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 23; right 36, 13, and 27); superior frontal gyrus (left
 -9, 31, and 45; right 17, 35, and 37).

 17. Although the improvement in WM performance with
 cholinergic enhancement was a nonsignificant trend
 in the current study (P = 0.07), in a previous study
 (9) with a larger sample (n = 13) the effect was
 highly significant (P < 0.001). In the current study,
 we analyzed RT data for six of our seven subjects
 because the behavioral data for one subject were
 unavailable due to a computer failure. The difference
 in the significance of the two findings is simply a
 result of the difference in sample sizes. A power
 analysis shows that the size of the RT difference and
 variability in the current sample would yield a signif-
 icant result (P = 0.01) with a sample size of 13.
 During the memory trials, mean RT was 1180 ms
 during placebo and 1119 ms during physostigmine.
 During the control trials, mean RT was 735 ms during
 placebo and 709 ms during physostigmine, a differ-
 ence that did not approach significance (P = 0.24),
 suggesting that the effect of cholinergic enhance-
 ment on WM performance is not due to a nonspecific
 increase in arousal.
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 A Global Geometric Framework

 for Nonlinear Dimensionality
 Reduction

 Joshua B. Tenenbaum,l* Vin de Silva,2 John C. Langford3

 Scientists working with large volumes of high-dimensional data, such as global
 climate patterns, stellar spectra, or human gene distributions, regularly con-
 front the problem of dimensionality reduction: finding meaningful low-dimen-
 sional structures hidden in their high-dimensional observations. The human
 brain confronts the same problem in everyday perception, extracting from its
 high-dimensional sensory inputs-30,000 auditory nerve fibers or 106 optic
 nerve fibers-a manageably small number of perceptually relevant features.
 Here we describe an approach to solving dimensionality reduction problems
 that uses easily measured local metric information to learn the underlying
 global geometry of a data set. Unlike classical techniques such as principal
 component analysis (PCA) and multidimensional scaling (MDS), our approach
 is capable of discovering the nonlinear degrees of freedom that underlie com-
 plex natural observations, such as human handwriting or images of a face under
 different viewing conditions. In contrast to previous algorithms for nonlinear
 dimensionality reduction, ours efficiently computes a globally optimal solution,
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 and, for an important class of data
 asymptotically to the true structure.

 A canonical problem in dimensionality re-
 duction from the domain of visual perception
 is illustrated in Fig. 1A. The input consists of
 many images of a person's face observed
 under different pose and lighting conditions,
 in no particular order. These images can be
 thought of as points in a high-dimensional
 vector space, with each input dimension cor-
 responding to the brightness of one pixel in
 the image or the firing rate of one retinal
 ganglion cell. Although the input dimension-
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 manifolds, is guaranteed to converge

 ality may be quite high (e.g., 4096 for these
 64 pixel by 64 pixel images), the perceptually
 meaningful structure of these images has
 many fewer independent degrees of freedom.
 Within the 4096-dimensional input space, all
 of the images lie on an intrinsically three-
 dimensional manifold, or constraint surface,
 that can be parameterized by two pose vari-
 ables plus an azimuthal lighting angle. Our
 goal is to discover, given only the unordered
 high-dimensional inputs, low-dimensional
 representations such as Fig. 1A with coordi-
 nates that capture the intrinsic degrees of
 freedom of a data set. This problem is of
 central importance not only in studies of vi-
 sion (1-5), but also in speech (6, 7), motor
 control (8, 9), and a range of other physical
 and biological sciences (10-12).
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 The classical techniques for dimensional-
 ity reduction, PCA and MDS, are simple to
 implement, efficiently computable, and guar-
 anteed to discover the true structure of data

 lying on or near a linear subspace of the
 high-dimensional input space (13). PCA
 finds a low-dimensional embedding of the
 data points that best preserves their variance
 as measured in the high-dimensional input
 space. Classical MDS finds an embedding
 that preserves the interpoint distances, equiv-
 alent to PCA when those distances are Eu-

 clidean. However, many data sets contain
 essential nonlinear structures that are invisi-

 ble to PCA and MDS (4, 5, 11, 14). For
 example, both methods fail to detect the true
 degrees of freedom of the face data set (Fig.
 1A), or even its intrinsic three-dimensionality
 (Fig. 2A).

