Nonlinear Dimensionality Reduction (a.k.a. Manifold Learning)

David Capel
346B IST BIdg

What is "nonlinear dimensionality reduction?"

High-dimensional data

NDR (Manifold Learning)

Low-dimensional embedding

- We often suspect that high-dim may actually lie on or near a low-dim manifold (often much lower!)
- It would be useful if we could reparametrize the data in terms of this manifold, yielding a low-dim embedding
- BUT - we typically don't know the form of this manifold

Why might this be useful?

- The variation observed in high-dimensional signals often has much lower-dimensional explanation

- Discovering these modes of variation helps us understand the underlying structure of the data and the process that generated it
- Visualization of high-dimensional data
- Machine learning and pattern recognition

Okay, so how do we learn the embedding?

- Given high-dim data sampled from an unknown low-dim manifold, how can we automatically recover a good embedding?

A Global Geometric Framework for Nonlinear Dimensionality Reduction

Tenenbaum, de Silva and Langford
Science (Vol. 290, Dec 2000, 2319-2323)

Nonlinear Dimensionality Reduction by Locally Linear Embedding
Roweis and Saul
Science (Vol. 290, Dec 2000, 2323-2327)

Outline

- Linear subspace embedding
- Principal Components Analysis (PCA)
- Metric Multidimensional Scaling (MDS)
- Non-linear manifold learning
- Isomap (Tenenbaum et al.)
- Locally Linear Embedding (Roweis et al.)
- Some examples

Spectral Methods for Dimensionality Reduction

Prof. Lawrence Saul

Dept of Computer \& Information Science University of Pennsylvania

NIPS*05 Tutorial, December 5, 2005

... from which I have borrowed liberally! Thanks Lawrence!

Background - Linear Subspace Embedding

Linear subspaces

- We may often assume that our high-dim data lies on/near a linear subspace

Linear subspaces

- We may often assume that our high-dim data lies on/near a linear subspace

- In this case, well-known, stable tools exist for determining the parameters of this subspace
- Principal Components Analysis
- Metric Multidimensional Scaling
- Among the most widely-used algorithms in engineering!

Notation

- We have a quantity \mathbf{N} of \mathbf{D}-dimensional data points \mathbf{x}
- We seek to map \mathbf{x} to a set of \mathbf{d}-dimensional points \mathbf{y}
- \mathbf{N} is large and $\mathbf{d} \ll \mathbf{D}$

Principal Components Analysis (PCA)

- Project data onto an orthonormal basis, chosen so as to maximize the variance of the projected data

$$
\vec{y}_{i}=P \vec{x}_{i}
$$

- Choose subspace as the d-dimensional hyper-plane spanned by directions of maximum variance

Principal Components Analysis (PCA)

- First, we center the data to have zero empirical mean

$$
\sum_{i} \vec{x}_{i}=\overrightarrow{0}
$$

- Then we determine an orthonormal linear projection

$$
\vec{y}_{i}=P \vec{x}_{i}
$$

- ... so as to maximize the projected variance

$$
\operatorname{var}(\vec{y})=\frac{1}{n} \sum_{i}\left\|P \vec{x}_{i}\right\|^{2}
$$

Principal Components Analysis (PCA)

- Projected variance is given by

$$
\operatorname{var}(\vec{y})=\operatorname{Tr}\left(P C P^{\mathrm{T}}\right) \text { with } C=n^{-1} \sum \vec{x}_{i} \vec{x}_{i}^{T}
$$

- where C is the DxD data covariance matrix, with eigen-value decomposition

$$
C=\sum_{\alpha=1}^{D} \lambda_{\alpha} \vec{e}_{\alpha} \vec{e}_{\alpha}^{\mathrm{T}} \text { with } \lambda_{1} \geq \cdots \geq \lambda_{D} \geq 0
$$

- The projected variance is maximized when

$$
P=\sum_{\alpha=1}^{d} \vec{e}_{\alpha} \vec{e}_{\alpha}^{\mathrm{T}}
$$

- i.e. projecting into the sub-space spanned by the eigenvectors corresponding to the largest eigenvalues

Principal Components Analysis (PCA)

- The intrinsic dimensionality of the subspace may be estimated as the number of significantly large eigenvalues

PCA Example : Eigenfaces

- Sirovich and Kirby (JOSA '87) pioneered application of PCA to model the variation observed in face images
- High-dim (e.g. 128x128 pixel) face images may be modeled by just 50-100 principal components

PCA applied to 7562 face images

Top 15 most significant principal components

Multidimensional Scaling (MDS)

