Robótica Basada en Comportamientos

Paradigmas en Robótica

Instituto de Computación Facultad de Ingeniería Universidad de la República

Paradigmas 1/3

- Existen tres paradigmas para organizar la inteligencia en un robot:
 - Jerárquico
 - Reactivo
 - Híbrido Deliberativo/Reactivo
- Existen tres funciones primitivas en robótica:
 - Sensar (SENSE)
 - Planificar (PLAN)
 - Actuar (ACT)

Paradigmas 2/3

Primitivas robóticas

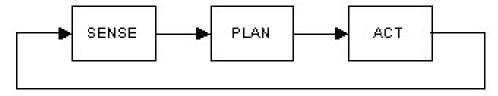
Primitiva robótica	Entrada	Salida
Sensar (SENSE)	Datos de los sensores	Información sensada
Planificar (PLAN)	Información (sensorial o cognitiva)	Directivas
Actuar (ACT)	Información sensada o directivas	Comandos a los actuadores

Paradigmas 3/3

- Los paradigmas se describen de dos maneras:
 - Por la relación entre las primitivas SENSAR, PLANIFICAR y ACTUAR.
 - Por la manera en que los datos sensoriales son procesados y distribuidos en el sistema.

Arquitecturas

- Las arquitecturas proporcionan la manera general de organizar un sistema de control.
- Describe un conjunto de componentes y la forma en que interactúan.
- Las características más importantes a tener en cuenta al momento de evaluar una arquitectura son:
 - Modularidad
 - Lugar de aplicación
 - Portabilidad
 - Robustez

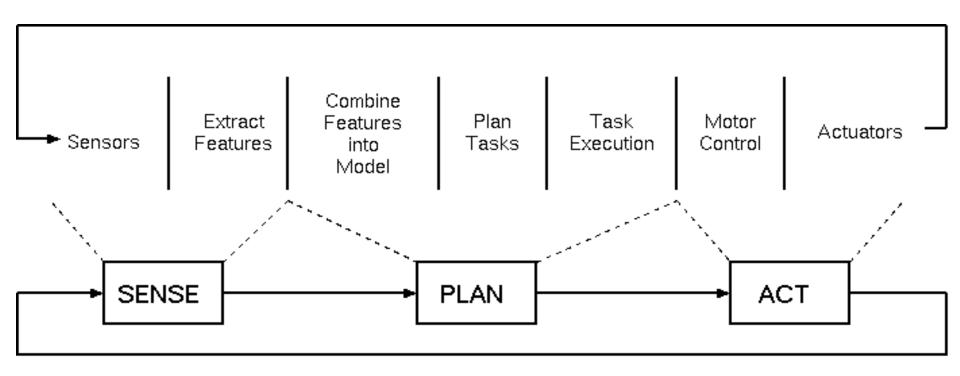


Paradigma Jerárquico

Introducción 1/2

- Jerárquico (1967-1990)
 - Esta basado en una visión introspectiva de cómo las personas piensan.
 - Secuencial y ordenado.
 - En cada paso se planifica que hacer.

 Se arma un modelo global del mundo el cual es utilizado para planificar las acciones.



Introducción 2/2

Primitiva robótica	Entrada	Salida
Sensar (SENSE)	Datos de los sensores	Información sensada
Planificar (PLAN)	Información (sensorial o cognitiva)	Directivas
Actuar (ACT)	Directivas	Comandos a los actuadores

Descomposición horizontal

Ideas centrales

- Razonamiento y planificación.
- Representaciones y construcción de modelos
 - Mapas
- Sistemas jerárquicos y descomposición funcional.
- Manipulación de símbolos.

Modelo del mundo

- Todas las observaciones se juntan para formar una estructura de datos global accedida por el planificador, esta estructura es denominada modelo del mundo.
- El modelo del mundo típicamente contiene:
 - Una representación a priori del entorno en el cual opera el robot.
 - Información sensorial.
 - Conocimiento cognitivo necesario para realizar la tarea.

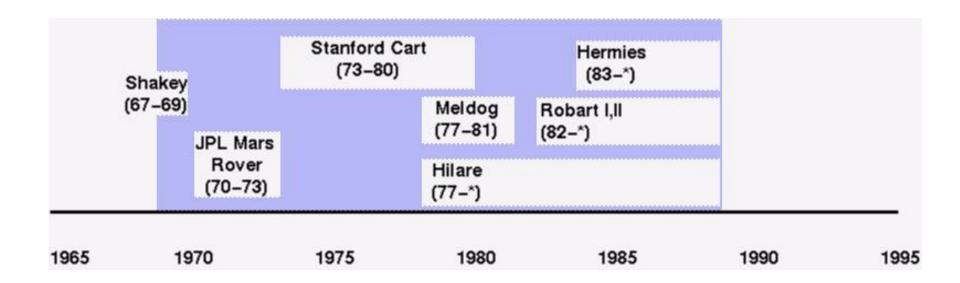
Closed World Assumption

 El modelo del mundo contiene todo lo que el robot necesita saber.