 Here we describe an approach that com-
 bines the major algorithmic features of PCA
 and MDS-computational efficiency, global
 optimality, and asymptotic convergence guar-
 antees-with the flexibility to learn a broad
 class of nonlinear manifolds. Figure 3A illus-
 trates the challenge of nonlinearity with data
 lying on a two-dimensional "Swiss roll": points
 far apart on the underlying manifold, as mea-
 sured by their geodesic, or shortest path, dis-
 tances, may appear deceptively close in the
 high-dimensional input space, as measured by
 their straight-line Euclidean distance. Only the
 geodesic distances reflect the true low-dimen-
 sional geometry of the manifold, but PCA and
 MDS effectively see just the Euclidean struc-
 ture; thus, they fail to detect the intrinsic two-
 dimensionality (Fig. 2B).

 Our approach builds on classical MDS but
 seeks to preserve the intrinsic geometry of the
 data, as captured in the geodesic manifold
 distances between all pairs of data points. The
 crux is estimating the geodesic distance be-
 tween faraway points, given only input-space
 distances. For neighboring points, input-
 space distance provides a good approxima-
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 tion to geodesic distance. For faraway points,
 geodesic distance can be approximated by
 adding up a sequence of "short hops" be-
 tween neighboring points. These approxima-
 tions are computed efficiently by finding
 shortest paths in a graph with edges connect-
 ing neighboring data points.

 The complete isometric feature mapping,
 or Isomap, algorithm has three steps, which
 are detailed in Table 1. The first step deter-
 mines which points are neighbors on the
 manifold M, based on the distances dx(ij)
 between pairs of points i,j in the input space

 REPORTS

 X. Two simple methods are to connect each
 point to all points within some fixed radius E,
 or to all of its K nearest neighbors (15). These
 neighborhood relations are represented as a
 weighted graph G over the data points, with
 edges of weight d(i,j) between neighboring
 points (Fig. 3B).

 In its second step, Isomap estimates the
 geodesic distances dM(ij) between all pairs
 of points on the manifold M by computing
 their shortest path distances d(i,j) in the
 graph G. One simple algorithm (16) for find-
 ing shortest paths is given in Table 1.

 The final step applies classical MDS to
 the matrix of graph distances DG = {dG(i,j)},
 constructing an embedding of the data in a
 d-dimensional Euclidean space Y that best
 preserves the manifold's estimated intrinsic
 geometry (Fig. 3C). The coordinate vectors y,
 for points in Y are chosen to minimize the
 cost function

 E = IIT(D) - T(D,))IIL2 (1)

 where Dy denotes the matrix of Euclidean
 distances {dy(i,j) = Ily| - y,ll} and IA11L2
 the L2 matrix norm /'Y,. A.. The r operator

 Fig. 1. (A) A canonical dimensionality reduction
 problem from visual perception. The input consists
 of a sequence of 4096-dimensional vectors, rep-
 resenting the brightness values of 64 pixel by 64
 pixel images of a face rendered with different
 poses and lighting directions. Applied to N = 698
 raw images, Isomap (K = 6) learns a three-dimen-
 sional embedding of the data's intrinsic geometric
 structure. A two-dimensional projection is shown,
 with a sample of the original input images (red
 circles) superimposed on all the data points (blue)
 and horizontal sliders (under the images) repre-
 senting the third dimension. Each coordinate axis
 of the embedding correlates highly with one de-
 gree of freedom underlying the original data: left-
 right pose (x axis, R = 0.99), up-down pose (y
 axis, R = 0.90), and lighting direction (slider posi-
 tion, R = 0.92). The input-space distances dx(ij)
 given to Isomap were Euclidean distances be-
 tween the 4096-dimensional image vectors. (B)
 Isomap applied to N = 1000 handwritten "2"s
 from the MNIST database (40). The two most
 significant dimensions in the Isomap embedding,
 shown here, articulate the major features of the
 "2": bottom loop (x axis) and top arch (y axis).
 Input-space distances dx(ij) were measured by
 tangent distance, a metric designed to capture the
 invariances relevant in handwriting recognition
 (41). Here we used e-lsomap (with e = 4.2) be-
 cause we did not expect a constant dimensionality
 to hold over the whole data set; consistent with
 this, Isomap finds several tendrils projecting from
 the higher dimensional mass of data and repre-
 senting successive exaggerations of an extra
 stroke or ornament in the digit.
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 REPORTS

