CHAPTER 2

SOFTWARE DESIGN

ACRONYMS
ADL Architecture Description
Language
CBD Component-Based Design
CRC Class Responsibility Collaborator
DFD Data Flow Diagram
ERD Entity Relationship Diagram
IDL Interface Description Language
MVC Model View Controller
00 Object-Oriented
PDL Program Design Language
INTRODUCTION

Design is defined as both “the process of defin-
ing the architecture, components, interfaces, and
other characteristics of a system or component”
and “the result of [that] process” [1]. Viewed as a
process, software design is the software engineer-
ing life cycle activity in which software require-
ments are analyzed in order to produce a descrip-
tion of the software’s internal structure that will
serve as the basis for its construction. A software
design (the result) describes the software archi-
tecture—that is, how software is decomposed
and organized into components—and the inter-
faces between those components. It should also
describe the components at a level of detail that
enables their construction.

Software design plays an important role in
developing software: during software design,
software engineers produce various models
that form a kind of blueprint of the solution to
be implemented. We can analyze and evaluate
these models to determine whether or not they
will allow us to fulfill the various requirements.

2-1

We can also examine and evaluate alternative
solutions and tradeoffs. Finally, we can use the
resulting models to plan subsequent development
activities, such as system verification and valida-
tion, in addition to using them as inputs and as the
starting point of construction and testing.

In a standard list of software life cycle pro-
cesses, such as that in ISO/IEC/IEEE Std. 12207,
Sofitware Life Cycle Processes [2], software design
consists of two activities that fit between software
requirements analysis and software construction:

» Software architectural design (sometimes
called high-level design): develops top-level
structure and organization of the software
and identifies the various components.

» Software detailed design: specifies each
component in sufficient detail to facilitate its
construction.

This Software Design knowledge area (KA)
does not discuss every topic that includes the
word “design.” In Tom DeMarco’s terminology
[3], the topics discussed in this KA deal mainly
with D-design (decomposition design), the goal
of which is to map software into component
pieces. However, because of its importance in
the field of software architecture, we will also
address FP-design (family pattern design), the
goal of which is to establish exploitable com-
monalities in a family of software products. This
KA does not address I-design (invention design),
which is usually performed during the software
requirements process with the goal of conceptu-
alizing and specifying software to satisfy discov-
ered needs and requirements, since this topic is
considered to be part of the requirements process
(see the Software Requirements KA).

This Software Design KA is related specifi-
cally to the Software Requirements, Software

2-2 SWEBOK® Guide V3.0

Software Design

[

Software Design

Key Issues in

Software
| Structure and

User Interface

Software Design
r Quality Analysis

Software Design

Software Design
| Strategies and

Software Design

Principles

Components

Error and
Exception
Handling and
Fault Tolerance

Interaction and

—» Design
Decisions

Families of
— Programs and
Frameworks

[Information
Presentation

User Interface
Design Process

Localization and

Data Structure-
Centered Design

Component-Based
Design (CBD)

Fundamentals Software Design Architecture Design and Evaluation Notations Methods Tools
General Design e Architectural General User Quality gfmct_ur‘a_l General
Concepts [Concurrency [Stuctures and > Interface Design Attrib escriptions Strategi
. . - ributes - Vi gies
Viewpoints Principles (Static View)
Quality Behavioral i ;
Context of Control and Architectural User Interfz o R Function-Oriented
Software Design [Handling of Styles D::: :](;::: > /];na]lysl.s and Descriptions > (Structured)
Events € valuation (Dynamic View) Design
Techniques
. The Design of : .
Software Design -
P € [Data Persistence ¥ Design Patterns > User Interaction = Measures Object-Oriented
TOCESS " Design
Modalities
Software Design Distribution of Architecture The Design of

Presentation Internationalization

Metaphors and

> Security Conceptual Models

—» Other Methods

Figure 2.1. Breakdown of Topics for the Software Design KA

Construction, Software Engineering Manage-
ment, Software Engineering Models and Meth-
ods, Software Quality, and Computing Founda-
tions KAs.

BREAKDOWN OF TOPICS FOR
SOFTWARE DESIGN

The breakdown of topics for the Software Design
KA is shown in Figure 2.1.

