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What is “nonlinear dimensionality reduction?”
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High-dimensional data (Manifold Learning) embedding

* We often suspect that high-dim may actually lie on or near a
low-dim manifold (often much lower!)

* It would be useful if we could reparametrize the data in terms of
this manifold, yielding a low-dim embedding

* BUT - we typically don’t know the form of this manifold




Why might this be useful?

 The variation observed in high-dimensional signals often has
much lower-dimensional explanation

64x64 pixel images parametrized by just 3
variables (pose and lighting direction)

 Discovering these modes of variation helps us understand the
underlying structure of the data and the process that generated it

- Visualization of high-dimensional data

- Machine learning and pattern recognition




Okay, so how do we learn the embedding?

 Given high-dim data sampled from an unknown low-dim
manifold, how can we automatically recover a good embedding?
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Outline

* Linear subspace embedding

- Principal Components Analysis (PCA)
- Metric Multidimensional Scaling (MDS)

* Non-linear manifold learning

- Isomap (Tenenbaum et al.)

- Locally Linear Embedding (Roweis et al.)

* Some examples
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An excellent tutorial ...

Spectral Methods for
Dimensionality Reduction

Prof. Lawrence Saul

Dept of Computer & Information Science
University of Pennsylvania

NIPS*05 Tutorial, December 5, 2005

T\ 3 ” Neural Information
1| Processing Systems
l‘ e s) Conference

.. from which | have borrowed liberally! Thanks Lawrence!




Background - Linear Subspace Embedding




Linear subspaces

* We may often assume that our high-dim data lies on/near a
linear subspace




Linear subspaces

* We may often assume that our high-dim data lies on/near a
linear subspace

* In this case, well-known, stable tools exist for determining the
parameters of this subspace

- Principal Components Analysis

- Metric Multidimensional Scaling

» Among the most widely-used algorithms in engineering!




Notation

* We have a quantity N of D-dimensional data points x
* We seek to map x to a set of d-dimensional points y

* Nislarge and d << D




Principal Components Analysis (PCA)

* Project data onto an orthonormal basis, chosen so as to
maximize the variance of the projected data
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» Choose subspace as the d-dimensional hyper-plane spanned by
directions of maximum variance
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Principal Components Analysis (PCA)

* First, we center the data to have zero empirical mean

Y % =0

l

* Then we determine an orthonormal linear projection
y; = Px;

* ... S0 as to maximize the projected variance
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Principal Components Analysis (PCA)

* Projected variance is given by
var(y) = Tr(PCP") with C=n") %%/

* where C is the DxD data covariance matrix, with eigen-value
decomposition

C =) A,6,6, with 4, >-->2,>0

 The projected variance is maximized when
d

P=)c¢ce,
=1
* i.e. projecting into the sub-space spanned by the eigenvectors
corresponding to the largest eigenvalues




Principal Components Analysis (PCA)

 The intrinsic dimensionality of the subspace may be estimated as
the number of significantly large eigenvalues

threshold
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Subspace dimension




PCA Example : Eigenfaces

» Sirovich and Kirby (JOSA ‘87) pioneered application of PCA to
model the variation observed in face images

* High-dim (e.g. 128x128 pixel) face images may be modeled by
just 50-100 principal components

\ PCA applied to 7562
“Mean” face face images

Top 15 most significant
principal components

Background:Linear subspaces



Multidimensional Scaling (MDS)

* An alternative approach to PCA based on preserving pairwise

distances

Given n(n — 1)/2 pairwise distances d;;
low-dimensional embedding X — y such that ||y; —
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Multidimensional Scaling (MDS)

* Given centered mean-zero data X, we can express the dot
products G;j = <X; Xj> in terms of pairwise distances d;

1
Gz‘j — 5 — Z d d2 — 5 Zd (n.b. useful lemmal)

* We then seek new vectors yi so as to minimize the error function
T 2
err(y) = Y (Gij —yi y))

» Matrix G, consisting of all possible dot products <i,j> is known
as a Gram matrix




Multidimensional Scaling (MDS)

* We aim to approximate G

2
err(y) = Y (Gij —yi y))
]
 Again using the eigen-decomposition of the Gram matrix

G=Y A,y with 4, >-->1, >0

* We immediately see that the optimal approximation of G is
given by an outer-product of the most significant eigenvectors

Yai = V )\avai for « :1,2,...,d




PCA vs. MDS

e The methods are in some sense “dual” to each other

- In PCA, we compute the DxD covariance matrix
| N D
Cij = ” ;xikwg’k -XI -8 Do
- In MDS, we compute the NxN Gram matrix

D N
Gij = Tj 0 IX-:. NXN

* For Euclidean distances dij in MDS, the two methods yield the
same embedding results (up to an arbitrary rotation)




PCA vs. MDS

* Both PCA and MDS have similar strengths

- polynomial time algorithms (non-iterative)

- no local optima
- no parameters to set
- can estimate subspace dimension

- very well understood!

