
Piaget and Computational Thinking

Sylvia da Rosa Zipitŕıa
Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República

Montevideo, Uruguay
darosa@fing.edu.uy

ABSTRACT

In this article I present a theoretical framework for the con-
cept ”computational thinking”. I do so in response to some
of the problems and consequences of the lack of viable theo-
retical foundations; especially in relation to the development
in recent years of many educational practices that claim the
term ”computational thinking”. I therefore introduce my ex-
tension of Jean Piaget’s general law of cognition which arose
as a result of my empirical research on novice learners knowl-
edge of the concept of a program as an executable object.
Said empirical study is briefly described in this paper as a
means to highlight the key to my extension of Piaget’s general
law, which is the insight of how the thought processes and
methods involved in cases where the subject must instruct an
action to a computer differ from those in which the subject
instructs another subject, or performs the action themselves.
My theory explains the difference between algorithmic think-
ing and computational thinking by adequately locating it in
the specificities of the subject instructing a computer. Hence,
in this article I claim that my extension of Piaget’s law offers
a more empirically thorough and theoretically sound way
forward in the conceptual development of ”computational
thinking” than the alternatives that are being debated in
academia to the present day.

CCS CONCEPTS

• Applied computing → Education;

KEYWORDS

Learning to program, Novice learners, Piaget’s theory.

ACM Reference Format:

Sylvia da Rosa Zipitŕıa. 2018. Piaget and Computational Thinking.
In The 7th Computer Science Education Research Conference

(CSERC ’18), October 10–12, 2018, Saint Petersburg, Russian
Federation. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3289406.3289412

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

CSERC ’18, October 10–12, 2018, Saint Petersburg, Russian Feder-
ation

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6624-3/18/10. . . $15.00
https://doi.org/10.1145/3289406.3289412

1 INTRODUCTION

In this article I discuss the concept of ”computational think-
ing” (hereinafter CT). More specifically, I discuss the recent
upsurge of interventions that use the term ”computational
thinking” to describe certain ideas and practices in educa-
tional settings, as well as the academic debates that these
educational ideas and practices have sparked in recent years.
My intention is to bring clarity to a concept that is becoming
increasingly popular in practice and, while it is intensely
discussed and debated, has theoretical contours that remain
poorly defined. I argue that the popularity of the concept
in educational practice has been producing teaching tools
and interventions that, not only obscure the very purpose
of applying ”computational thinking” in education, but also
fail to produce the desired outcomes in student learning.

CT as it is being debated in recent years is a concept that,
among other things, is not easily distinguished from other
related concepts such as, for example, algorithmic thinking.

The problem of conceptual vagueness is not a problem in
itself. However, certain practices and applications of diffuse
concepts can become problematic. Concepts that appear to
offer new insights which could potentially be converted into
practical tools to be applied in various fields can become
immensely popular. There is a risk, however, of a concept
being sabotaged by its own popularity as its theoretical
development is intersected by its practical application in
unforeseen ways. This is particularly true at the interface
of policy and research which implies a complex interaction
of interests, institutionalised processes and techniques that
ultimately produce a wide range of (not always desirable)
policy interventions and results.

The case of the introduction of computer science as a
discipline in educational policy is an example of the difficul-
ties that can emerge in such contexts. Since the expression
”Computational Thinking” was first introduced in 2006 by
Jeannette Wing, a review of education literature [2, 3, 11–
13, 21, 25], shows a diversity of approaches, encompassing
definitions, interventions and assessments, that continually
generate the most diverse opinions and interpretations, but
fail to offer a satisfactory conceptual landscape within which
such a wide range of ideas and practices can be contained.

CT has been making the transition from computer science
concept into educational tool and suffers, like many concepts
before it, from a disconnect between its theory and its practi-
cal application, making it vulnerable to confusion and misuse.
As Denning writes:

The absence of clear definitions and substantiated claims,
”... leave teachers in the awkward position of not knowing

https://doi.org/10.1145/3289406.3289412
https://doi.org/10.1145/3289406.3289412
https://doi.org/10.1145/3289406.3289412

CSERC ’18, October 10–12, 2018, Saint Petersburg, Russian Federation Sylvia da Rosa Zipitŕıa

exactly what they supposed to teach or how to assess whether
they are successful.” Peter Denning in [11].