1. Software Design Fundamentals

The concepts, notions, and terminology intro-
duced here form an underlying basis for under-
standing the role and scope of software design.

1.1. General Design Concepts
[4%, cl]

In the general sense, design can be viewed as a
form of problem solving. For example, the con-
cept of a wicked problem—a problem with no
definitive solution—is interesting in terms of

understanding the limits of design. A number of
other notions and concepts are also of interest in
understanding design in its general sense: goals,
constraints, alternatives, representations, and
solutions (see Problem Solving Techniques in the
Computing Foundations KA).

1.2. Context of Software Design
[4%, c3]

Software design is an important part of the soft-
ware development process. To understand the
role of software design, we must see how it fits
in the software development life cycle. Thus, it
is important to understand the major characteris-
tics of software requirements analysis, software
design, software construction, software testing,
and software maintenance.

1.3. Software Design Process
[4%, 2]

Software design is generally considered a two-
step process:

* Architectural design (also referred to as high-
level design and top-level design) describes
how software is organized into components.

¢ Detailed design describes the desired behav-
ior of these components.

The output of these two processes is a set of
models and artifacts that record the major deci-
sions that have been taken, along with an explana-
tion of the rationale for each nontrivial decision.
By recording the rationale, long-term maintain-
ability of the software product is enhanced.

1.4. Software Design Principles
[4%] [5*, c6, c7, c21] [6%, cl, c8, 9]

A principle is “a comprehensive and fundamen-
tal law, doctrine, or assumption” [7]. Software
design principles are key notions that provide
the basis for many different software design
approaches and concepts. Software design princi-
ples include abstraction; coupling and cohesion;
decomposition and modularization; encapsula-
tion/information hiding; separation of interface
and implementation; sufficiency, completeness,
and primitiveness; and separation of concerns.

» Abstraction is “a view of an object that
focuses on the information relevant to a
particular purpose and ignores the remain-
der of the information™ [1] (see Abstraction
in the Computing Foundations KA). In the
context of software design, two key abstrac-
tion mechanisms are parameterization and
specification. Abstraction by parameteriza-
tion abstracts from the details of data repre-
sentations by representing the data as named
parameters. Abstraction by specification
leads to three major kinds of abstraction:
procedural abstraction, data abstraction, and
control (iteration) abstraction.

» Coupling and Cohesion. Coupling is defined
as “a measure of the interdependence among
modules in a computer program,” whereas
cohesion is defined as “a measure of the
strength of association of the elements within
a module” [1].

* Decomposition and modularization. Decom-
posing and modularizing means that large

Software Design 2-3

software is divided into a number of smaller
named components having well-defined
interfaces that describe component interac-
tions. Usually the goal is to place different
functionalities and responsibilities in differ-
ent components.
» Encapsulation and information hiding means
grouping and packaging the internal details
of an abstraction and making those details
inaccessible to external entities.
Separation of interface and implementation.
Separating interface and implementation
involves defining a component by specify-
ing a public interface (known to the clients)
that is separate from the details of how the
component is realized (see encapsulation and
information hiding above).
Sufficiency, completeness, and primitiveness.
Achieving sufficiency and completeness
means ensuring that a software component
captures all the important characteristics of
an abstraction and nothing more. Primitive-
ness means the design should be based on
patterns that are easy to implement.
Separation of concerns. A concern is an
“area of interest with respect to a software
design” [8]. A design concern is an area of
design that is relevant to one or more of its
stakeholders. Each architecture view frames
one or more concerns. Separating concerns
by views allows interested stakeholders to
focus on a few things at a time and offers a
means of managing complexity [9].

2. Key Issues in Software Design

A number of key issues must be dealt with when
designing software. Some are quality concerns
that all software must address—for example,
performance, security, reliability, usability, etc.
Another important issue is how to decompose,
organize, and package software components.
This is so fundamental that all design approaches
address it in one way or another (see section 1.4,
Software Design Principles, and topic 7, Soft-
ware Design Strategies and Methods). In contrast,
other issues “deal with some aspect of software’s
behavior that is not in the application domain,
but which addresses some of the supporting

2-4 SWEBOK® Guide V3.0

domains” [10]. Such issues, which often crosscut
the system’s functionality, have been referred to
as aspects, which “tend not to be units of soft-
ware’s functional decomposition, but rather to be
properties that affect the performance or seman-
tics of the components in systemic ways” [11].
A number of these key, crosscutting issues are
discussed in the following sections (presented in
alphabetical order).