- Si esta condición no se cumple el robot no podrá realizar la tarea asignada.
- Lo opuesto a Closed World Assumption es conocido como Open World Assumption.

Frame Problem

- El problema de representar una situación real del mundo de forma que sea computacionalmente tratable.
- Como determinar eficientemente que las cosas siguen siendo iguales en un mundo que cambia.


Shakey

- Primer robot con IA.
- Desarrollado por el Stanford Research Institute (SRI) para DARPA 1967-9.
- Usa STRIP para determinar que acción tomar.
 - Asume closed world.
 - Sufre el problema del marco.
- Costo u\$s 100.000.

Robots dentro del paradigma jerárquico

Ventajas y Desventajas 1/2

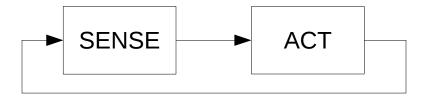
- Los robots construidos antes de los '90 presentaban una organización del software jerárquica.
- Se desarrollaban para aplicaciones específicas, en lugar de pensar en arquitecturas genéricas que puedan ser utilizadas en otras aplicaciones.
- La principal ventaja del paradigma jerárquico es que proporciona un orden entre las actividades de sensar, planificar y actuar.

Ventajas y Desventajas 2/2

- La presencia de un modelo global del mundo está relacionado al problema del marco. En STRIP, una tarea tan simple como abrir una puerta obliga a razonar sobre todo el modelo (incluyendo hechos irrelevantes).
- Incertidumbre:
 - Semántica.
 - Ruido en los sensores.
 - Error en los actuadores.
 - Al ejecutar una acción.

Resumen

- La principal desventaja es la planificación. En cada ciclo de actualización el robot debe actualizar el modelo del mundo y planificar.
- Los algoritmos de planificación y sensado actuales son muy lentos (cuello de botella).
- Además, sensar y actuar están desconectados, lo cual elimina cualquier posibilidad de implementar acciones de tipo estimulorespuesta -presentes en los seres vivos.



Paradigma Reactivo

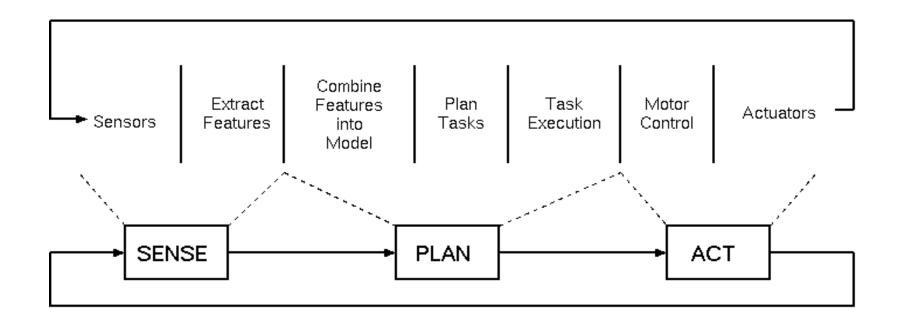
Introducción 1/3

- Reactivo (1988-1992)
 - Nace a partir de las desventajas de los sistemas jerárquicos y bajo la influencia de la Etología y Sicología Cognitiva.
 - Elimina totalmente la planificación.

- Aún es muy utilizado en ciertos dominios.
- Forma la base para los sistemas híbridos.

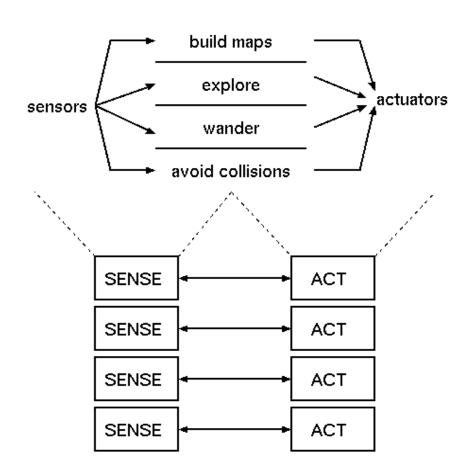
Introducción 2/3

Primitiva robótica	Entrada	Salida
Sensar (SENSE)	Datos de los sensores —	→Información sensada
Actuar (ACT)	Información sensada 🔸	Comandos a los actuadores


Introducción 3/3

- Brooks, Arkin y Payton trabajan en la definición de comportamientos y mecanismos de selección cuando se activan múltiples comportamientos en simultáneo.
- Fue rechazado inicialmente por los organismos militares y nucleares:
 - No es claro el mecanismo por el cual emerge el comportamiento.
 - Pruebas matemáticas de completitud y correctitud.
- Los buenos tiempos de ejecución fueron clave para su aceptación.

Descomposición horizontal


Propuesta en los sistemas jerárquicos.

Descomposición vertical

- Esta descomposición se asocia a los sistemas Reactivos.
- Comportamientos de bajo nivel asociados a instinto de supervivencia.
- Comportamientos de alto nivel para resolver tareas complejas.
- Es necesario definir un mecanismo para determinar la acción a tomar.

