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What is “nonlinear dimensionality reduction?”

High-dimensional data
Low-dimensional

embedding
NDR

(Manifold Learning)

• We often suspect that high-dim may actually lie on or near a 
low-dim manifold (often much lower!)

• It would be useful if we could reparametrize the data in terms of 
this manifold, yielding a low-dim embedding

• BUT - we typically don’t know the form of this manifold
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Why might this be useful?

• The variation observed in high-dimensional signals often has 
much lower-dimensional explanation

• Discovering these modes of variation helps us understand the 
underlying structure of the data and the process that generated it

- Visualization of high-dimensional data

- Machine learning and pattern recognition

ifolds, a guarantee of asymptotic conver-
gence to the true structure; and the ability to
discover manifolds of arbitrary dimensional-
ity, rather than requiring a fixed d initialized
from the beginning or computational resourc-
es that increase exponentially in d.

Here we have demonstrated Isomap’s per-
formance on data sets chosen for their visu-
ally compelling structures, but the technique
may be applied wherever nonlinear geometry
complicates the use of PCA or MDS. Isomap
complements, and may be combined with,
linear extensions of PCA based on higher
order statistics, such as independent compo-
nent analysis (31, 32). It may also lead to a
better understanding of how the brain comes
to represent the dynamic appearance of ob-
jects, where psychophysical studies of appar-
ent motion (33, 34) suggest a central role for
geodesic transformations on nonlinear mani-
folds (35) much like those studied here.

References and Notes
1. M. P. Young, S. Yamane, Science 256, 1327 (1992).
2. R. N. Shepard, Science 210, 390 (1980).
3. M. Turk, A. Pentland, J. Cogn. Neurosci. 3, 71 (1991).
4. H. Murase, S. K. Nayar, Int. J. Comp. Vision 14, 5
(1995).

5. J. W. McClurkin, L. M. Optican, B. J. Richmond, T. J.
Gawne, Science 253, 675 (1991).

6. J. L. Elman, D. Zipser, J. Acoust. Soc. Am. 83, 1615
(1988).

7. W. Klein, R. Plomp, L. C. W. Pols, J. Acoust. Soc. Am.
48, 999 (1970).

8. E. Bizzi, F. A. Mussa-Ivaldi, S. Giszter, Science 253, 287
(1991).

9. T. D. Sanger, Adv. Neural Info. Proc. Syst. 7, 1023
(1995).

10. J. W. Hurrell, Science 269, 676 (1995).
11. C. A. L. Bailer-Jones, M. Irwin, T. von Hippel, Mon.
Not. R. Astron. Soc. 298, 361 (1997).

12. P. Menozzi, A. Piazza, L. Cavalli-Sforza, Science 201,
786 (1978).

13. K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate
Analysis, (Academic Press, London, 1979).

14. A. H. Monahan, J. Clim., in press.
15. The scale-invariant K parameter is typically easier to
set than !, but may yield misleading results when the

local dimensionality varies across the data set. When
available, additional constraints such as the temporal
ordering of observations may also help to determine
neighbors. In earlier work (36) we explored a more
complex method (37), which required an order of
magnitude more data and did not support the theo-
retical performance guarantees we provide here for
!- and K-Isomap.

16. This procedure, known as Floyd’s algorithm, requires
O(N3) operations. More efficient algorithms exploit-
ing the sparse structure of the neighborhood graph
can be found in (38).

17. The operator " is defined by "(D) # $HSH/2, where S
is the matrix of squared distances {Sij # Di j

2}, and H is
the “centering matrix” {Hij # %ij $ 1/N} (13).

18. Our proof works by showing that for a sufficiently
high density (&) of data points, we can always choose
a neighborhood size (! or K) large enough that the
graph will (with high probability) have a path not
much longer than the true geodesic, but small
enough to prevent edges that “short circuit” the true
geometry of the manifold. More precisely, given ar-
bitrarily small values of '1, '2, and (, we can guar-
antee that with probability at least 1 $ (, estimates
of the form

)1 ! '1*dM)i, j* " dG)i, j* " )1 # '2*dM)i, j*

will hold uniformly over all pairs of data points i, j. For
!-Isomap, we require

! " )2/+*r0!24'1, ! $ s0,

& % ,log)V/(-d)'2!/16*d*./-d)'2!/8*d

where r0 is the minimal radius of curvature of the
manifold M as embedded in the input space X, s0 is
the minimal branch separation of M in X, V is the
(d-dimensional) volume ofM, and (ignoring boundary
effects) -d is the volume of the unit ball in Euclidean
d-space. For K-Isomap, we let ! be as above and fix
the ratio (K / 1)/& # -d(!/2)

d/2. We then require

e!)K#1*/4 " (-d)!/4*d/4V,

)e/4*)K#1*/ 2 " (-d)!/8*d/16V,

& % ,4 log)8V/(-d)'2!/32+*d*./-d)'2!/16+*d

The exact content of these conditions—but not their
general form—depends on the particular technical
assumptions we adopt. For details and extensions to
nonuniform densities, intrinsic curvature, and bound-
ary effects, see http://isomap.stanford.edu.