In fact, the application of a concept that is theoretically
weak can even be counterproductive. As Paulson notes:

”Unless somebody can come up with a more insightful
definition, it is indeed time to retire ’computational thinking’”.
Lawrence C. Paulson in [14].

Indeed, before the promised potential of CT is lost in mis-
guided practice it is the task of researchers (myself included)
to map the current theoretical landscape of ’computational
thinking’ and identify how it can be moved forward.

I therefore begin with a brief literature review of the emer-
gence and trajectory of CT, and the conceptual challenges
produced since it has been applied, particularly in education.

More specifically, I review the two perspectives that have
been most relevant in the recent trajectory of CT; on the
one hand, the literature seeking to define CT using computa-
tional models. On the other hand, the literature that define
CT based on the cognitive sciences, hence taking psycho-
logical processes into consideration. I emphasise these two
perspectives in the review because both build on areas that
are relevant to the development of CT (i.e. computer and
thought).

Other literature, such as papers based on other approaches
(for instance CHB (Computers in Human Behavior) or as-
sessing CT), do not significantly add further insight to the
analysis and has therefore been excluded from the review.

The paper is organised into the following sections: 1 Intro-
duction; subsection 1.1 CT in the literature; section 2; Algo-
rithmic thinking; subsection 2.1 The general law of cognition;
section 3 Extending the general law of cognition: computa-
tional thinking; subsection 3.1 The experience prior to the
theory; section 4 Conclusions; section 5 Acknowledgements
and finally References.

1.1 CT in the literature

The expression ”Computational Thinking” was introduced in
2006 by Jeannette Wing, [22], where she characterises CT as:
” · · · solving problems, designing systems, and understanding
human behaviour, by drawing on the concepts fundamental
to computer science · · · ”. In her article Wing makes the
remark that CT is done by humans, not machines. Since then,
many researchers have continued to develop and define the
concept, including Wing herself (see later on this section).

In [11], Peter Denning makes a brief historical review from
the roots of algorithmic-computational thinking, including
references of several computer science researchers like Don-
ald Knuth, Edsger Dijkstra, Seymour Papert, among others.
These authors have mentioned in one or another form the way
of thinking when solving algorithmic problems and represent-
ing their solutions as algorithms, characteristic of computer
science. The focus of the majority of authors is on CT as
a term meant to encompass a set of concepts and thought
processes that aid in formulating problems and their solu-
tions in different fields in a way that could involve computers.
In most of the cases, these include; abstraction, recognising

patterns, logical reasoning, automation, testing, generalising,
data representation and so forth.

In an effort to clarify the specificity of CT, computer
science researchers have sought to link CT to a specific com-
putational model; a strategy which they believe could provide
CT with a much needed conceptual clarity. Among others,
Denning is responding to Alfred Aho’s words from [1], where
Aho emphasises the relevance of computational models, not
only in computer science but also in other disciplines. Den-
ning, in agreement with Aho, points out the absence of any
mention of computational models as one of the main sources
of ambiguity in the definitions of CT.

Further, Denning argues that the problem lies in failure
to realize the fact that computational concepts (abstraction,
recognising patterns, logical reasoning, automation, testing,
generalising, data representation and so forth) constitute a
computational model. Others, however, such as [14], Lawrence
C. Paulson downplay the impact of relying to computational
models for defining computational thinking; mainly because
”All disciplines rely on models”.

While many computer science researchers have been de-
bating the issue of whether the problem of the confusion
surrounding CT can be addressed by specifying to which com-
putational model does that CT refer, other authors present
a different perspective without making references to compu-
tational models or even computational concepts.

These authors offer a view much more centred around
the cognitive sciences and mental processes. For this reason,
much of their debate is concerned with who is the thinker in
CT and where does the processing occur.

For instance, Wing, Cuny and Snyder in [24] write: ”Infor-
mally, computational thinking describes the mental activity
in formulating a problem to admit a computational solution.
The solution can be carried out by a human or machine, or
more generally, by combinations of humans and machines”.
While developing this thought, Wing has had to make changes
to her initial definition in order to include ” · · · thinking
process where · · · solutions are represented in a form that
can be effectively carried out by an information-processing
agent” (https://www.cs.cmu.edu/~CompThink/ (accessed
25/04/18)).

The change in Wing’s definition reflects the philosophical
view which acknowledges the dual ontology of programs. A
program is both the text (algorithm) and the object executed
by a machine. Wing’s turn to the thinking agent is correct
in that it is focused on the thought processes involved in
CT. For instance, when talking about CT many computer
science researchers refer to abstraction as a computer science
technique, while Wing talks of abstraction as a cognitive tool:
”Abstractions are the ’mental’ tools of computing.” [23] page
3721.