 converts distances to inner products (17),
 which uniquely characterize the geometry of
 the data in a form that supports efficient
 optimization. The global minimum of Eq. 1 is
 achieved by setting the coordinates Yi to the
 top d eigenvectors of the matrix T(DG) (13).

 As with PCA or MDS, the true dimen-
 sionality of the data can be estimated from
 the decrease in error as the dimensionality of
 Y is increased. For the Swiss roll, where
 classical methods fail, the residual variance
 of Isomap correctly bottoms out at d = 2
 (Fig. 2B).

 Just as PCA and MDS are guaranteed,
 given sufficient data, to recover the true
 structure of linear manifolds, Isomap is guar-
 anteed asymptotically to recover the true di-
 mensionality and geometric structure of a
 strictly larger class of nonlinear manifolds.
 Like the Swiss roll, these are manifolds

 whose intrinsic geometry is that of a convex
 region of Euclidean space, but whose ambi-
 ent geometry in the high-dimensional input
 space may be highly folded, twisted, or
 curved. For non-Euclidean manifolds, such as
 a hemisphere or the surface of a doughnut,
 Isomap still produces a globally optimal low-
 dimensional Euclidean representation, as
 measured by Eq. 1.

 These guarantees of asymptotic conver-
 gence rest on a proof that as the number of
 data points increases, the graph distances
 dG(i,j) provide increasingly better approxi-
 mations to the intrinsic geodesic distances
 dM,(i,j), becoming arbitrarily accurate in the
 limit of infinite data (18, 19). How quickly
 dG(ij) converges to dM(i,j) depends on cer-
 tain parameters of the manifold as it lies
 within the high-dimensional space (radius of
 curvature and branch separation) and on the

 Fig. 2. The residual 0.7 .?. ... 0.25 ..
 variance of PCA (open 0.6 A 0. B
 triangles), MDS [open 05 0.2
 triangles in (A) through 0.15
 (C); open circles in (D)], 0.4 -
 and Isomap (filled cir- 0.3 0.1
 cles) on four data sets 0.2
 (42). (A) Face images 0.05
 varying in pose and il- . . ^ ^ A
 lumination (Fig. 1A). 1 2 3 4 5 7 10 126789 10
 (B) Swiss roll data (Fig. ' 4
 3). (C) Hand images 0.5 . . .. ... . 0.8
 varying in finger exten-
 sion and wrist rotation - 0.4
 (20). (D) Handwritten 0.6
 2"s (Fig. 1B). In all cas- 0-3
 es, residual variance de- 0.2 . 0.4
 creases as the dimen-

 sionality d is increased. 0.1-
 The intrinsic dimen- 2 0
 sionality of the data 12345678910 1 2 3 4 5 6 7 8 9 10
 can be estimated by Dim
 looking for the "elbow" Dimension
 at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
 approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
 dimensionality, in contrast to Isomap.

 A  B

 density of points. To the extent that a data set
 presents extreme values of these parameters
 or deviates from a uniform density, asymp-
 totic convergence still holds in general, but
 the sample size required to estimate geodes-
 ic distance accurately may be impractically
 large.