19. In practice, for finite data sets, dG(i, j) may fail to
approximate dM(i, j) for a small fraction of points that
are disconnected from the giant component of the
neighborhood graph G. These outliers are easily de-
tected as having infinite graph distances from the
majority of other points and can be deleted from
further analysis.

20. The Isomap embedding of the hand images is avail-
able at Science Online at www.sciencemag.org/cgi/
content/full/290/5500/2319/DC1. For additional
material and computer code, see http://isomap.
stanford.edu.

21. R. Basri, D. Roth, D. Jacobs, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (1998), pp. 414–420.

22. C. Bregler, S. M. Omohundro, Adv. Neural Info. Proc.
Syst. 7, 973 (1995).

23. G. E. Hinton, M. Revow, P. Dayan, Adv. Neural Info.
Proc. Syst. 7, 1015 (1995).

24. R. Durbin, D. Willshaw, Nature 326, 689 (1987).
25. T. Kohonen, Self-Organisation and Associative Mem-
ory (Springer-Verlag, Berlin, ed. 2, 1988), pp. 119–
157.

26. T. Hastie, W. Stuetzle, J. Am. Stat. Assoc. 84, 502
(1989).

27. M. A. Kramer, AIChE J. 37, 233 (1991).
28. D. DeMers, G. Cottrell, Adv. Neural Info. Proc. Syst. 5,
580 (1993).

29. R. Hecht-Nielsen, Science 269, 1860 (1995).
30. C. M. Bishop, M. Svensén, C. K. I. Williams, Neural
Comp. 10, 215 (1998).

31. P. Comon, Signal Proc. 36, 287 (1994).
32. A. J. Bell, T. J. Sejnowski, Neural Comp. 7, 1129
(1995).

33. R. N. Shepard, S. A. Judd, Science 191, 952 (1976).
34. M. Shiffrar, J. J. Freyd, Psychol. Science 1, 257 (1990).

Table 1. The Isomap algorithm takes as input the distances dX(i, j ) between all pairs i, j from N data points
in the high-dimensional input space X, measured either in the standard Euclidean metric (as in Fig. 1A)
or in some domain-specific metric (as in Fig. 1B). The algorithm outputs coordinate vectors yi in a
d-dimensional Euclidean space Y that (according to Eq. 1) best represent the intrinsic geometry of the
data. The only free parameter (! or K ) appears in Step 1.

Step

1 Construct neighborhood graph Define the graph G over all data points by connecting
points i and j if [as measured by dX(i, j )] they are
closer than ! (!-Isomap), or if i is one of the K
nearest neighbors of j (K-Isomap). Set edge lengths
equal to dX(i, j).

2 Compute shortest paths Initialize dG(i, j) # dX(i, j) if i, j are linked by an edge;
dG(i, j) # 0 otherwise. Then for each value of k #
1, 2, . . ., N in turn, replace all entries dG(i, j) by
min{dG(i, j), dG(i,k) / dG(k, j)}. The matrix of final
values DG # {dG(i, j)} will contain the shortest path
distances between all pairs of points in G (16, 19).

3 Construct d-dimensional embedding Let 'p be the p-th eigenvalue (in decreasing order) of
the matrix "(DG) (17 ), and v p

i be the i-th
component of the p-th eigenvector. Then set the
p-th component of the d-dimensional coordinate
vector yi equal to 1'pvp

i .

Fig. 4. Interpolations along straight lines in
the Isomap coordinate space (analogous to
the blue line in Fig. 3C) implement perceptu-
ally natural but highly nonlinear “morphs” of
the corresponding high-dimensional observa-
tions (43) by transforming them approxi-
mately along geodesic paths (analogous to
the solid curve in Fig. 3A). (A) Interpolations
in a three-dimensional embedding of face
images (Fig. 1A). (B) Interpolations in a four-
dimensional embedding of hand images (20)
appear as natural hand movements when
viewed in quick succession, even though no
such motions occurred in the observed data. (C)
Interpolations in a six-dimensional embedding of
handwritten “2”s (Fig. 1B) preserve continuity not
only in the visual features of loop and arch artic-
ulation, but also in the implied pen trajectories,
which are the true degrees of freedom underlying
those appearances.

R E P O R T S

22 DECEMBER 2000 VOL 290 SCIENCE www.sciencemag.org2322

64x64 pixel images parametrized by just 3 
variables (pose and lighting direction)
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Okay, so how do we learn the embedding?

A Global Geometric Framework for Nonlinear 
Dimensionality Reduction

Nonlinear Dimensionality Reduction by 
Locally Linear Embedding

Tenenbaum, de Silva and Langford
Science (Vol. 290, Dec 2000, 2319-2323)

Roweis and Saul
Science (Vol. 290, Dec 2000, 2323-2327)

• Given high-dim data sampled from an unknown low-dim 
manifold, how can we automatically recover a good embedding?
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Outline

• Linear subspace embedding

- Principal Components Analysis (PCA)

- Metric Multidimensional Scaling (MDS)

• Non-linear manifold learning

- Isomap (Tenenbaum et al.)

- Locally Linear Embedding (Roweis et al.)