Also, in [25, 26] the authors present their interpretation
of CT taking principles from cognitive sciences.

In [25] the author describes his framework based on the
computational theory of mind which basically claims that
computational processing of information, regardless of the
underlying device (electronic or biological), can facilitate and

Piaget and Computational Thinking CSERC ’18, October 10–12, 2018, Saint Petersburg, Russian Federation

generate cognition (page 21). The author describes the type
of computation at two levels, on the one hand, as forms of
an associative/distributive processing, that the author also
identifies as a bottom-up or inductive and top-down or deduc-
tive (pages 22-24) processes, and on the other hand as mod-
elling/simulation types of computation at higher levels (page
27). The author describes how this associative/distributive
processing can be found in the explanations of how learning
take place in mind (page 23) of different disciplines, namely
epistemology, psychology, neuroscience, computer science.

Since the processing of information can be carried out by
an electronic or biological underlying device (page 21), his
interpretation of CT is then that it is the same as thinking
and therefore everyone does CT (page 29).

What distinguishes electronic CT consists of ” ... thinking
caused by certain uses of electronic computing devices by a
biological agent (page 30)”. That means that if the thinker
uses electronic computing devices, then he/she develops ”elec-
tronic computational thinking skills”.

2 ALGORITHMIC THINKING

In response to the literature reviewed here, I begin by stating
the following: In order to articulate a theory of the concept of
CT the words ”computational” and ”thinking” must both be
consider, and more importantly, the link between the two is
key in this regard. Articulating a solid theoretical definition
of CT is not a computational problem, or a psychological
one. Each science or discipline is able to answer the questions
it is fit to problematise. CT is a problem for the didactics
of computer science1. This is the science of, among other
things, the mental processes involved when dealing with the
problem of teaching computers to solve algorithmic problems;
that is, the problem of learning how to program. In order
to contribute to elaborate theoretical founded solutions for
those problems, I offer a didactical model from Piaget’s theory
-Genetic Epistemology- to do research on learning to program.

Piaget studied the mental processes involved in algorithmic
thinking in depth, and his theory provides psychological
explanations substantiated with broad empirical research. I
have extended some principles of his theory to explain the
mental processes of CT.

2.1 The general law of cognition

Piaget’s theory -Genetic Epistemology- explains the construc-
tion of knowledge and offers a model that can be used in all
domains and at all levels of development. The central point of
Piaget’s theory has been to study the construction of knowl-
edge as a process and to explain how the transition is made
from a lower level of knowledge to a level that is judged to be
higher [17]. The supporting information comes mainly from
two sources: first, from empirical studies of the construction
of knowledge by subjects from birth to adolescence (giving
rise to Piaget’s genetic psychology) [15, 16], and second, from
a critical analysis of the history of sciences, elaborated by

1Also called didactics of informatic or computer science education.

Piaget and Garćıa to investigate the origin and development
of scientific ideas, concepts and theories [19].

In Piaget’s theory, human knowledge is considered essen-
tially active, that is, knowing means acting on objects and
reality, and constructing a system of transformations that can
be carried out on or with them [17]. The more general prob-
lem of the whole epistemic development lies in determining
the role of experience and operational structures of the indi-
vidual in the development of knowledge, and in examining the
instruments by which knowledge has been acquired before
their formalisation. This problem was studied in depth by Pi-
aget in his experiments about genetic psychology. From these
he formulated a general law of cognition [15, 16], governing
the relationship between know-how and conceptualisation,
generated in the interaction between the subject and the
objects that he/she has to deal with to solve problems or per-
form tasks. It is a dialectic relationship, in which sometimes
the action guides the thought, and sometimes the thought
guides the actions.

Piaget represented the general law of cognition by the
following diagram

C ← P → C’

where P represents the periphery, that is to say, the more
immediate and exterior reaction of the subject confronting
the objects to solve a problem or perform a task. This reaction
is associated to pursuing a goal and achieving results, without
awareness neither of actions nor of the reasons for success or
failure. The arrows represent the internal mechanism of the
(algorithmic) thinking process, by which the subject becomes
aware of the coordination of his/her actions (C in the diagram)
-that is the method or algorithm she/he has employed- the
modifications that these impose to objects, as well as of
their intrinsic properties (C’ in the diagram), -that is the
data structures-. The process of the grasp of consciousness
described by the general law of cognition constitutes a first
step towards the construction of concepts.