* BUT - Limited to linear projections
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Nonlinear Dimensionality Reduction

Method 1: Isometric Feature Mapping (IsoMap)




Tenenbaum et al.
(Science, Dec '00)

Isometric Feature Mapping (IsoMap)

* Recall that MDS seeks an embedding that preserves pairwise
distances between data points

» BUT - Geodesic distances measured on the manifold may be
longer than the corresponding Euclidean straight-line distance d;




IsoMap

* Idea : Use geodesic rather than Euclidean distances in MDS

* But - How can we compute geodesics without knowing the
manifold?




IsoMap

* Idea : Use geodesic rather than Euclidean distances in MDS

* But - How can we compute geodesics without knowing the
manifold?

* Answer : Build an adjacency graph and approximate geodesic
distances by shortest-paths through the graph
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IsoMap

Step 1 - Build the adjacency graph over high-dim points X

Neighborhood selection

- Choice 1: k-nearest neighbors

- Choice 2: neighbors within a fixed radius (epsilon-ball)

Assume graph is fully connected
- no isolated islands of points

Assume graph neighborhoods reflect manifold neig

hborhoods

- no “short-cuts” between distant points on manifold

- sensitive to choice of neighborhood size
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IsoMap

» Step 2 - Compute approximate geodesics
* Weight graph edges by inter-point distances

» Apply Dijkstra’s all-pairs shortest-paths algorithm O(N2IgN+N2k)
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IsoMap

* Step 3 : Apply MDS to geodesic distances

 Top d eigenvectors of Gram matrix give the embedded, d-
dimensional points

* Dimensionality of manifold may be estimated by number of
significant eigenvalues, just as in PCA/MDS

N = 1024 points
k = 12 nearest neighbours




IsoMap examples

* Faces - varying pose and illumination

* 3 true degrees of freedom (dof) in total

- 64x64 pixel images A
- N =698 g
_ s
- k — 6 'EL
-
Eigenvalues
0.7 —————
0.6 |
0.5 | e Isomap
0.4 | A MDS
0.3
0.2}
0.1
0

|

Left—right pose




IsoMap examples

* Faces - varying pose and illumination

* 3 true degrees of freedom (dof) in total

IsoMap recovers the low-
dimensional structure in the data

Up—dawn pase

Coordinates in the embedding
correspond to meaningful modes
of variation in the image

- -
Left—right pose




IsoMap examples

* Hand images - varying wrist rotation and finger extension

i
- 64x64 pixel images 8
- N = 2000 5
- k=6 g

0

Trajectories in the embedding
correspond to meaningful
variations in the image

=~9

Wrisi rofafion




IsoMap examples

* Interpolations along “straight” lines in the embedding space
yield realistic, though highly nonlinear, transitions in the image




de Silva &
Tenenbaum ‘03

Scaling-up: Landmark Isomap

Problem
* Isomap does not scale well

* For large N, all-pairs shortest paths computation is too expensive
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de Silva &
Tenenbaum ‘03

Scaling-up: Landmark Isomap

Problem
* Isomap does not scale well

* For large N, all-pairs shortest paths computation is too expensive

Solution
» Compute embedding using a subset of the data (landmarks)

* Embed non-landmarks by convex triangulation
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IsoMap strengths

» Strengths inherited from MDS

- Polynomial time algorithm

- No local optima

- Non-iterative

- Automatic intrinsic dimensionality estimate

* Isomap adds a single heuristic parameter

- graph neighbourhood size k

 Guaranteed asymptotic convergence

- For data living on a convex submanifold of Euclidean space, and given
large enough sample N, Isomap is guaranteed to recover the true
manifold, up to a rotation and translation.
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IsoMap weaknesses

» Sensitive to “short-cuts” due to k being too large

Does not scale well to very large N

- NxN dense eigenvector problem is expensive

* Convexity assumption

- Cannot handle manifolds with “holes”

IsoMap embedding

e.g. periodic motion
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Nonlinear Dimensionality Reduction

Method 2: Locally Linear Embedding




Locally Linear Embedding (LLE) Roweis & Saul,

Science, Dec ‘00

1T

» “Think locally, fit globally!” - an alternative to Isomap

* LLE aims to preserve local manifold geometry in its

embedding

Idea

» Assume manifold is locally linear

- We expect each D-dim data point to lie on or near a

locally linear patch of the manifold 0
. . . ©C e O
 Characterize each point x;i as a convex linear ¢ 2
combination of its k-nearest neighbors x; L Xy W X
» Seek an embedding that preserves these weights ~ ° P .
¢ I, j 4
Co . =

[ UU U C C AUSUC C Jiviau JCc C'd Dcdd



Locally Linear Embedding

* Step 1: Com
- Same as in

* Step 2: Com

bute k-nearest neighbors for each point x;

somap

oute weights Wi; that best reconstruct x; as a convex

sum of its neighbors x;

O
2 O 7 . . ©
arg min ®(W) = Z T — Z Wi;Z; S N
v ¢ JEN > Xy Wy X
o
subject to Z Wi =1 ' . "Wu?:()] ?
: of¢ , |
j |

nis is easily solved using a Lagrange multiplier

Note that local weights are invariant to translation, rotation and scale

ence weights should be preserved under a well-behaved embedding




Locally Linear Embedding

» Step 3: Choose embedded coordinates y; that minimize
reconstruction error using previously computed weights Wj;

arg min O(y) = Z Yi — Z Wijij; 2

J ' JEN;

1
subject to Z y; = 0 (zero mean)
()

— Z Yil; — Id (Unit Covariance)

- Since the embedding is only defined up to an arbitrary translation and
scale, the constraints serve to make the problem well-posed




Locally Linear Embedding

 The result is given by the eigenvectors of the matrix Q
corresponding to the d+1 smallest eigenvalues, where

Q=IT-W)"'I-W)

» The bottom eigenvector is the vector [1 1 1 1]T, an exact null-
vector corresponding to a free translation mode.