• Some examples
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An excellent tutorial ...

Spectral Methods for
Dimensionality Reduction

Prof. Lawrence Saul
Dept of Computer & Information Science

University of Pennsylvania

NIPS*05 Tutorial, December 5, 2005

Neural Information
Processing Systems
Conference

... from which I have borrowed liberally! Thanks Lawrence!



Background - Linear Subspace Embedding



• We may often assume that our high-dim data lies on/near a 
linear subspace
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Linear subspaces

Dhigh=3
Dlow=2

Dhigh=2
Dlow=1
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• We may often assume that our high-dim data lies on/near a 
linear subspace

• In this case, well-known, stable tools exist for determining the 
parameters of this subspace

- Principal Components Analysis

- Metric Multidimensional Scaling

• Among the most widely-used algorithms in engineering!
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Linear subspaces

Dhigh=3
Dlow=2

Dhigh=2
Dlow=1

Background:Linear subspaces
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Notation

• We have a quantity N of D-dimensional data points x

• We seek to map x to a set of d-dimensional points y

• N is large and d << D

Background:Linear subspaces



• Project data onto an orthonormal basis, chosen so as to 
maximize the variance of the projected data

• Choose subspace as the d-dimensional hyper-plane spanned by 
directions of maximum variance

IsoMapBackground:Linear subspaces Locally Linear Embedding

Principal Components Analysis (PCA)

Maximum variance subspace

• Assume inputs are centered:

• Project into subspace:

• Maximize projected variance:
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Principal Components Analysis (PCA)

• First, we center the data to have zero empirical mean

• Then we determine an orthonormal linear projection

• ... so as to maximize the projected variance

Maximum variance subspace

• Assume inputs are centered:

• Project into subspace:

• Maximize projected variance:
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Principal Components Analysis (PCA)

• Projected variance is given by

• where C is the DxD data covariance matrix, with eigen-value 
decomposition

• The projected variance is maximized when

• i.e. projecting into the sub-space spanned by the eigenvectors 
corresponding to the largest eigenvalues

Matrix diagonalization

• Covariance matrix

• Spectral decomposition

• Maximum variance projection
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• The intrinsic dimensionality of the subspace may be estimated as 
the number of significantly large eigenvalues

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Subspace dimension

E
ig

e
n

v
a

lu
e

IsoMapBackground:Linear subspaces Locally Linear Embedding

Principal Components Analysis (PCA)

threshold

d = 5

Background:Linear subspaces



IsoMapBackground:Linear subspaces Locally Linear Embedding

PCA Example : Eigenfaces

• Sirovich and Kirby (JOSA ‘87) pioneered application of PCA to 
model the variation observed in face images

• High-dim (e.g. 128x128 pixel) face images may be modeled by 
just 50-100 principal components

“Mean” face

Top 15 most significant 
principal components

PCA applied to 7562 
face images

Background:Linear subspaces
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Multidimensional Scaling (MDS)

• An alternative approach to PCA based on preserving pairwise 
distancesMultidimensional scaling

Given n(n-1)/2 pairwise distances !ij,

find vectors yi  
such that ||yi-yj || " !ij.

0 !12 !13 !14

!12 0 !23 !24

!13 !23 0 !34

!14 !24 !34 0

"

#

$
$
$
$

%

&

'
'
'
'

y1

y2

y3

y4

Given n(n� 1)/2 pairwise distances dij = ⌅Xi �Xj⌅, find a
low-dimensional embedding X ⇤ y such that ⌅yi�yj⌅ ⇥ dij .

1

Background:Linear subspaces
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Multidimensional Scaling (MDS)

• Given centered mean-zero data X, we can express the dot 
products Gij = <Xi,Xj> in terms of pairwise distances dij

• We then seek new vectors yi so as to minimize the error function

• Matrix G, consisting of all possible dot products <i,j> is known 
as a Gram matrix

Given n(n� 1)/2 pairwise distances dij = ⌅Xi �Xj⌅, find a
low-dimensional embedding X ⇤ y such that ⌅yi�yj⌅ ⇥ dij .

Gij =
1
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kl
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Given n(n� 1)/2 pairwise distances dij = ⌅Xi �Xj⌅, find a
low-dimensional embedding X ⇤ y such that ⌅yi�yj⌅ ⇥ dij .
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1

(n.b. useful lemma!)

Background:Linear subspaces
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Multidimensional Scaling (MDS)

• We aim to approximate G

• Again using the eigen-decomposition of the Gram matrix

• We immediately see that the optimal approximation of G is 
given by an outer-product of the most significant eigenvectors

Matrix diagonalization

• Gram matrix “matching”

• Spectral decomposition

• Optimal approximation

     (scaled truncated eigenvectors)
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PCA vs. MDS

• The methods are in some sense “dual” to each other

- In PCA, we compute the DxD covariance matrix

- In MDS, we compute the NxN Gram matrix

• For Euclidean distances dij in MDS, the two methods yield the 
same embedding results (up to an arbitrary rotation)

Given n(n� 1)/2 pairwise distances dij = ⇧Xi �Xj⇧, find a
low-dimensional embedding X ⌅ y such that ⇧yi�yj⇧ ⇤ dij .
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PCA vs. MDS

• Both PCA and MDS have similar strengths

- polynomial time algorithms (non-iterative)

- no local optima

- no parameters to set

- can estimate subspace dimension

- very well understood!