2.1. Concurrency
[5%*, c18]

Design for concurrency is concerned with decom-
posing software into processes, tasks, and threads
and dealing with related issues of efficiency,
atomicity, synchronization, and scheduling.

2.2. Control and Handling of Events
[5%, c21]

This design issue is concerned with how to
organize data and control flow as well as how
to handle reactive and temporal events through
various mechanisms such as implicit invocation
and call-backs.

2.3. Data Persistence
[12%*, ¢9]

This design issue is concerned with how to han-
dle long-lived data.

2.4. Distribution of Components
[5%, c18]

This design issue is concerned with how to dis-
tribute the software across the hardware (includ-
ing computer hardware and network hardware),
how the components communicate, and how
middleware can be used to deal with heteroge-
neous software.

2.5. Error and Exception Handling and Fault
Tolerance
[5%, c18]

This design issue is concerned with how to pre-
vent, tolerate, and process errors and deal with
exceptional conditions.

2.6. Interaction and Presentation
[5*, cl16]

This design issue is concerned with how to struc-
ture and organize interactions with users as well
as the presentation of information (for example,
separation of presentation and business logic
using the Model-View-Controller approach).
Note that this topic does not specify user interface
details, which is the task of user interface design
(see topic 4, User Interface Design).

2.7. Security
[5*, c12, c18] [13%, c4]

Design for security is concerned with how to pre-
vent unauthorized disclosure, creation, change,
deletion, or denial of access to information and
other resources. It is also concerned with how to
tolerate security-related attacks or violations by
limiting damage, continuing service, speeding
repair and recovery, and failing and recovering
securely. Access control is a fundamental con-
cept of security, and one should also ensure the
proper use of cryptology.

3. Software Structure and Architecture

In its strict sense, a software architecture is
“the set of structures needed to reason about
the system, which comprise software elements,
relations among them, and properties of both”
[14*]. During the mid-1990s, however, soft-
ware architecture started to emerge as a broader
discipline that involved the study of software
structures and architectures in a more generic
way. This gave rise to a number of interesting
concepts about software design at different lev-
els of abstraction. Some of these concepts can
be useful during the architectural design (for
example, architectural styles) as well as during
the detailed design (for example, design pat-
terns). These design concepts can also be used
to design families of programs (also known as
product lines). Interestingly, most of these con-
cepts can be seen as attempts to describe, and
thus reuse, design knowledge.

3.1. Architectural Structures and Viewpoints
[14% ¢1]

Different high-level facets of a software design
can be described and documented. These facets
are often called views: “A view represents a partial
aspect of a software architecture that shows spe-
cific properties of a software system” [14*]. Views
pertain to distinct issues associated with software
design—for example, the logical view (satisfying
the functional requirements) vs. the process view
(concurrency issues) vs. the physical view (distri-
bution issues) vs. the development view (how the
design is broken down into implementation units
with explicit representation of the dependencies
among the units). Various authors use different
terminologies—like behavioral vs. functional vs.
structural vs. data modeling views. In summary, a
software design is a multifaceted artifact produced
by the design process and generally composed of
relatively independent and orthogonal views.

3.2. Architectural Styles
[14*, cl, c2, c3, c4, c5]

An architectural style is “a specialization of ele-
ment and relation types, together with a set of
constraints on how they can be used” [14*]. An
architectural style can thus be seen as providing
the software’s high-level organization. Various
authors have identified a number of major archi-
tectural styles:

 General structures (for example, layers, pipes
and filters, blackboard)

* Distributed systems (for example, client-
server, three-tiers, broker)

* Interactivesystems(forexample, Model-View-
Controller, Presentation-Abstraction-Control)

» Adaptable systems (for example, microker-
nel, reflection)

* Others (for example, batch, interpreters, pro-
cess control, rule-based).