Piaget also describes the cognitive instrument enabling
these processes, which he calls reflective abstraction and con-
structive generalisation [15, 18], accounting for the principles
and mechanisms involved in algorithmic thinking.

Reflective abstraction is described as a two-fold process:
First, it is a projection (transposition) to the plane of thought
of the relations established in the plane of actions. Second, it
is a reconstruction of these relations in the plane of thought
adding a new element: the understanding of conditions and
motivations. The motor of this process is called by Piaget
the search of reasons of success (or failure).

The two phases of the cognitive instrument of generalisa-
tion, described in are: inductive generalisation and construc-
tive generalisation. In the first phase, the individual transfers
to new objects what has been previously constructed, without
taking into account the transformations of the knowledge
required for the conditions of the new situation. Because
of constructive generalisation, the individual understands
the new conditions giving rise to structures, opening the

CSERC ’18, October 10–12, 2018, Saint Petersburg, Russian Federation Sylvia da Rosa Zipitŕıa

possibility of studying new elements and integrating the
constructions of the previous stages as particular cases [18].

3 EXTENDING THE GENERAL LAW
OF COGNITION: COMPUTATIONAL
THINKING

The construction of knowledge about algorithms and data
structures is a process regulated by the general law of cogni-
tion. Over the years I have investigated the construction of
knowledge by novice learners of algorithms and data struc-
tures. My research methodology is based on applying Piaget’s
general law of cognition to make students solve problems (for
instance sorting, counting, searching elements [4–7, 9, 10])
and reflect about the method they employ and the reasons
for their success (or failure), as a first step towards the con-
ceptualisation of algorithms and data structures.

However, in the case that the object on which knowledge is
to be constructed is a program, some challenges appear, which
are inherent to the relevance of the machine that executes it.
I developed the extension of Piaget’s general law of cognition
as I identified the need to describe cases where the subject
must instruct an action to a computer. The thought processes
and methods involved in such cases differ from those in which
the subject instructs another subject, or performs the action
themselves.

As Seymour Papert says in [20] page 28, referring to the
programming of a turtle automata, ”Programming the turtle
starts by making one reflect on how one does oneself what one
would like the Turtle to do”. In other words: ”programming
an automata that solves a problem, starts by making the
student reflect on how he/she does herself what he/she would
like the automata to do”.

To programming an automata solving a problem, the learn-
ers have to establish a causal relationship between the algo-
rithm (he/she acting on objects), and the elements relevant to
the execution of the program (the computer acting on states).
Not only they have to be able to write the algorithm (the
text) and represent it as an automata and/or as pseudo-code,
but also they have to be able to understand the conditions
that make the computer run the program.

The generalisation of Papert’s words above can be de-
scribed as: programming an automata starts by making one
reflect on

how one does oneself︸ ︷︷ ︸
what one would like the automata to do

The causal relationship between the first row and the
second row is the key of the knowledge of a machine executing
a program. It is indicated with the brace in above description.

By way of analogy with Piaget’s law I describe this rela-
tionship in the following diagram

C ← P → C′︸ ︷︷ ︸
newC ←− newP −→ newC′

where newP is characterised by a periphery centred on the
actions of the subject and the objects he/she acts on. The
centres newC and newC’ represent awareness of what happens

inside the computer. The subject reflecting on his/her role
as problem solver becomes aware of how to do to make the
computer solve the problem.

The diagram describes an extension of the law of cognition
to encompass not only algorithmic thinking (first row) but
also computational thinking (second row).

Piaget identified that the construction of knowledge of
methods (algorithms) and objects (data structures) occurs in
the interaction between C, P and C’. Likewise, I claim that
the construction of knowledge of the execution of a program
takes place in the internal mechanisms of the thinking process;
marked by the arrows between newC, newP and newC’. In
other words, the general law of cognition remains applicable
to the thinking process represented by the arrows; in both
lines of the diagram pictured above.

My extension of Piaget’s law was not initially developed as
a theoretical description of ”computational thinking”. Instead,
I formulated the theory in order to accurately account for the
specificities of the subject instructing a computer to solve a
problem.

In the process of applying Piaget’s theory to investigate
those specificities, I identified the need to extend Piaget’s gen-
eral law of cognition to address the passage from algorithmic
to computational thinking.