• BUT - Limited to linear projections

• How can we generalize to arbitrary manifolds?

Properties of PCA

• Strengths
–Eigenvector method

–No tuning parameters

–Non-iterative

–No local optima

• Weaknesses

–Limited to second order statistics

–Limited to linear projections
Background:Linear subspaces



Nonlinear Dimensionality Reduction

Method 1: Isometric Feature Mapping (IsoMap)
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Isometric Feature Mapping (IsoMap)

• Recall that MDS seeks an embedding that preserves pairwise 
distances between data points

• BUT - Geodesic distances measured on the manifold may be 
longer than the corresponding Euclidean straight-line distance dij 

Tenenbaum et al. 
(Science, Dec ’00)

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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IsoMap

• Idea : Use geodesic rather than Euclidean distances in MDS

• But - How can we compute geodesics without knowing the 
manifold?

• Answer : Build an adjacency graph and approximate geodesic 
distances by shortest-paths through the graph

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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IsoMap

• Step 1 - Build the adjacency graph over high-dim points X

• Neighborhood selection

- Choice 1: k-nearest neighbors

- Choice 2: neighbors within a fixed radius (epsilon-ball)

• Assume graph is fully connected

- no isolated islands of points

• Assume graph neighborhoods reflect manifold neighborhoods

- no “short-cuts” between distant points on manifold

- sensitive to choice of neighborhood size

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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IsoMap

• Step 2 - Compute approximate geodesics

• Weight graph edges by inter-point distances

• Apply Dijkstra’s all-pairs shortest-paths algorithm O(N2lgN+N2k)

Building the graph
• Computation

kNN scales naively as O(n2D).
Faster methods exploit data structures.

• Assumptions
1) Graph is connected.

2) Neighborhoods on graph reflect
    neighborhoods on manifold.

No “shortcuts” connect
different arms of swiss roll.
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IsoMap

• Step 3 : Apply MDS to geodesic distances

• Top d eigenvectors of Gram matrix give the embedded, d-
dimensional points

• Dimensionality of manifold may be estimated by number of 
significant eigenvalues, just as in PCA/MDSExamples

• Swiss
  roll

• Wrist
images

n = 1024

k = 12

n = 2000

k = 6

D = 64
2

N = 1024 points
k = 12 nearest neighbours
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IsoMap examples

• Faces - varying pose and illumination

• 3 true degrees of freedom (dof) in total

- 64x64 pixel images

- N = 698

- k = 6

Examples

• Face images

• Digit images

n = 698

k = 6

n = 1000

r = 4.2

D = 20
2

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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IsoMap examples

• Faces - varying pose and illumination

• 3 true degrees of freedom (dof) in total

Examples

• Face images

• Digit images

n = 698

k = 6

n = 1000

r = 4.2

D = 20
2

IsoMap recovers the low-
dimensional structure in the data

Coordinates in the embedding 
correspond to meaningful modes 
of variation in the image 
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IsoMap examples

• Hand images - varying wrist rotation and finger extension

Examples
• Swiss

  roll

• Wrist
images

n = 1024

k = 12

n = 2000

k = 6

D = 64
2

Trajectories in the embedding 
correspond to meaningful 
variations in the image

- 64x64 pixel images

- N = 2000

- k = 6
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IsoMap examples

• Interpolations along “straight” lines in the embedding space 
yield realistic, though highly nonlinear, transitions in the image

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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ifolds, a guarantee of asymptotic conver-
gence to the true structure; and the ability to
discover manifolds of arbitrary dimensional-
ity, rather than requiring a fixed d initialized
from the beginning or computational resourc-
es that increase exponentially in d.

Here we have demonstrated Isomap’s per-
formance on data sets chosen for their visu-
ally compelling structures, but the technique
may be applied wherever nonlinear geometry
complicates the use of PCA or MDS. Isomap
complements, and may be combined with,
linear extensions of PCA based on higher
order statistics, such as independent compo-
nent analysis (31, 32). It may also lead to a
better understanding of how the brain comes
to represent the dynamic appearance of ob-
jects, where psychophysical studies of appar-
ent motion (33, 34) suggest a central role for
geodesic transformations on nonlinear mani-
folds (35) much like those studied here.
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Table 1. The Isomap algorithm takes as input the distances dX(i, j ) between all pairs i, j from N data points
in the high-dimensional input space X, measured either in the standard Euclidean metric (as in Fig. 1A)
or in some domain-specific metric (as in Fig. 1B). The algorithm outputs coordinate vectors yi in a
d-dimensional Euclidean space Y that (according to Eq. 1) best represent the intrinsic geometry of the
data. The only free parameter (! or K ) appears in Step 1.

Step

1 Construct neighborhood graph Define the graph G over all data points by connecting
points i and j if [as measured by dX(i, j )] they are
closer than ! (!-Isomap), or if i is one of the K
nearest neighbors of j (K-Isomap). Set edge lengths
equal to dX(i, j).