3.3. Design Patterns
[15% ¢3, c4, c5]

Succinctly described, a pattern is “a common
solution to a common problem in a given context”
[16]. While architectural styles can be viewed as

Software Design 2-5

patterns describing the high-level organization
of software, other design patterns can be used
to describe details at a lower level. These lower
level design patterns include the following:

 Creational patterns (for example, builder,
factory, prototype, singleton)

 Structural patterns (for example, adapter,
bridge, composite, decorator, fagade, fly-
weight, proxy)

 Behavioral patterns (for example, command,
interpreter, iterator, mediator, memento,
observer, state, strategy, template, visitor).

3.4. Architecture Design Decisions
[5%, c6]

Architectural design is a creative process. Dur-
ing the design process, software designers have
to make a number of fundamental decisions that
profoundly affect the software and the develop-
ment process. It is useful to think of the archi-
tectural design process from a decision-making
perspective rather than from an activity perspec-
tive. Often, the impact on quality attributes and
tradeoffs among competing quality attributes are
the basis for design decisions.

3.5. Families of Programs and Frameworks
[5%, ¢6, ¢7, cl16]

One approach to providing for reuse of software
designs and components is to design families of
programs, also known as software product lines.
This can be done by identifying the commonalities
among members of such families and by designing
reusable and customizable components to account
for the variability among family members.

In object-oriented (OO) programming, a key
related notion is that of a framework: a partially
completed software system that can be extended
by appropriately instantiating specific extensions
(such as plug-ins).

4. User Interface Design

User interface design is an essential part of the
software design process. User interface design
should ensure that interaction between the human
and the machine provides for effective operation

2-6 SWEBOK® Guide V3.0

and control of the machine. For software to
achieve its full potential, the user interface should
be designed to match the skills, experience, and
expectations of its anticipated users.

4.1. General User Interface Design Principles
[5*, c29-web] [17%*, c2]'

* Learnability. The software should be easy to
learn so that the user can rapidly start work-
ing with the software.

» User familiarity. The interface should use
terms and concepts drawn from the experi-
ences of the people who will use the software.

* Consistency. The interface should be consis-
tent so that comparable operations are acti-
vated in the same way.

* Minimal surprise. The behavior of software
should not surprise users.

* Recoverability. The interface should provide
mechanisms allowing users to recover from
errors.

» User guidance. The interface should give
meaningful feedback when errors occur and
provide context-related help to users.

» User diversity. The interface should pro-
vide appropriate interaction mechanisms
for diverse types of users and for users with
different capabilities (blind, poor eyesight,
deaf, colorblind, etc.).

4.2. User Interface Design Issues
[5*, c29-web] [17%, 2]

User interface design should solve two key issues:

* How should the user interact with the
software?

e How should information from the software
be presented to the user?

User interface design must integrate user
interaction and information presentation. User
interface design should consider a compromise
between the most appropriate styles of interaction

1 Chapter 29 is a web-based chapter available
at http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/

WebChapters/.

and presentation for the software, the background
and experience of the software users, and the
available devices.

4.3. The Design of User Interaction Modalities
[5%, c29-web] [17%, 2]

User interaction involves issuing commands and
providing associated data to the software. User
interaction styles can be classified into the fol-
lowing primary styles:

* Question-answer. The interaction is essen-
tially restricted to a single question-answer
exchange between the user and the software.
The user issues a question to the software,
and the software returns the answer to the
question.

* Direct manipulation. Users interact with
objects on the computer screen. Direct
manipulation often includes a pointing
device (such as a mouse, trackball, or a fin-
ger on touch screens) that manipulates an
object and invokes actions that specify what
is to be done with that object.

* Menu selection. The user selects a command
from a menu list of commands.

» Form fill-in. The user fills in the fields of a
form. Sometimes fields include menus, in
which case the form has action buttons for
the user to initiate action.

» Command language. The user issues a com-
mand and provides related parameters to
direct the software what to do.

* Natural language. The user issues a com-
mand in natural language. That is, the natural
language is a front end to a command lan-
guage and is parsed and translated into soft-
ware commands.