* Discarding it imposes the zero-mean constraint.

* The remaining d eigenvectors give the embedding

* Note : W and hence Q is very sparse (compare to IsoMap G)

* Efficient algorithms exist for large, sparse eigenvector problems




LLE summary

. f O .
1. Compute the nelghllors o o OO Q__@ Select neighbors.
of each data point, Xj. © * Tl
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LLE examples

(A) (B) (C)

N=1000
inputs

=8
nearest
neighbors

D=3
d=2
dimensions
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PCA vs LLE example

d=2 PCA embedding d=2 LLE embedding

* Input: 30x30 images of a translating face (N=961

» PCA fails to recover a meaningful 2-d embedding

 LLE discovers the 2 translational degrees of freedom in the input




LLE example - Face variations

- 20x28 pixel images
- N=1965

- k=12

- d=2

E =
4*_}‘ O""ﬂ'c" a6l a6l ol adllad ad adlad o ad ad
Aﬂﬂ&iﬁﬂﬂﬂﬂﬂﬂﬂ VR

* The 2-d LLE embedding coordinates correspond roughly to
variations in pose and expression

* The trajectory (red) corresponds to a realistic facial transition
(bottom row)




LLE example - Lips images

- 256x256 pixel images
- N=15960
- k=24

- d=2

* Trajectories in the 2-d embedding correspond to smooth
variations in the mouth configuration

* Note: LLE easily handles the large problem size (N=15960)
thanks to sparse weights matrix
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LLE example - a pattern classifier

- Recognition of hand-written digits
- 16x16 pixel images (USPS dataset)
- N=11000

- k=22 (author doesn’t say)

_d=8

* Most digit classes are easily separable in just the first two
embedding dimensions

* A classifier would be easy to construct and visualize
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LLE with pairwise distances

* What if we only have pairwise distances d(X;,Xj) between data
points, as was the case with MDS and IsoMap?

* We can use the same trick for expressing dot products in terms

of distances when computing the LLE weights W;;

 The neighborhood covariance may be written as

1
Cik = > (Dj + Dy — D, — Do)

Dy =Y, Dy,
Do =) ik Dij

where




LLE with pairwise distances
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- Input: Histograms of occurrence of 5000 words in 31000 encyclopedia articles

- Distance metric: dot-products between unit-normalized histograms

- k=20
- LLE recovers a continuous semantic embedding
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- no meaningful structure is recovered

d S-manifold

3-

* Neighborhood size k is varied in 2-d embedding of S-manifold
* k too high - S is squashed onto a plane, ordering not preserved

e k too low




LLE: Non-convex manifolds

ISOMAP

 LLE handles non-convex manifolds (those with holes) a little
petter than [soMap

* Not perfect - we'd prefer this particular 2d-2d embedding to be a
simple isometry!
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LLE strengths/weaknesses

 Similar strengths to IsoMap

- Graph-base, eigenvector method
- Polynomial time algorithm

- No local optima

- Non-iterative

- Single heuristic parameter (neighbourhood size k)

* PLUS - Better handling of non-convex manifolds

e BUT - some additional weaknesses

- Also sensitive to “short-cuts”
- No asymptotic guarantees

- No way to estimate intrinsic manifold dimension
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IsoMap vs. LLE

IsoMap

» Computes top d eigenvectors of a
dense NxN matrix

 Preserves distances

* Asymptotic guarantee of finding
true manifold

Major “selling point” for LLE :

LLE

» Computes bottom d+1 eigenvectors
of a sparse NxN matrix

* Preserves local linear geometry

* Copes with “holes” rather better

* LLE avoids the need to compute a dense, all-pair shortest distance matrix

* The LLE eigenvector problem is extremely sparse

* Far more efficient in terms of both time and storage requirements




Application : Clever graphics stuff!

Unwrap Mosaics:
A New Representation for Video Editing

Rav-Acha, Kohli, Rother, Fitzgiblbon
SIGGRAPH 2008

http://research.microsoft.com/unwrap/



http://research.microsoft.com/unwrap/
http://research.microsoft.com/unwrap/

Recent advances and further reading

* Linear methods

—Principal components analysis (PCA)
finds maximum variance subspace.

— Metric multidimensional scaling (MDS)
finds distance-preserving subspace.

- Graph-based methods
—————+—+—+>

2000 2002 2003 2004 2005
Isomap, Laplacian Hessian  Maximum Conformal
LLE eigenmaps LLE variance  eigenmaps

unfolding