2 Compute shortest paths Initialize dG(i, j) # dX(i, j) if i, j are linked by an edge;
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distances between all pairs of points in G (16, 19).

3 Construct d-dimensional embedding Let 'p be the p-th eigenvalue (in decreasing order) of
the matrix "(DG) (17 ), and v p

i be the i-th
component of the p-th eigenvector. Then set the
p-th component of the d-dimensional coordinate
vector yi equal to 1'pvp

i .

Fig. 4. Interpolations along straight lines in
the Isomap coordinate space (analogous to
the blue line in Fig. 3C) implement perceptu-
ally natural but highly nonlinear “morphs” of
the corresponding high-dimensional observa-
tions (43) by transforming them approxi-
mately along geodesic paths (analogous to
the solid curve in Fig. 3A). (A) Interpolations
in a three-dimensional embedding of face
images (Fig. 1A). (B) Interpolations in a four-
dimensional embedding of hand images (20)
appear as natural hand movements when
viewed in quick succession, even though no
such motions occurred in the observed data. (C)
Interpolations in a six-dimensional embedding of
handwritten “2”s (Fig. 1B) preserve continuity not
only in the visual features of loop and arch artic-
ulation, but also in the implied pen trajectories,
which are the true degrees of freedom underlying
those appearances.
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ifolds, a guarantee of asymptotic conver-
gence to the true structure; and the ability to
discover manifolds of arbitrary dimensional-
ity, rather than requiring a fixed d initialized
from the beginning or computational resourc-
es that increase exponentially in d.

Here we have demonstrated Isomap’s per-
formance on data sets chosen for their visu-
ally compelling structures, but the technique
may be applied wherever nonlinear geometry
complicates the use of PCA or MDS. Isomap
complements, and may be combined with,
linear extensions of PCA based on higher
order statistics, such as independent compo-
nent analysis (31, 32). It may also lead to a
better understanding of how the brain comes
to represent the dynamic appearance of ob-
jects, where psychophysical studies of appar-
ent motion (33, 34) suggest a central role for
geodesic transformations on nonlinear mani-
folds (35) much like those studied here.
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Table 1. The Isomap algorithm takes as input the distances dX(i, j ) between all pairs i, j from N data points
in the high-dimensional input space X, measured either in the standard Euclidean metric (as in Fig. 1A)
or in some domain-specific metric (as in Fig. 1B). The algorithm outputs coordinate vectors yi in a
d-dimensional Euclidean space Y that (according to Eq. 1) best represent the intrinsic geometry of the
data. The only free parameter (! or K ) appears in Step 1.

Step

1 Construct neighborhood graph Define the graph G over all data points by connecting
points i and j if [as measured by dX(i, j )] they are
closer than ! (!-Isomap), or if i is one of the K
nearest neighbors of j (K-Isomap). Set edge lengths
equal to dX(i, j).

2 Compute shortest paths Initialize dG(i, j) # dX(i, j) if i, j are linked by an edge;
dG(i, j) # 0 otherwise. Then for each value of k #
1, 2, . . ., N in turn, replace all entries dG(i, j) by
min{dG(i, j), dG(i,k) / dG(k, j)}. The matrix of final
values DG # {dG(i, j)} will contain the shortest path
distances between all pairs of points in G (16, 19).

3 Construct d-dimensional embedding Let 'p be the p-th eigenvalue (in decreasing order) of
the matrix "(DG) (17 ), and v p

i be the i-th
component of the p-th eigenvector. Then set the
p-th component of the d-dimensional coordinate
vector yi equal to 1'pvp

i .

Fig. 4. Interpolations along straight lines in
the Isomap coordinate space (analogous to
the blue line in Fig. 3C) implement perceptu-
ally natural but highly nonlinear “morphs” of
the corresponding high-dimensional observa-
tions (43) by transforming them approxi-
mately along geodesic paths (analogous to
the solid curve in Fig. 3A). (A) Interpolations
in a three-dimensional embedding of face
images (Fig. 1A). (B) Interpolations in a four-
dimensional embedding of hand images (20)
appear as natural hand movements when
viewed in quick succession, even though no
such motions occurred in the observed data. (C)
Interpolations in a six-dimensional embedding of
handwritten “2”s (Fig. 1B) preserve continuity not
only in the visual features of loop and arch artic-
ulation, but also in the implied pen trajectories,
which are the true degrees of freedom underlying
those appearances.
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IsoMap



• Isomap does not scale well

• For large N, all-pairs shortest paths computation is too expensive

IsoMapBackground:Linear subspaces Locally Linear Embedding

Scaling-up: Landmark Isomap de Silva & 
Tenenbaum ‘03

Problem

IsoMap



• Isomap does not scale well

• For large N, all-pairs shortest paths computation is too expensive

• Compute embedding using a subset of the data (landmarks)

• Embed non-landmarks by convex triangulation

IsoMapBackground:Linear subspaces Locally Linear Embedding

Scaling-up: Landmark Isomap de Silva & 
Tenenbaum ‘03

Problem

Solution

Original data space Embedding space

Landmark

Non-landmark

IsoMap



IsoMapBackground:Linear subspaces Locally Linear Embedding

IsoMap strengths

• Strengths inherited from MDS

- Polynomial time algorithm

- No local optima

- Non-iterative

- Automatic intrinsic dimensionality estimate

• Isomap adds a single heuristic parameter

- graph neighbourhood size k

• Guaranteed asymptotic convergence

- For data living on a convex submanifold of Euclidean space, and given 
large enough sample N, Isomap is guaranteed to recover the true 
manifold, up to a rotation and translation.