 Isomap's global coordinates provide a
 simple way to analyze and manipulate high-
 dimensional observations in terms of their

 intrinsic nonlinear degrees of freedom. For a
 set of synthetic face images, known to have
 three degrees of freedom, Isomap correctly
 detects the dimensionality (Fig. 2A) and sep-
 arates out the true underlying factors (Fig.
 1A). The algorithm also recovers the known
 low-dimensional structure of a set of noisy
 real images, generated by a human hand vary-
 ing in finger extension and wrist rotation
 (Fig. 2C) (20). Given a more complex data
 set of handwritten digits, which does not have
 a clear manifold geometry, Isomap still finds
 globally meaningful coordinates (Fig. 1B)
 and nonlinear structure that PCA or MDS do

 not detect (Fig. 2D). For all three data sets,
 the natural appearance of linear interpolations
 between distant points in the low-dimension-
 al coordinate space confirms that Isomap has
 captured the data's perceptually relevant
 structure (Fig. 4).

 Previous attempts to extend PCA and
 MDS to nonlinear data sets fall into two

 broad classes, each of which suffers from
 limitations overcome by our approach. Local
 linear techniques (21-23) are not designed to
 represent the global structure of a data set
 within a single coordinate system, as we do in
 Fig. 1. Nonlinear techniques based on greedy
 optimization procedures (24-30) attempt to
 discover global structure, but lack the crucial
 algorithmic features that Isomap inherits
 from PCA and MDS: a noniterative, polyno-
 mial time procedure with a guarantee of glob-
 al optimality; for intrinsically Euclidean man-

 C
 ...

 .-?? ?-? ??, ,?. ?? ????- ?-- ?? ?? ).* \: ?? r ? ?.. ?.= ?
 r-? ; \'.? -?_?? ?;

 I

 ?? . ? ?? t I
 ?t ?. r ?: ??\??' ??? )+ 4 ???? ?  t .t ,, t;; \,f ., ? ??1
 ?: _? :? . ; , )= `r? '.?.. z ?? '2,1 ?? ??

 ?

 '? i: L???; ?
 L??? .? ::

 ) ??r ?... : e ??*,
 ??? r, r, 'r ?.

 : :  ?t,r
 Y.' ? ?- T ?r?)?

 ??? ?? ?? i f. ?? ?? /I? ? i. .??? ???? r? ?i .???? G`\? i 15 (,
 ?? )??\?? ?I'? . , I: ?? ,??

 .. ?c ,s
 ,, 2. r ?, .? s.(\ ??

 !`L .?-Z i i.C-..:? ?
 ??? ? ?, ? I r. , . i '3 ? ??? '5 ???-r?: 4 Z '???

 Fig. 3. The "Swiss roll" data set, illustrating how Isomap exploits geodesic
 paths for nonlinear dimensionality reduction. (A) For two arbitrary points
 (circled) on a nonlinear manifold, their Euclidean distance in the high-
 dimensional input space (length of dashed line) may not accurately
 reflect their intrinsic similarity, as measured by geodesic distance along
 the low-dimensional manifold (length of solid curve). (B) The neighbor-
 hood graph G constructed in step one of Isomap (with K = 7 and N =

 1000 data points) allows an approximation (red segments) to the true
 geodesic path to be computed efficiently in step two, as the shortest
 path in G. (C) The two-dimensional embedding recovered by Isomap in
 step three, which best preserves the shortest path distances in the
 neighborhood graph (overlaid). Straight lines in the embedding (blue)
 now represent simpler and cleaner approximations to the true geodesic
 paths than do the corresponding graph paths (red).
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 Table 1. The Isomap algorithm takes as input the distances dx(i,j) between all pairs i,j from N data points
 in the high-dimensional input space X, measured either in the standard Euclidean metric (as in Fig. 1A)
 or in some domain-specific metric (as in Fig. 1B). The algorithm outputs coordinate vectors yi in a
 d-dimensional Euclidean space Y that (according to Eq. 1) best represent the intrinsic geometry of the
 data. The only free parameter (e or K) appears in Step 1.

 Step

 1 Construct neighborhood graph

 2 Compute shortest paths

 3 Construct d-dimensional embedding

 A

 ... ill .

 B

 U . ... ..... ..... .....

