(I − uu>)K(I − uu>) rather than K, where u = 1√

n
(1, . . . , 1)>.

Kernel PCA is often used for nonlinear dimensionality reduction with polynomial
or Gaussian kernels. It is important to realize, however, that these generic kernels
are not particularly well suited to manifold learning, as described in section 1.3.
Fig. 1.5 shows the results of kernel PCA with polynomial (p = 4) and Gaussian
kernels applied to n = 1024 input patterns sampled from a Swiss roll. In neither
case do the top two eigenvectors of the kernel matrix yield a faithful low dimensional
representation of the original input patterns, nor do the eigenvalue spectra suggest
that the input patterns were sampled from a two dimensional submanifold.
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Figure 1.5 Results of kernel PCA with Gaussian and polynomial kernels applied to
n = 1024 input patterns sampled from a Swiss roll. These kernels do not lead to low
dimensional representations that unfold the Swiss roll.

1.4.2 Graph-Based Kernels

All of the algorithms in section 1.3 can be viewed as instances of kernel PCA,
with kernel matrices that are derived from sparse weighted graphs rather than a
pre-defined kernel function [Ham et al., 2004]. Often these kernels are described as
“data-dependent” kernels, because they are derived from graphs that encode the
neighborhood relations of the input patterns in the training set. These kernel ma-
trices may also be useful for other tasks in machine learning besides dimensionality
reduction, such as classification and nonlinear regression [Belkin et al., 2004]. In this
section, we discuss how to interpret the matrices of graph-based spectral methods
as kernel matrices.

The Isomap algorithm in section 1.3.1 computes a low dimensional embedding by
computing shortest paths through a graph and processing the resulting distances
by MDS. The Gram matrix constructed by MDS from these geodesic distances
can be viewed as a kernel matrix. For finite data sets, however, this matrix is not
guaranteed to be positive semidefinite. It should therefore be projected onto the
cone of positive semidefinite matrices before it is used as a kernel matrix in other
settings.

Maximum variance unfolding in section 1.3.2 is based on learning a Gram matrix
by semidefinite programming. The resulting Gram matrix can be viewed as a kernel
matrix. In fact, this line of work was partly inspired by earlier work that used
semidefinite programming to learn a kernel matrix for classification in support
vector machines [Lanckriet et al., 2004].

The algorithms in sections 1.3.3 and 1.3.4 do not explicitly construct a Gram
matrix, but the matrices that they diagonalize can be related to operators on
graphs and interpreted as “inverse” kernel matrices. For example, the discrete graph
Laplacian arises in the description of diffusion on graphs and can be related to
Green’s functions and heat kernels in this way [Kondor and Lafferty, 2002, Coifman
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et al., 2005]. In particular, recall that in Laplacian eigenmaps, low dimensional
representations are derived from the bottom (non-constant) eigenvectors of the
graph Laplacian L. These bottom eigenvectors are equal to the top eigenvectors of
the pseudo-inverse of the Laplacian, L†, which can thus be viewed as a (centered)
kernel matrix for kernel PCA. Moreover, viewing the elements L†ij as inner products,
the squared distances defined by L†ii + L†jj − L†ij − L†ji are in fact proportional to
the round-trip commute times of the continuous-time Markov chain with transition
rate matrix L. The commute times are nonnegative, symmetric, and satisfy the
triangle inequality; thus, Laplacian eigenmaps can be alternately be viewed as MDS
on the metric induced by these graph commute times. (A slight difference is that the
outputs of Laplacian eigenmaps are normalized to have unit covariance, whereas
in MDS the scale of each dimension would be determined by the corresponding
eigenvalue of L†.)

The matrix diagonalized by LLE can also be interpreted as an operator on
graphs, whose pseudo-inverse corresponds to a kernel matrix. The operator does
not generate a simple diffusive process, but in certain cases, it acts similarly to the
square of the graph Laplacian [Ham et al., 2004].

The above analysis provides some insight into the differences between Isomap,
maximum variance unfolding, Laplacian eigenmaps, and LLE. The metrics induced
by Isomap and maximum variance unfolding are related to geodesic and local
distances, respectively, on the submanifold from which the input patterns are
sampled. On the other hand, the metric induced by the graph Laplacian is related
to the commute times of Markov chains; these times involve all the connecting
paths between two nodes on a graph, not just the shortest one. The kernel matrix
induced by LLE is roughly analogous to the square of the kernel matrix induced
by the graph Laplacian. In many applications, the kernel matrices in Isomap and
maximum variance unfolding have telltale gaps in their eigenvalue spectra that
indicate the dimensionality of the underlying submanifold from which the data was
sampled. On the other hand, those from Laplacian eigenmaps and LLE do not
reflect the geometry of the submanifold in this way.

1.5 Discussion

Each of the spectral methods for nonlinear dimensionality reduction has its own
advantages and disadvantages. Some of the differences between the algorithms
have been studied in formal theoretical frameworks, while others have simply
emerged over time from empirical studies. We conclude by briefly contrasting the
statistical, geometrical, and computational properties of different spectral methods
and describing how these differences often play out in practice.