IsoMap
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IsoMap weaknesses

• Sensitive to “short-cuts” due to k being too large

• Does not scale well to very large N

- NxN dense eigenvector problem is expensive

• Convexity assumption

- Cannot handle manifolds with “holes”

Connected but not convex

• 2d region with hole

• Images of 360o rotated teapot

input Isomap

eigenvalues of Isomap

Connected but not convex

• Occlusion
Images of two
disks, one
occluding the
other.

• Locomotion

Images of
periodic gait.

converts distances to inner products (17),
which uniquely characterize the geometry of
the data in a form that supports efficient
optimization. The global minimum of Eq. 1 is
achieved by setting the coordinates yi to the
top d eigenvectors of the matrix !(DG) (13).

As with PCA or MDS, the true dimen-
sionality of the data can be estimated from
the decrease in error as the dimensionality of
Y is increased. For the Swiss roll, where
classical methods fail, the residual variance
of Isomap correctly bottoms out at d " 2
(Fig. 2B).

Just as PCA and MDS are guaranteed,
given sufficient data, to recover the true
structure of linear manifolds, Isomap is guar-
anteed asymptotically to recover the true di-
mensionality and geometric structure of a
strictly larger class of nonlinear manifolds.
Like the Swiss roll, these are manifolds

whose intrinsic geometry is that of a convex
region of Euclidean space, but whose ambi-
ent geometry in the high-dimensional input
space may be highly folded, twisted, or
curved. For non-Euclidean manifolds, such as
a hemisphere or the surface of a doughnut,
Isomap still produces a globally optimal low-
dimensional Euclidean representation, as
measured by Eq. 1.

These guarantees of asymptotic conver-
gence rest on a proof that as the number of
data points increases, the graph distances
dG(i, j) provide increasingly better approxi-
mations to the intrinsic geodesic distances
dM(i, j), becoming arbitrarily accurate in the
limit of infinite data (18, 19). How quickly
dG(i, j) converges to dM(i, j) depends on cer-
tain parameters of the manifold as it lies
within the high-dimensional space (radius of
curvature and branch separation) and on the

density of points. To the extent that a data set
presents extreme values of these parameters
or deviates from a uniform density, asymp-
totic convergence still holds in general, but
the sample size required to estimate geodes-
ic distance accurately may be impractically
large.

Isomap’s global coordinates provide a
simple way to analyze and manipulate high-
dimensional observations in terms of their
intrinsic nonlinear degrees of freedom. For a
set of synthetic face images, known to have
three degrees of freedom, Isomap correctly
detects the dimensionality (Fig. 2A) and sep-
arates out the true underlying factors (Fig.
1A). The algorithm also recovers the known
low-dimensional structure of a set of noisy
real images, generated by a human hand vary-
ing in finger extension and wrist rotation
(Fig. 2C) (20). Given a more complex data
set of handwritten digits, which does not have
a clear manifold geometry, Isomap still finds
globally meaningful coordinates (Fig. 1B)
and nonlinear structure that PCA or MDS do
not detect (Fig. 2D). For all three data sets,
the natural appearance of linear interpolations
between distant points in the low-dimension-
al coordinate space confirms that Isomap has
captured the data’s perceptually relevant
structure (Fig. 4).

Previous attempts to extend PCA and
MDS to nonlinear data sets fall into two
broad classes, each of which suffers from
limitations overcome by our approach. Local
linear techniques (21–23) are not designed to
represent the global structure of a data set
within a single coordinate system, as we do in
Fig. 1. Nonlinear techniques based on greedy
optimization procedures (24–30) attempt to
discover global structure, but lack the crucial
algorithmic features that Isomap inherits
from PCA and MDS: a noniterative, polyno-
mial time procedure with a guarantee of glob-
al optimality; for intrinsically Euclidean man-

Fig. 2. The residual
variance of PCA (open
triangles), MDS [open
triangles in (A) through
(C); open circles in (D)],
and Isomap (filled cir-
cles) on four data sets
(42). (A) Face images
varying in pose and il-
lumination (Fig. 1A).
(B) Swiss roll data (Fig.
3). (C) Hand images
varying in finger exten-
sion and wrist rotation
(20). (D) Handwritten
“2”s (Fig. 1B). In all cas-
es, residual variance de-
creases as the dimen-
sionality d is increased.
The intrinsic dimen-
sionality of the data
can be estimated by
looking for the “elbow”
at which this curve ceases to decrease significantly with added dimensions. Arrows mark the true or
approximate dimensionality, when known. Note the tendency of PCA and MDS to overestimate the
dimensionality, in contrast to Isomap.