Ideas centrales

- Embodiment
 - Fuerte influencia del estado interno (emociones, deseos)
- Situatedness (Embeddedness)
 - Fuerte influencia del entorno (restricciones)
- Complejidad emergente.
- Sin planificación.

Resumen

- Todas las acciones se realizan a través de comportamientos. Ejecución rápida.
- El sensado es local a cada comportamiento. No utilizan un modelo del mundo.
- El comportamiento global emerge a partir de la interacción entre comportamientos básicos y el entorno.
- No tienen memoria. Basados en estímulo-respuesta.
- Robots como agentes situados en un medio ecológico particular.
- Siguen buenos principios de desarrollo de software.
- Modelos animales son citados como base para el sistema o un comportamiento en particular.

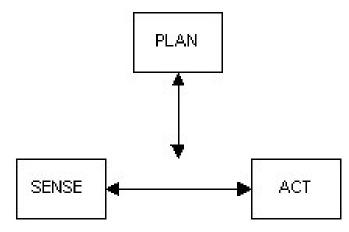
Resumen de Diferencias

- Pensar y razonar -> Comportamiento y acción
- Inteligencia en el "cerebro" -> Inteligencia en el organismo
- Inteligencia Artificial -> Vida Artificial
- Procesamiento de información -> Coordinación sensorial-motora
- Marcos de referencia cartesianos -> Egocéntrico

(management | artificial intelligence

Photo courtesy of SRI International.

El diseño del software y hardware se ven afectados



El Paradigma Híbrido

Introducción 1/3

- Híbrido (1990's)
 - Bajo este paradigma el robot primero planifica como descomponer la tarea en subtareas y luego cuales son los comportamientos adecuados para realizar las subtareas.
 - Luego se ejecutan los comportamientos adecuados para cada subtarea.

Introducción 2/3

El paradigma Híbrido

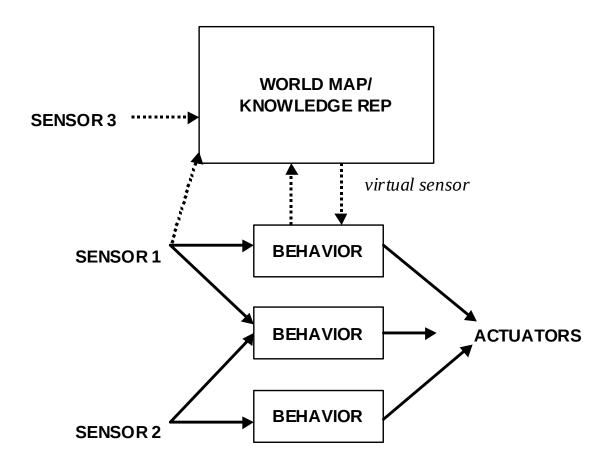
Primitiva robótica	Entrada	Salida
Planificar (PLAN)	Información (sensorial o — cognitiva)	→Directivas /
Sensar - Actuar (S-A)	Datos de los sensores	→Comandos a los actuadores

Introducción 3/3

- Permite controlar robots en tiempo real utilizando procesadores comerciales de bajo costo.
- En 1990 los diseñadores vuelven a poner a la planificación en los robots.
- En los sistemas reactivos la emergencia del comportamiento se ve como un arte y no como una ciencia.
- Las arquitecturas híbridas son la solución general por varias razones:
 - Usan técnicas de procesamiento asíncrono donde los módulos deliberativos funcionan independiente de los módulos reactivos.
 - La modularidad en la inclusión del paradigma reactivo le dan la posibilidad de utilizar sólo una porción de la arquitectura.

Ideas centrales

- La planificación cubre un gran horizonte y requiere conocimiento global.
- Para planificar o mantener un modelo del mundo se utilizan algoritmos costosos computacionalmente.
- La organización se divide en:
 - Reactor.
 - Deliberador.



Paradigmas en el tiempo

- Reactivo, existe en el presente.
- Deliberativo
 - Puede razonar sobre el pasado.
 - Puede proyectarse en el futuro.

Organización

Desafíos

- ¿Cómo distingue la arquitectura entre reacción y deliberación?
- ¿Cómo organiza las responsabilidades dentro de la parte deliberativa?
- ¿Cómo emerge el comportamiento global?

Resumen

- P, S-A, la parte deliberativa usa modelos del mundo, la parte reactiva usa comportamientos.
- Generalmente incluyen módulos para planificación de misión, cartógrafo, secuenciador, gestión de comportamientos y monitor de performance.
- Ampliamente utilizado en los sistemas robóticos modernos.

Referencias

- Murphy R. R., An Introduction to Al Robotics (Intelligent Robotics and Autonomous Agents), MIT Press, 2000.
 Capítulos 2, 4 y 7.
- Shakey the Robot, http://www.sri.com/about/timeline/shakey.html, Set 2010.