As is often the case, the need to extend the theory became
visible in practice; during an empirical study [8]. One of the
objectives of said study was to make the students aware of
the causal relationship between their actions and the events
in the computer.

For the study I sought to formulate questions related to
actions, that would trigger a thought process which could
redirect students’ attention, away from themselves and their
actions, towards the events taking place in the computer.

This process is what led to the extension of Piaget’s general
law of cognition.

In order to clarify further how my extension of Piaget’s
general law emerged, I will offer a brief description of the
empirical study I have made reference to in this paper. This is
not an example of the application or verification of a theory. It
is a fundamental element of the emergence and development
of the theoretical framework I am introducing in this paper.
The need to include both theory and practice to develop a
framework is not linked to the need to justify the practical
use of theory; it simply reflects the dialectical relationship
between them.

3.1 The experience prior to the theory

The empirical study which eventually led to the formulation
of new theory was carried out in 2017 with average school
students between 13 and 15 of an ordinary public High School
in Uruguay. The aims of the study were for students; on the
one hand, to play a simple video game and to express the
rules of the game when they themselves play the game as an
algorithm in natural language, on the other hand, to design
an automata for a program that plays the game, and finally to
write and execute a program that plays the game. Examples

Piaget and Computational Thinking CSERC ’18, October 10–12, 2018, Saint Petersburg, Russian Federation

Figure 1: Game playing sequence with row 2 high-
lighted

of students answers, some illustrating the success of the new
questions, are included.

The game (called Lumber Jack (https://tbot.xyz/lumber))
consists of helping the woodcutter, Jack, to cut a large tree,
as shown in figure 1. As Jack hits the tree with the ax, the
tree descends a fixed unit. Jack must prevent the branches
of the tree from touching his head, if this happens, then the
game ends.

The player can move Jack to the left or to the right by
pressing two arrow buttons on the screen or the keyboard
keys. Each time Jack moves he gives an ax blow on the side
of the tree where he has been positioned himself. The player
must choose where to position Jack to avoid being hit by
the branches of the tree as it descends. It is always possible
to dodge the branches that appear since the combination of
having branches on the left and on the right is never given.

The students are asked to play the game for a while and
then to describe how they play in natural language in their
own words. They described actions and objects related to
themselves; as exemplified by the quotes below:

(1) I try to play on the phone ... it is uncomfortable ...
I use a notebook as support to improve my posture. I
get frustrated when I do not succeed and I start again;
paying attention to any mistakes in order to correct
them. When I start I look up the tree to anticipate

movement ... I change the position of my fingers; with
index fingers it’s better.

(2) I go slowly when I see a branch and I go faster if
there is no branch. I try to prevent. I go slower when
it approaches.

(3) Jack is cutting the trunk; moving to the right and left
depending on where the branches appear. When the
branch is on the right side Jack runs to the left and
when the branch appears on the left side Jack moves to
the right.

The most notable observation at this stage is that the
players did not notice that Jack’s movement depends on
the actions of the player (for instance, at the third quote
the player describes Jack’s movements as independent from
his/her own actions of pressing the keys/buttons.) In other
words, there is a lack of awareness of the causal relationship
between what the player does and what Jack does.

Keeping in mind my task of inducing students’ reflection on
how he/she does herself what he/she would like the program
to do, I set out to design questions aimed to direct students’
attention away from newP (e.g. what they do with their
fingers or how they feel) to newC and newC’ (Jack’s positions,
branches states at the row above Jack and what has to be
done for not losing). By this I mean, to be aware of the
causal relationship between their own actions (perceive the
branches, press the keys/buttons) and the events in the
computer (Jack’s positions, the descending branches, the
key/buttons events).

Instead of asking ”describe how do you play”, then, ques-
tion 1 (Q1) helps direct the players’ attention to Jack’s
different positions on the sides of the tree (newC’). Hav-
ing done that, questions 2 and 3 now induces students to
explicitly write down the rules of the game as inferences
(newC).

Q1 Before starting to play, what are the possible posi-
tions that Jack can be in, in relation to the tree?
Q2 How do you decide which buttons to press?
Q3 Can you summarise below when success and failure
occur, in your own words?