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K " 7 and N "

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).
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Input IsoMap embedding e.g. periodic motion
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Nonlinear Dimensionality Reduction

Method 2: Locally Linear Embedding



IsoMapBackground:Linear subspaces Locally Linear Embedding

Locally Linear Embedding (LLE) Roweis & Saul, 
Science, Dec ‘00

Idea

• “Think locally, fit globally!” - an alternative to Isomap

• LLE aims to preserve local manifold geometry in its 
embedding

• Assume manifold is locally linear

- We expect each D-dim data point to lie on or near a 
locally linear patch of the manifold

• Characterize each point xi as a convex linear 
combination of its k-nearest neighbors xj

• Seek an embedding that preserves these weights

Locally Linear Embedding



IsoMapBackground:Linear subspaces Locally Linear Embedding

Locally Linear Embedding

• Step 1: Compute k-nearest neighbors for each point xi

- Same as in Isomap

• Step 2: Compute weights Wij that best reconstruct xi as a convex 
sum of its neighbors xj

- This is easily solved using a Lagrange multiplier

- Note that local weights are invariant to translation, rotation and scale

- Hence weights should be preserved under a well-behaved embedding

Given n(n� 1)/2 pairwise distances dij = ⇧Xi �Xj⇧, find a
low-dimensional embedding X ⌅ y such that ⇧yi�yj⇧ ⇤ dij .
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Locally Linear Embedding

• Step 3: Choose embedded coordinates yi that minimize 
reconstruction error using previously computed weights Wij

- Since the embedding is only defined up to an arbitrary translation and 
scale, the constraints serve to make the problem well-posed
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Locally Linear Embedding

• The result is given by the eigenvectors of the matrix Q 
corresponding to the d+1 smallest eigenvalues, where

• The bottom eigenvector is the vector [1 1 1 1]T, an exact null-
vector corresponding to a free translation mode.

• Discarding it imposes the zero-mean constraint.

• The remaining d eigenvectors give the embedding

• Note : W and hence Q is very sparse (compare to IsoMap G)

• Efficient algorithms exist for large, sparse eigenvector problems

1
N

�

i

yiy
�
i = Id

Q = (I �W )�(I �W )

2
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LLE summary
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LLE examples
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PCA vs LLE example

• Input: 30x30 images of a translating face (N=961)

• PCA fails to recover a meaningful 2-d embedding

• LLE discovers the 2 translational degrees of freedom in the input
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• The 2-d LLE embedding coordinates correspond roughly to 
variations in pose and expression

• The trajectory (red) corresponds to a realistic facial transition 
(bottom row)

Technical Report MS CIS-02-18, University of Pennsylvania.

Figure 5: Images of faces mapped into the embedding space described by the first two
coordinates of LLE, using K = 12 nearest neighbors. Representative faces are
shown next to circled points at di�erent points of the space. The bottom images
correspond to points along the top-right path, illustrating one particular mode of
variability in pose and expression. The data set had a total of N =1965 grayscale
images at 20�28 resolution (D=560).

neighbors does not have to be the same for each data point. In fact, neighborhood selection
can be quite sophisticated. For example, we can take all points within a certain radius
up to some maximum number, or we can take up to a certain number of neighbors but

10

- 20x28 pixel images

- N=1965

- k=12

- d=2

LLE example - Face variations

Locally Linear Embedding
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• Trajectories in the 2-d embedding correspond to smooth 
variations in the mouth configuration

• Note: LLE easily handles the large problem size (N=15960) 
thanks to sparse weights matrix

Technical Report MS CIS-02-18, University of Pennsylvania.

Figure 6: High resolution (D = 65664) images of lips, mapped into the embedding space
discovered by the first two coordinates of LLE, using K = 24 nearest neighbors.
Representative lips are shown at di�erent points in the space. The inset shows
the first two LLE coordinates for the entire data set (N = 15960) without any
corresponding images.

Figure 7: A typical neighborhood of K = 24 lip images mapped into the embedding space
described by the first two coordinates of LLE. The rectangle in the right plot
locates the neighborhood in the overall space of lip images.

11

- 256x256 pixel images

- N=15960

- k=24

- d=2

LLE example - Lips images

Locally Linear Embedding
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LLE example - a pattern classifier

• Most digit classes are easily separable in just the first two 
embedding dimensions

• A classifier would be easy to construct and visualize

- Recognition of hand-written digits

- 16x16 pixel images (USPS dataset)

- N=11000

- k=?? (author doesn’t say)

- d=8

Locally Linear Embedding
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LLE with pairwise distances

• What if we only have pairwise distances d(Xi,Xj) between data 
points, as was the case with MDS and IsoMap?

• We can use the same trick for expressing dot products in terms 
of distances when computing the LLE weights Wij

• The neighborhood covariance may be written as

giving substantial computational savings for large values of . In particular, left

multiplication by (the subroutine required by most sparse eigensolvers) can be

performed as

(12)

requiring just one multiplication by and one multiplication by , both of

which are extremely sparse. Thus, the matrix never needs to be explicitly cre-

ated or stored; it is sufficient to store and multiply the matrix .