4.4. The Design of Information Presentation
[5*, c29-web] [17*, c2]

Information presentation may be textual or graphi-
cal in nature. A good design keeps the information
presentation separate from the information itself.
The MVC (Model-View-Controller) approach is
an effective way to keep information presentation
separating from the information being presented.

http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/
http://ifs.host.cs.st-andrews.ac.uk/Books/SE9/WebChapters/

Software engineers also consider software
response time and feedback in the design of infor-
mation presentation. Response time is generally
measured from the point at which a user executes
a certain control action until the software responds
with a response. An indication of progress is desir-
able while the software is preparing the response.
Feedback can be provided by restating the user’s
input while processing is being completed.

Abstract visualizations can be used when large
amounts of information are to be presented.

According to the style of information presenta-
tion, designers can also use color to enhance the
interface. There are several important guidelines:

* Limit the number of colors used.

 Use color change to show the change of soft-
ware status.

 Use color-coding to support the user’s task.

» Use color-coding in a thoughtful and consis-
tent way.

» Use colors to facilitate access for people
with color blindness or color deficiency
(e.g., use the change of color saturation and
color brightness, try to avoid blue and red
combinations).

e Don’t depend on color alone to convey
important information to users with different
capabilities (blindness, poor eyesight, color-
blindness, etc.).

4.5. User Interface Design Process
[5%, c29-web] [17%, c2]

User interface design is an iterative process;
interface prototypes are often used to determine
the features, organization, and look of the soft-
ware user interface. This process includes three
core activities:

 User analysis. In this phase, the designer ana-
lyzes the users’ tasks, the working environ-
ment, other software, and how users interact
with other people.

» Software prototyping. Developing prototype
software help users to guide the evolution of
the interface.

* Interface evaluation. Designers can observe
users’ experiences with the evolving interface.

Software Design 2-7

4.6. Localization and Internationalization
[17%, ¢8, ¢9]

User interface design often needs to consider inter-
nationalization and localization, which are means
of adapting software to the different languages,
regional differences, and the technical require-
ments of a target market. Internationalization is the
process of designing a software application so that
it can be adapted to various languages and regions
without major engineering changes. Localization
is the process of adapting internationalized soft-
ware for a specific region or language by adding
locale-specific components and translating the
text. Localization and internationalization should
consider factors such as symbols, numbers, cur-
rency, time, and measurement units.

4.7. Metaphors and Conceptual Models
[17*, ¢5]

User interface designers can use metaphors and
conceptual models to set up mappings between the
software and some reference system known to the
users in the real world, which can help the users to
more readily learn and use the interface. For exam-
ple, the operation “delete file” can be made into a
metaphor using the icon of a trash can.

When designing a user interface, software engi-
neers should be careful to not use more than one
metaphor for each concept. Metaphors also pres-
ent potential problems with respect to internation-
alization, since not all metaphors are meaningful
or are applied in the same way within all cultures.

5. Software Design Quality Analysis and
Evaluation

This section includes a number of quality anal-
ysis and evaluation topics that are specifically
related to software design. (See also the Software
Quality KA.)

5.1. Quality Attributes
[4%, c4]

Various attributes contribute to the quality of
a software design, including various “-ilities”
(maintainability, portability, testability, usability)

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Locale

2-8 SWEBOK® Guide V3.0

and “-nesses” (correctness, robustness). There is
an interesting distinction between quality attri-
butes discernible at runtime (for example, per-
formance, security, availability, functionality,
usability), those not discernible at runtime (for
example, modifiability, portability, reusability,
testability), and those related to the architecture’s
intrinsic qualities (for example, conceptual integ-
rity, correctness, completeness). (See also the
Software Quality KA.)

5.2. Quality Analysis and Evaluation Techniques
[4%, c4] [5*, c24]

Various tools and techniques can help in analyz-
ing and evaluating software design quality.

 Software design reviews: informal and for-
malized techniques to determine the quality
of design artifacts (for example, architecture
reviews, design reviews, and inspections;
scenario-based techniques; requirements
tracing). Software design reviews can also
evaluate security. Aids for installation, oper-
ation, and usage (for example, manuals and
help files) can be reviewed.