- An alternative approach to PCA based on preserving pairwise distances

$$
\left[\begin{array}{cccc}
0 & \Delta_{12} & \Delta_{13} & \Delta_{14} \\
\Delta_{12} & 0 & \Delta_{23} & \Delta_{24} \\
\Delta_{13} & \Delta_{23} & 0 & \Delta_{34} \\
\Delta_{14} & \Delta_{24} & \Delta_{34} & 0
\end{array}\right] \xrightarrow[\overrightarrow{\boldsymbol{y}}_{2}]{\overrightarrow{\boldsymbol{y}}_{\boldsymbol{4}}}
$$

Given $n(n-1) / 2$ pairwise distances $d_{i j}=\left\|X_{i}-X_{j}\right\|$, find a low-dimensional embedding $X \rightarrow y$ such that $\left\|y_{i}-y_{j}\right\| \approx d_{i j}$.

Multidimensional Scaling (MDS)

- Given centered mean-zero data X, we can express the dot products $\mathrm{G}_{\mathrm{ij}}=\left\langle\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\rangle$ in terms of pairwise distances d_{ij}

$$
G_{i j}=\frac{1}{2}\left[\frac{1}{n} \sum_{k}\left(d_{i k}^{2}+d_{k j}^{2}\right)-d_{i j}^{2}-\frac{1}{n^{2}} \sum_{k l} d_{k l}^{2}\right] \quad \text { (n.b. useful lemma!) }
$$

- We then seek new vectors y_{i} so as to minimize the error function

$$
\operatorname{err}(y)=\sum_{i j}\left(G_{i j}-y_{i}^{\top} y_{j}\right)^{2}
$$

- Matrix G, consisting of all possible dot products $\langle i, j\rangle$ is known as a Gram matrix

Multidimensional Scaling (MDS)

- We aim to approximate G

$$
\operatorname{err}(y)=\sum_{i j}\left(G_{i j}-y_{i}^{\top} y_{j}\right)^{2}
$$

- Again using the eigen-decomposition of the Gram matrix

$$
G=\sum_{\alpha=1}^{n} \lambda_{\alpha} \vec{v}_{\alpha} \vec{v}_{\alpha}^{\mathrm{T}} \text { with } \lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0
$$

- We immediately see that the optimal approximation of \mathbf{G} is given by an outer-product of the most significant eigenvectors

$$
y_{\alpha i}=\sqrt{\lambda_{\alpha}} v_{\alpha i} \quad \text { for } \alpha=1,2, \ldots, \mathrm{~d}
$$

PCA vs. MDS

- The methods are in some sense "dual" to each other
- In PCA, we compute the DxD covariance matrix

$$
C_{i j}=\frac{1}{n} \sum_{k} x_{i k} x_{j k} \quad \square^{\mathrm{N}} \times \square^{\mathrm{D}}=\square \quad \mathrm{D} \times \mathrm{D}
$$

- In MDS, we compute the NxN Gram matrix

$$
G_{i j}=\overrightarrow{x_{i}} \circ \overrightarrow{x_{j}}
$$

- For Euclidean distances d_{ij} in MDS, the two methods yield the same embedding results (up to an arbitrary rotation)

PCA vs. MDS

- Both PCA and MDS have similar strengths
- polynomial time algorithms (non-iterative)
- no local optima
- no parameters to set
- can estimate subspace dimension
- very well understood!
- BUT - Limited to linear projections

- How can we generalize to arbitrary manifolds?

Nonlinear Dimensionality Reduction
Method 1: Isometric Feature Mapping (IsoMap)

Isometric Feature Mapping (IsoMap)

- Recall that MDS seeks an embedding that preserves pairwise distances between data points
- BUT - Geodesic distances measured on the manifold may be longer than the corresponding Euclidean straight-line distance d_{ij}

IsoMap

- Idea : Use geodesic rather than Euclidean distances in MDS
- But - How can we compute geodesics without knowing the manifold?

IsoMap

- Idea : Use geodesic rather than Euclidean distances in MDS
- But - How can we compute geodesics without knowing the manifold?

- Answer : Build an adjacency graph and approximate geodesic distances by shortest-paths through the graph

IsoMap

- Step 1 - Build the adjacency graph over high-dim points X
- Neighborhood selection
- Choice 1: k-nearest neighbors
- Choice 2: neighbors within a fixed radius (epsilon-ball)
- Assume graph is fully connected
- no isolated islands of points
- Assume graph neighborhoods reflect manifold neighborhoods
- no "short-cuts" between distant points on manifold
- sensitive to choice of neighborhood size

IsoMap

- Step 2 - Compute approximate geodesics
- Weight graph edges by inter-point distances
- Apply Dijkstra's all-pairs shortest-paths algorithm $\mathbf{O}\left(\mathbf{N}^{2} \mid g N+N^{2} \mathbf{k}\right)$