In some excerpts of students’ answers to questions 2 and 3
(Q2 and Q3) (see below those of level 1) explicit inferences
similar to ”if Jack was on such a side and the branch on that
side, then ... ” or ”if the pressed button was such and there
was a branch, then Jack ... ” appear. These reveal awareness
of the centres newC and newC’. In contrast, those of level
2, reveal that students’ thought remains at newP (that is,
focused in his/her-self).

Examples of answers of level 1

• Student 20: Q3: You succeed when you press the correct
buttons, for example: Jack is on the left side and the
branch is almost on top of him. You have to go to the
right so that the branch does not hit you and you die.
• Student 7: Q2: Depending on the position of the branches,
the key we are going to press is: branch on the right,

CSERC ’18, October 10–12, 2018, Saint Petersburg, Russian Federation Sylvia da Rosa Zipitŕıa

we press the arrow on the left so that Jack moves to
the left.
• Student 19: Q2: You can use left or right buttons; the
one you use will depend on where Jack is. Q3: Success
occurs when, for example, Jack is on the left, there is
no branch and we press the left button, or when Jack
is on the right, there is a branch and we press the left
button.
• Student 18: Q3: Success occurs when we press the right
button: if Jack is on the left side and there is a branch,
you press the other button.

Examples of answers of level 2

• Student 4: Q2: I decide to press the keyboard which is
easier.
• Student 3: Q2: I decide to go to the opposite side in
order to cut the tree.
• Student 5: Q2: With the mouse you press the arrow to
the left or to the right, and pressing the keys on the
right which are > and <, or if you use the cell phone;
the fingers.

Central to the task of answering the questions is that
the first question is formulated directing students’ atten-
tion away from they themselves towards the elements in the
world model of the game (newC and newC’). They were then
able to express the causal relationship between their own
actions (algorithmic thinking) and the events in the computer
(computational thinking). This fact is a direct consequence
of applying my framework of the extended general law of
cognition in designing the questions.

4 CONCLUSIONS

Computational thinking is a term that is broadly discussed
and used, but rarely defined. As such, computational thinking
has remained diffuse and undistinguished from other related
terms; such as, algorithmic thinking. It is for this reason that
my study offers a significant novelty in this area. Indeed,
with my results I introduce a clear definition of the notion
of computational thinking (represented by the second line
of the diagram on page 7). Further, this new definition is
adequately located in relation to the notion of algorithmic
thinking (represented by the first line of the diagram on page
7). My premise is that the depth of my contribution to clar-
ify ideas of computational thinking in educational settings
is not clearly visible until it is located within my theoret-
ical framework. Taking principles of Jean Piaget’s theory,
Genetic Epistemology, I argue that the point of departure
for teaching formal knowledge must always be at the level
of knowledge that the student has already constructed. In
other words; any learning process is built stepwise and is
governed by the general law of cognition. In the specific case
of learning to program, the process is governed by the new
law of cognition as I have formulated it on page 7. Learn-
ing how to think computationally, thus, is built stepwise;
from the level of actions, to the construction of concepts of
computer science (i.e. algorithms and data structures), and
finally the construction of formal programs. The theoretical

contribution described in this paper provides teachers with a
clear description of the term CT, that they can use to help
the students learning to program, in a way that respects
the process of learning. As a consequence the students are
educated to think algorithmically and computationally.

5 ACKNOWLEDGEMENTS

I am very grateful for comments, suggestions and corrections
from Manuela Cabezas when writing this paper in English.
The comments of the anonymous referees are gratefully ac-
knowledged.

REFERENCES
[1] Alfred V. Aho. 2012. Computation and Computational Thinking.

The Computer Journal 55 (2012).
[2] Ana P. Ambrosio, Leandro da Silva, Joaquim Macedo, and

Amanda Franco. 2014. Exploring Core Cognitive Skills of Compu-
tational Thinking. Proceedings of the 25th Annual Psychology
of Programming Interest Group Workshop (2014).

[3] Karen Borges, Crediné de Menezes, and Léa da Cruz. 2017. The
Use of Computational Thinking in Digital Fabrication Projects -
a case study from the cognitive perspective. IEEE: Frontiers in
Education Conference (FIE) (2017).

[4] Sylvia da Rosa. 2004. Designing Algorithms in High School
Mathematics. Lecture Notes in Computer Science, vol. 3294,
Springer-Verlag (2004).

[5] Sylvia da Rosa. 2007. The Learning of Recursive Algorithms from
a Psychogenetic Perspective. Proceedings of the 19th Annual
Psychology of Programming Interest Group Workshop, Joensuu,
Finland (2007), 201–215.