 Fig. 4. Interpolations along straight lines in
 the Isomap coordinate space (analogous to
 the blue line in Fig. 3C) implement perceptu-
 ally natural but highly nonlinear "morphs" of
 the corresponding high-dimensional observa-
 tions (43) by transforming them approxi-
 mately along geodesic paths (analogous to
 the solid curve in Fig. 3A). (A) Interpolations
 in a three-dimensional embedding of face
 images (Fig. 1A). (B) Interpolations in a four-
 dimensional embedding of hand images (20)
 appear as natural hand movements when
 viewed in quick succession, even though no
 such motions occurred in the observed data. (C)
 Interpolations in a six-dimensional embedding of
 handwritten "2"s (Fig. 1B) preserve continuity not
 only in the visual features of loop and arch artic-
 ulation, but also in the implied pen trajectories,
 which are the true degrees of freedom underlying
 those appearances.

 Define the graph G over all data points by connecting
 points i andj if [as measured by dx(i,j)] they are
 closer than E (e-lsomap), or if i is one of the K
 nearest neighbors ofj (K-lsomap). Set edge lengths
 equal to dx(i,j).

 Initialize dG(i,j) = dx(i,j) if i,j are linked by an edge;
 dG(i,j) = oo otherwise. Then for each value of k =
 1, 2, ..., N in turn, replace all entries dG(i,j) by
 min{dG(i,j), d(i,k) + dG(k,j)). The matrix of final
 values DG = (dG(i,j)) will contain the shortest path
 distances between all pairs of points in G (16, 19).

 Let p be the p-th eigenvalue (in decreasing order) of
 the matrix T(DG) (17), and vp be the i-th
 component of the p-th eigenvector. Then set the
 p-th component of the d-dimensional coordinate
 vector y, equal to VTv. p p'

 ifolds, a guarantee of asymptotic conver-
 gence to the true structure; and the ability to
 discover manifolds of arbitrary dimensional-
 ity, rather than requiring a fixed d initialized
 from the beginning or computational resourc-
 es that increase exponentially in d.

 Here we have demonstrated Isomap's per-
 formance on data sets chosen for their visu-

 ally compelling structures, but the technique
 may be applied wherever nonlinear geometry
 complicates the use of PCA or MDS. Isomap
 complements, and may be combined with,
 linear extensions of PCA based on higher
 order statistics, such as independent compo-
 nent analysis (31, 32). It may also lead to a
 better understanding of how the brain comes
 to represent the dynamic appearance of ob-
 jects, where psychophysical studies of appar-
 ent motion (33, 34) suggest a central role for
 geodesic transformations on nonlinear mani-
 folds (35) much like those studied here.
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 each algorithm. D5 is each algorithm's best estimate
 of the intrinsic manifold distances: for Isomap, this is
 the graph distance matrix DG; for PCA and MDS, it is
 the Euclidean input-space distance matrix Dx (except
 with the handwritten "2"s, where MDS uses the
 tangent distance). R is the standard linear correlation
 coefficient, taken over all entries of 5M and Dr

 43. In each sequence shown, the three intermediate im-
 ages are those closest to the points 1/4, 1/2, and 3/4
 of the way between the given endpoints. We can also
 synthesize an explicit mapping from input space X to
 the low-dimensional embedding Y, or vice versa, us-
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 Nonlinear Dimensionality
 Reduction by

 Locally Linear Embedding
 Sam T. Roweis' and Lawrence K. Saul2

 Many areas of science depend on exploratory data analysis and visualization.
 The need to analyze large amounts of multivariate data raises the fundamental
 problem of dimensionality reduction: how to discover compact representations
 of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
 unsupervised learning algorithm that computes low-dimensional, neighbor-
 hood-preserving embeddings of high-dimensional inputs. Unlike clustering
 methods for local dimensionality reduction, LLE maps its inputs into a single
 global coordinate system of lower dimensionality, and its optimizations do not
 involve local minima. By exploiting the local symmetries of linear reconstruc-
 tions, LLE is able to learn the global structure of nonlinear manifolds, such as
 those generated by images of faces or documents of text.
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 How do we judge similarity? Our mental
 representations of the world are formed by
 processing large numbers of sensory in-
 puts-including, for example, the pixel in-
 tensities of images, the power spectra of
 sounds, and the joint angles of articulated
 bodies. While complex stimuli of this form can
 be represented by points in a high-dimensional
 vector space, they typically have a much more
 compact description. Coherent structure in the
 world leads to strong correlations between in-
 puts (such as between neighboring pixels in
 images), generating observations that lie on or
 close to a smooth low-dimensional manifold.