IsoMap

- Step 3 : Apply MDS to geodesic distances
- Top d eigenvectors of Gram matrix give the embedded, ddimensional points
- Dimensionality of manifold may be estimated by number of significant eigenvalues, just as in PCA/MDS

$\mathrm{N}=1024$ points
$k=12$ nearest neighbours

IsoMap examples

- Faces - varying pose and illumination
- 3 true degrees of freedom (dof) in total
- 64x64 pixel images
- $\mathrm{N}=698$
- $k=6$

Eigenvalues

IsoMap examples

- Faces - varying pose and illumination
- 3 true degrees of freedom (dof) in total

IsoMap recovers the lowdimensional structure in the data

Coordinates in the embedding correspond to meaningful modes of variation in the image

IsoMap examples

- Hand images - varying wrist rotation and finger extension
- 64×64 pixel images
- $N=2000$
$-\mathrm{k}=6$

Trajectories in the embedding correspond to meaningful variations in the image

IsoMap examples

- Interpolations along "straight" lines in the embedding space yield realistic, though highly nonlinear, transitions in the image

Scaling-up: Landmark Isomap

Problem

- Isomap does not scale well
- For large N, all-pairs shortest paths computation is too expensive

Scaling-up: Landmark Isomap

Problem

- Isomap does not scale well
- For large N, all-pairs shortest paths computation is too expensive

Solution

- Compute embedding using a subset of the data (landmarks)
- Embed non-landmarks by convex triangulation

O Landmark
O Non-landmark

Original data space

Embedding space

IsoMap strengths

- Strengths inherited from MDS
- Polynomial time algorithm
- No local optima
- Non-iterative
- Automatic intrinsic dimensionality estimate
- Isomap adds a single heuristic parameter
- graph neighbourhood size \mathbf{k}
- Guaranteed asymptotic convergence
- For data living on a convex submanifold of Euclidean space, and given large enough sample N , Isomap is guaranteed to recover the true manifold, up to a rotation and translation.

IsoMap weaknesses

- Sensitive to "short-cuts" due to \mathbf{k} being too large
- Does not scale well to very large N
- NxN dense eigenvector problem is expensive
- Convexity assumption

- Cannot handle manifolds with "holes"

Input

IsoMap embedding

e.g. periodic motion

Nonlinear Dimensionality Reduction
Method 2: Locally Linear Embedding

Locally Linear Embedding (LLE)

- "Think locally, fit globally!" - an alternative to Isomap
- LLE aims to preserve local manifold geometry in its embedding

Idea

- Assume manifold is locally linear
- We expect each D-dim data point to lie on or near a locally linear patch of the manifold
- Characterize each point x_{i} as a convex linear combination of its k-nearest neighbors x_{j}
- Seek an embedding that preserves these weights

Locally Linear Embedding

- Step 1: Compute k-nearest neighbors for each point x_{i}
- Same as in Isomap
- Step 2: Compute weights $W_{i j}$ that best reconstruct x_{i} as a convex sum of its neighbors x_{j}

$$
\begin{aligned}
\underset{W}{\arg \min } \Phi(W)= & \sum_{i}\left\|\vec{x}_{i}-\sum_{j \in \mathcal{N}_{i}} W_{i j} \vec{x}_{j}\right\|^{2} \\
\text { subject to } & \sum_{j} W_{i j}=1
\end{aligned}
$$

- This is easily solved using a Lagrange multiplier
- Note that local weights are invariant to translation, rotation and scale
- Hence weights should be preserved under a well-behaved embedding

Locally Linear Embedding

- Step 3: Choose embedded coordinates y_{i} that minimize reconstruction error using previously computed weights W_{ij}

$$
\begin{array}{rlr}
\underset{\vec{y}}{\arg \min } \Theta(\vec{y})= & \sum_{i}\left\|\vec{y}_{i}-\sum_{j \in \mathcal{N}_{i}} W_{i j} \vec{y}_{j}\right\|^{2} \\
\text { subject to } & \sum_{i} y_{i}=0 \quad \text { (zero mean) } \\
& \frac{1}{N} \sum_{i} y_{i} y_{i}^{\top}=I_{d} & \text { (unit covariance) }
\end{array}
$$

- Since the embedding is only defined up to an arbitrary translation and scale, the constraints serve to make the problem well-posed

Locally Linear Embedding

- The result is given by the eigenvectors of the matrix Q corresponding to the $\mathbf{d}+\mathbf{1}$ smallest eigenvalues, where

$$
Q=(I-W)^{\top}(I-W)
$$

- The bottom eigenvector is the vector [1 111 l] ${ }^{\top}$, an exact nullvector corresponding to a free translation mode.
- Discarding it imposes the zero-mean constraint.
- The remaining \mathbf{d} eigenvectors give the embedding
- Note : W and hence \mathbf{Q} is very sparse (compare to IsoMap \mathbf{G})
- Efficient algorithms exist for large, sparse eigenvector problems