C LLE from Pairwise Distances

LLE can be applied to user input in the form of pairwise distances. In this case,

nearest neighbors are identified by the smallest non-zero elements of each row in

the distance matrix. To derive the reconstruction weights for each data point, we

need to compute the local covariance matrix between its nearest neighbors,

as defined by eq. (4) in appendix A. This can be done by exploiting the usual

relation between pairwise distances and dot products that forms the basis of metric

MDS[2]. Thus, for a particular data point, we set:

(13)

where denotes the squared distance between the th and th neighbors,

and . In terms of this local covariance matrix, the

reconstruction weights for each data point are given by eq. (5). The rest of the

algorithm proceeds as usual.

Note that this variant of LLE requires significantly less user input than the com-

plete matrix of pairwise distances. Instead, for each data point, the user needs

only to specify its nearest neighbors and the submatrix of pairwise distances be-

tween those neighbors. Is it possible to recover manifold structure from even less

user input—say, just the pairwise distances between each data point and its near-

est neighbors? A simple counterexample shows that this is not possible. Consider

the square lattice of three dimensional data points whose integer coordinates sum to

zero. Imagine that points with even -coordinates are colored black, and that points

with odd -coordinates are colored red. The “two point” embedding that maps all

black points to the origin and all red points to one unit away preserves the distance

between each point and its four nearest neighbors. Nevertheless, this embedding

completely fails to preserve the underlying structure of the original manifold.
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LLE with pairwise distances

- Input: Histograms of occurrence of 5000 words in 31000 encyclopedia articles

- Distance metric: dot-products between unit-normalized histograms

- k=20

- LLE recovers a continuous semantic embedding

Locally Linear Embedding
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LLE: choosing neighborhood size k

• Neighborhood size k is varied in 2-d embedding of S-manifold

• k too low - no meaningful structure is recovered

• k too high - S is squashed onto a plane, ordering not preserved

Technical Report MS CIS-02-18, University of Pennsylvania.

K = 5 K = 6 K = 8 K = 10

K = 12 K = 14 K = 16 K = 18

K = 20 K = 30 K = 40 K = 60

Figure 9: E⇥ect of neighborhood size. Embeddings of the two dimensional S-manifold in
the top panels of Fig. 1, computed for di⇥erent choices of the number of nearest
neighbors, K. A reliable embedding from D =3 to d=2 dimensions is obtained
over a wide range of values. If K is too small (top left) or too large (bottom
right), however, LLE does not succeed in unraveling the manifold and recovering
the two underlying degrees of freedom.

discovered by the algorithm, all on the same data set but using di⇥erent numbers of nearest
neighbors, K. The results are stable over a wide range of values but do break down as K
becomes too small or large.

The nearest neighbor step in LLE is simple to implement, though it can be time con-
suming for large data sets (N � 104) if performed without any optimizations. Computing
nearest neighbors scales in the worst case as O(DN 2), or linearly in the input dimension-
ality, D, and quadratically in the number of data points, N . For many distributions of
data, however – and especially for those concentrated on a thin submanifold of the input
space – constructions such as K-D trees or ball trees can be used to compute the neighbors
in O(N log N) time [Friedman et al. (1977), Gray and Moore (2001), Moore et al. (2000),
Omohundro (1989, 1991)]. More e�cient but approximate methods are also possible, some
of which come with various guarantees as to their accuracy [Indyk (2000)].
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Surfaces

N=1000
inputs

k=8
nearest
neighbors

D=3
d=2

dimensions

3-d S-manifold
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LLE: Non-convex manifolds

• LLE handles non-convex manifolds (those with holes) a little 
better than IsoMap

• Not perfect - we’d prefer this particular 2d-2d embedding to be a 
simple isometry!

Connected but not convex

Hessian LLE yields an isometric
embedding, but not Isomap or LLE.

Locally Linear Embedding
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LLE strengths/weaknesses

• Similar strengths to IsoMap

- Graph-base, eigenvector method

- Polynomial time algorithm

- No local optima

- Non-iterative

- Single heuristic parameter (neighbourhood size k)

• PLUS - Better handling of non-convex manifolds

• BUT - some additional weaknesses

- Also sensitive to “short-cuts”

- No asymptotic guarantees

- No way to estimate intrinsic manifold dimension

Locally Linear Embedding
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IsoMap vs. LLE

• Computes top d eigenvectors of a 
dense NxN matrix

• Preserves distances

• Asymptotic guarantee of finding 
true manifold

• Computes bottom d+1 eigenvectors 
of a sparse NxN matrix

• Preserves local linear geometry

• Copes with “holes” rather better

IsoMap LLE

• LLE avoids the need to compute a dense, all-pair shortest distance matrix

• The LLE eigenvector problem is extremely sparse

• Far more efficient in terms of both time and storage requirements

Major “selling point” for LLE :



Application : Clever graphics stuff!

Unwrap Mosaics:

A New Representation for Video Editing

Rav-Acha, Kohli, Rother, Fitzgibbon

SIGGRAPH 2008

http://research.microsoft.com/unwrap/

http://research.microsoft.com/unwrap/
http://research.microsoft.com/unwrap/
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Recent advances and further reading