[6] Sylvia da Rosa. 2010. The Construction of the Concept of Binary
Search Algorithm. Proceedings of the 22th Annual Psychology of
Programming Interest Group Workshop, Madrid, Spain (2010),
100–111.

[7] Sylvia da Rosa. 2015. The construction of knowledge of basic
algorithms and data structures by novice learners. Proceedings
of the 26th Annual Psychology of Programming Interest Group
Workshop, Bournemouth, UK (2015).

[8] Sylvia da Rosa and Andres Aguirre. 2018. Students teach a
computer how to play a game. Lecture Notes in Computer
Science, vol. 11169, Springer-Verlag (2018), 55–67.

[9] Sylvia da Rosa and A. Chmiel. 2012. A Study about Students’
Knowledge of Inductive Structures. Proceedings of the 24th
Annual Psychology of Programming Interest Group Workshop,
London, UK (2012).

[10] Sylvia da Rosa and Beatriz Rabin. 2016. Didactical Ideas in
Computer Science. ITiCSE ’16: Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science
Education (2016).

[11] Peter J. Denning. 2017. Remaining Trouble Spots with Computa-
tional Thinking. Communications of the ACM 60 (2017).

[12] Shuchi Grover, Roy Pea, and Stephen Cooper. 2016. Factors Influ-
encing Computer Science Learning in Middle School. SIGCSE’16
(2016).

[13] Linda Mannila, Valentina Dagiene, Barbara Demo, Natasa Gr-
gurina, Claudio Mirolo, Lennart Rolandsson, and Amber Settle.
2014. Computational Thinking in K-9 Education. Proceedings
of the Working Group Reports of the 2014 on Innovation and
Technology in Computer Science Education Conference (2014),
1–29.

[14] Lawrence C. Paulson. 2017. Computational Thinking is not Neces-
sarily Computational. Communications of the ACM 60 (2017).

[15] Jean Piaget. 1964. La Prise de Conscience. Presses Universitaires
de France.

[16] Jean Piaget. 1974. Success and Understanding. Harvard Univer-
sity Press.

[17] Jean Piaget. 1977. Genetic Epistemology, a series of lectures
delivered by Piaget at Columbia University, translated by Eleanor
Duckworth. Columbia University Press (1977).

[18] Jean Piaget. 1978. Recherches sur la Généralisation. Presses
Universitaires de France.

[19] Jean Piaget and Rolando Garcia. 1980. Psychogenesis and the
History of Sciences. Columbia University Press, New York.

Piaget and Computational Thinking CSERC ’18, October 10–12, 2018, Saint Petersburg, Russian Federation

[20] Seymour Papert. 1980. Papert, S. Mindstorms: Children, Com-
puters, and Powerful Ideas. Basic Books.

[21] Aleksi Tiensuu. 2012. Computational Thinking in Regard to
Thinking and Problem-Solving. https://tampub.uta.fi/bitstream/
handle/10024/83702/gradu06014.pdf. Accessed: 2018-04-23.

[22] Jeannette Wing. 2006. Computational Thinking. CACM 49
(2006), 33–34.

[23] Jeannette Wing. 2008. Computational Thinking and Thinking
about Computing. Philosophical transitions of the Royal Society
Phil. Trans. R. Soc. A 366 (2008), 3717–3725.

[24] Jeannette Wing. 2010. Computational Thinking and Think-
ing What and Why? https://www.cs.cmu.edu/∼CompThink/
resources/TheLinkWing.pdf. Accessed: 2018-04-18.

[25] Osman Yasar. 2016. Epistemological, Psychological, Neuro-
sciences, and Cognitive Essence of Computational Thinking. Jour-
nal of Research in STEM Education (2016), 19–38.

[26] Osman Yasar, Jose Maleikal, Peter Veronesi, and Leigh J. Little.
2017. The essence of computational thinking and tools to promote
it. American Society for Engineering Education (2017).

https://tampub.uta.fi/bitstream/handle/10024/83702/gradu06014.pdf
https://tampub.uta.fi/bitstream/handle/10024/83702/gradu06014.pdf
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

	Abstract
	1 Introduction
	1.1 CT in the literature

	2 Algorithmic thinking
	2.1 The general law of cognition

	3 Extending the general law of cognition: computational thinking
	3.1 The experience prior to the theory

	4 Conclusions
	5 Acknowledgements
	References