Most theoretical work has focused on the behavior of these methods in the limittheoretical
guarantees n→∞ of large sample size. In this limit, if the input patterns are sampled from a

submanifold of Rd that is isometric to a convex subset of Euclidean space—that is,
if the data set contains no “holes”—then the Isomap algorithm from section 1.3.1
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Figure 1.6 Results of Isomap and maximum variance unfolding on two data sets whose
underlying submanifolds are not isometric to convex subsets of Euclidean space. Left: 1617
input patterns sampled from a trefoil knot. Right: n = 400 images of a teapot rotated
through 360 degrees. The embeddings are shown, as well as the eigenvalues of the Gram
matrices, normalized by their trace. The algorithms estimate the dimensionality of the
underlying submanifold by the number of appreciable eigenvalues. Isomap is foiled in this
case by non-convexity.

will recover this subset up to a rigid motion [Tenenbaum et al., 2000]. Many image
manifolds generated by translations, rotations, and articulations can be shown to fit
into this framework [Donoho and Grimes, 2002]. A variant of LLE known as Hessian
LLE has also been developed with even broader guarantees [Donoho and Grimes,
2003]. Hessian LLE asymptotically recovers the low dimensional parameterization
(up to rigid motion) of any high dimensional data set whose underlying submanifold
is isometric to an open, connected subset of Euclidean space; unlike Isomap, the
subset is not required to be convex.

The asymptotic convergence of maximum variance unfolding has not been studied
in a formal setting. Unlike Isomap, however, the solutions from maximum variance
unfolding in section 1.3.2 are guaranteed to preserve distances between nearest
neighbors for any finite set of n input patterns. Maximum variance unfoldingmanifolds with

“holes” also behaves differently than Isomap on data sets whose underlying submanifold
is isometric to a connected but not convex subset of Euclidean space. Fig. 1.6
contrasts the behavior of Isomap and maximum variance unfolding on two data
sets with this property.

Of the algorithms described in section 1.3, LLE and Laplacian eigenmaps scale
best to moderately large data sets (n < 10000), provided that one uses special-computation
purpose eigensolvers that are optimized for sparse matrices. The internal iterations
of these eigensolvers rely mainly on matrix-vector multiplications which can be done
in O(n). The computation time in Isomap tends to be dominated by the calculation
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of shortest paths. The most computationally intensive algorithm is maximum vari-
ance unfolding, due to the expense of solving semidefinite programs [Vandenberghe
and Boyd, 1996] over n× n matrices.

For significantly larger data sets, all of the above algorithms present serious chal-
lenges: the bottom eigenvalues of LLE and Laplacian eigenmaps can be tightly
spaced, making it difficult to resolve the bottom eigenvectors, and the computa-
tional bottlenecks of Isomap and maximum variance unfolding tend to be pro-
hibitive. Accelerated versions of Isomap and maximum variance unfolding have
been developed by first embedding a small subset of “landmark” input patterns,
then using various approximations to derive the rest of the embedding from the
landmarks. The landmark version of Isomap [de Silva and Tenenbaum, 2003] is
based on the Nyström approximation and scales very well to large data sets [Platt,
2004]; millions of input patterns can be processed in minutes on a PC (though
the algorithm makes the same assumption as Isomap that the data set contains no
“holes”). The landmark version of maximum variance unfolding [Weinberger et al.,
2005] is based on a factorized approximation of the Gram matrix, derived from local
linear reconstructions of the input patterns (as in LLE). It solves a much smaller
SDP that the original algorithm and can handle larger data sets (currently, up to
n = 20000), though it is still much slower than the landmark version of Isomap.
Note that all the algorithms rely as a first step on computing nearest neighbors,
which naively scales as O(n2), but faster algorithms are possible based on special-
ized data structures [Friedman et al., 1977, Gray and Moore, 2001, Beygelzimer
et al., 2004].

Research on spectral methods for dimensionality reduction continues at a rapid
pace. Other algorithms closely related to the ones covered here include hessianrelated work
LLE [Donoho and Grimes, 2003], c-Isomap [de Silva and Tenenbaum, 2003], local
tangent space alignment [Zhang and Zha, 2004], geodesic nullspace analysis [Brand,
2004], and conformal eigenmaps [Sha and Saul, 2005]. Motivation for ongoing work
includes the handling of manifolds with more complex geometries, the need for
robustness to noise and outliers, and the ability to scale to large data sets.

In this chapter, we have focused on nonlinear dimensionality reduction, a problem
in unsupervised learning. Graph-based spectral methods also play an important role
in semi-supervised learning. For example, the eigenvectors of the normalized graph
Laplacian provide an orthonormal basis—ordered by smoothness—for all functions
(including decision boundaries and regressions) defined over the neighborhood
graph of input patterns; see chapter ? by Belkin, Sindhwani, and Niyogi. Likewise,
as discussed in chapter ? by Zhu and Kandola, the kernel matrices learned by
unsupervised algorithms can be transformed by discriminative training for the
purpose of semi-supervised learning. Finally, in chapter ?, Vincent, Bengio, Hein,
and Zien show how shortest-path calculations and multidimensional scaling can
be used to derive more appropriate feature spaces in a semi-supervised setting.
In all these ways, graph-based spectral methods are emerging to address the very
broad class of problems that lie between the extremes of purely supervised and
unsupervised learning.
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