LLE summary

1. Compute the neighbors of each data point, \vec{X}_{i}.
2. Compute the weights $W_{i j}$ that best reconstruct each data point \vec{X}_{i} from its neighbors, minimizing the cost in eq. (1) by constrained linear fits.
3. Compute the vectors \vec{Y}_{i} best reconstructed by the weights $W_{i j}$, minimizing the quadratic form in eq. (2) by its bottom nonzero eigenvectors.

LLE examples

PCA vs LLE example

- Input: 30x30 images of a translating face ($\mathrm{N}=961$)
- PCA fails to recover a meaningful 2-d embedding
- LLE discovers the 2 translational degrees of freedom in the input

LLE example - Face variations

- 20x28 pixel images
- N=1965
- $\mathrm{k}=12$
$-d=2$

- The 2-d LLE embedding coordinates correspond roughly to variations in pose and expression
- The trajectory (red) corresponds to a realistic facial transition (bottom row)

LLE example - Lips images

- 256×256 pixel images
- $\mathrm{N}=15960$
- $\mathrm{k}=24$
$-d=2$

- Trajectories in the 2-d embedding correspond to smooth variations in the mouth configuration
- Note: LLE easily handles the large problem size ($\mathrm{N}=15960$) thanks to sparse weights matrix

LLE example - a pattern classifier

- Recognition of hand-written digits
- 16×16 pixel images (USPS dataset)
- $\mathrm{N}=11000$
- $\mathrm{k}=$?? (author doesn't say)
- d=8

y 1

- Most digit classes are easily separable in just the first two embedding dimensions
- A classifier would be easy to construct and visualize

LLE with pairwise distances

- What if we only have pairwise distances $d\left(X_{i}, X_{j}\right)$ between data points, as was the case with MDS and IsoMap?
- We can use the same trick for expressing dot products in terms of distances when computing the LLE weights W_{ij}
- The neighborhood covariance may be written as

$$
\begin{array}{r}
C_{j k}=\frac{1}{2}\left(D_{j}+D_{k}-D_{j k}-D_{0}\right) \\
\text { where } \quad \begin{array}{r}
D_{\ell}=\sum_{z} D_{\ell z} \\
D_{0}=\sum_{j k} D_{j k}
\end{array}
\end{array}
$$

LLE with pairwise distances

- Input: Histograms of occurrence of 5000 words in 31000 encyclopedia articles
- Distance metric: dot-products between unit-normalized histograms
- k=20
- LLE recovers a continuous semantic embedding

LLE: choosing neighborhood size \mathbf{k}

- Neighborhood size \mathbf{k} is varied in 2-d embedding of S-manifold
- \mathbf{k} too low - no meaningful structure is recovered
- \mathbf{k} too high -S is squashed onto a plane, ordering not preserved

LLE: Non-convex manifolds

- LLE handles non-convex manifolds (those with holes) a little better than IsoMap
- Not perfect - we'd prefer this particular 2d-2d embedding to be a simple isometry!

LLE strengths/weaknesses

- Similar strengths to IsoMap
- Graph-base, eigenvector method
- Polynomial time algorithm
- No local optima
- Non-iterative
- Single heuristic parameter (neighbourhood size k)
- PLUS - Better handling of non-convex manifolds
- BUT - some additional weaknesses
- Also sensitive to "short-cuts"
- No asymptotic guarantees
- No way to estimate intrinsic manifold dimension

IsoMap vs. LLE

IsoMap

- Computes top d eigenvectors of a dense NxN matrix
- Preserves distances
- Asymptotic guarantee of finding true manifold

LLE

- Computes bottom $\mathbf{d}+\mathbf{1}$ eigenvectors of a sparse NxN matrix
- Preserves local linear geometry
- Copes with "holes" rather better

Major "selling point" for LLE :

- LLE avoids the need to compute a dense, all-pair shortest distance matrix
- The LLE eigenvector problem is extremely sparse
- Far more efficient in terms of both time and storage requirements

Application: Clever graphics stuff!

Unwrap Mosaics:
 A New Representation for Video Editing

Rav-Acha, Kohli, Rother, Fitzgibbon SIGGRAPH 2008
http://research.microsoft.com/unwrap/

Recent advances and further reading

- Linear methods
- Principal components analysis (PCA) finds maximum variance subspace.
- Metric multidimensional scaling (MDS) finds distance-preserving subspace.
- Graph-based methods