 To compare and classify such observations-in
 effect, to reason about the world-depends
 crucially on modeling the nonlinear geometry
 of these low-dimensional manifolds.

 Scientists interested in exploratory analysis
 or visualization of multivariate data (1) face a
 similar problem in dimensionality reduction.
 The problem, as illustrated in Fig. 1, involves
 mapping high-dimensional inputs into a low-
 dimensional "description" space with as many

 'Gatsby Computational Neuroscience Unit, Universi-
 ty College London, 17 Queen Square, London WC1N
 3AR, UK. 2AT&T Lab-Research, 180 Park Avenue,
 Florham Park, NJ 07932, USA.

 E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
 att.com (LK.S.)

 How do we judge similarity? Our mental
 representations of the world are formed by
 processing large numbers of sensory in-
 puts-including, for example, the pixel in-
 tensities of images, the power spectra of
 sounds, and the joint angles of articulated
 bodies. While complex stimuli of this form can
 be represented by points in a high-dimensional
 vector space, they typically have a much more
 compact description. Coherent structure in the
 world leads to strong correlations between in-
 puts (such as between neighboring pixels in
 images), generating observations that lie on or
 close to a smooth low-dimensional manifold.

 To compare and classify such observations-in
 effect, to reason about the world-depends
 crucially on modeling the nonlinear geometry
 of these low-dimensional manifolds.

 Scientists interested in exploratory analysis
 or visualization of multivariate data (1) face a
 similar problem in dimensionality reduction.
 The problem, as illustrated in Fig. 1, involves
 mapping high-dimensional inputs into a low-
 dimensional "description" space with as many

 'Gatsby Computational Neuroscience Unit, Universi-
 ty College London, 17 Queen Square, London WC1N
 3AR, UK. 2AT&T Lab-Research, 180 Park Avenue,
 Florham Park, NJ 07932, USA.

 E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
 att.com (LK.S.)

 coordinates as observed modes of variability.
 Previous approaches to this problem, based on
 multidimensional scaling (MDS) (2), have
 computed embeddings that attempt to preserve
 pairwise distances [or generalized disparities
 (3)] between data points; these distances are
 measured along straight lines or, in more so-
 phisticated usages of MDS such as Isomap (4),
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 along shortest paths confined to the manifold of
 observed inputs. Here, we take a different ap-
 proach, called locally linear embedding (LLE),
 that eliminates the need to estimate pairwise
 distances between widely separated data points.
 Unlike previous methods, LLE recovers global
 nonlinear structure from locally linear fits.

 The LLE algorithm, summarized in Fig.
 2, is based on simple geometric intuitions.
 Suppose the data consist of N real-valued
 vectors Xi, each of dimensionality D, sam-
 pled from some underlying manifold. Pro-
 vided there is sufficient data (such that the
 manifold is well-sampled), we expect each
 data point and its neighbors to lie on or
 close to a locally linear patch of the mani-
 fold. We characterize the local geometry of
 these patches by linear coefficients that
 reconstruct each data point from its neigh-
 bors. Reconstruction errors are measured

 by the cost function
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 which adds up the squared distances between
 all the data points and their reconstructions. The

 weights Wij summarize the contribution of the
 jth data point to the ith reconstruction. To com-

 pute the weights Wij, we minimize the cost
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 Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
 data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
 discover the global internal coordinates of the manifold without signals that explicitly indicate how
 the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
 preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
 single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
 classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
 underlying structure of the manifold. Note that mixture models for local dimensionality reduction
 (29), which cluster the data and perform PCA within each cluster, do not address the problem
 considered here: namely, how to map high-dimensional data into a single global coordinate system
 of lower dimensionality.
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