* Static analysis: formal or semiformal static
(nonexecutable) analysis that can be used
to evaluate a design (for example, fault-
tree analysis or automated cross-checking).
Design vulnerability analysis (for example,
static analysis for security weaknesses) can
be performed if security is a concern. Formal
design analysis uses mathematical models
that allow designers to predicate the behavior
and validate the performance of the software
instead of having to rely entirely on testing.
Formal design analysis can be used to detect
residual specification and design errors (per-
haps caused by imprecision, ambiguity, and
sometimes other kinds of mistakes). (See
also the Software Engineering Models and
Methods KA.)

 Simulation and prototyping: dynamic tech-
niques to evaluate a design (for example,
performance simulation or feasibility
prototypes).

5.3. Measures
[4%, c4] [5%*, c24]

Measures can be used to assess or to quanti-
tatively estimate various aspects of a software
design; for example, size, structure, or quality.
Most measures that have been proposed depend
on the approach used for producing the design.
These measures are classified in two broad
categories:

* Function-based (structured) design mea-
sures: measures obtained by analyzing func-
tional decomposition; generally represented
using a structure chart (sometimes called a
hierarchical diagram) on which various mea-
sures can be computed.

* Object-oriented design measures: the design
structure is typically represented as a class
diagram, on which various measures can be
computed. Measures on the properties of the
internal content of each class can also be
computed.

6. Software Design Notations

Many notations exist to represent software design
artifacts. Some are used to describe the structural
organization of a design, others to represent soft-
ware behavior. Certain notations are used mostly
during architectural design and others mainly
during detailed design, although some nota-
tions can be used for both purposes. In addition,
some notations are used mostly in the context of
specific design methods (see topic 7, Software
Design Strategies and Methods). Please note that
software design is often accomplished using mul-
tiple notations. Here, they are categorized into
notations for describing the structural (static)
view vs. the behavioral (dynamic) view.

6.1. Structural Descriptions (Static View)
[4%, c7] [5%, c6, c7] [6*, c4, c5, c6, cT7]
[12*, ¢7] [14%, cT7]

The following notations, mostly but not always
graphical, describe and represent the structural
aspects of a software design—that is, they are

used to describe the major components and how
they are interconnected (static view):

 Architecture description languages (ADLs):
textual, often formal, languages used to
describe software architecture in terms of
components and connectors.

* Class and object diagrams: used to repre-
sent a set of classes (and objects) and their
interrelationships.

* Component diagrams: used to represent a
set of components (“physical and replace-
able part[s] of a system that [conform] to
and [provide] the realization of a set of inter-
faces” [18]) and their interrelationships.

* Class responsibility collaborator cards
(CRCs): used to denote the names of compo-
nents (class), their responsibilities, and their
collaborating components’ names.

* Deployment diagrams: used to represent a
set of (physical) nodes and their interrela-
tionships, and, thus, to model the physical
aspects of software.

* Entity-relationship diagrams (ERDs): used
to represent conceptual models of data stored
in information repositories.

o Interface description languages (IDLs):
programming-like languages used to define
the interfaces (names and types of exported
operations) of software components.

* Structure charts: used to describe the calling
structure of programs (which modules call,
and are called by, which other modules).

6.2. Behavioral Descriptions (Dynamic View)
[4%, ¢7, c13] [5%*, c6, c7] [6%, ¢4, c5, ¢6, c7]
[14%*, ¢8]

The following notations and languages, some
graphical and some textual, are used to describe
the dynamic behavior of software systems and
components. Many of these notations are use-
ful mostly, but not exclusively, during detailed
design. Moreover, behavioral descriptions can
include a rationale for design decision such as
how a design will meet security requirements.

Software Design 2-9

 Activity diagrams: used to show control flow

from activity to activity. Can be used to rep-
resent concurrent activities.

¢ Communication diagrams: used to show

the interactions that occur among a group
of objects; emphasis is on the objects, their
links, and the messages they exchange on
those links.

» Data flow diagrams (DFDs): used to show

data flow among elements. A data flow dia-
gram provides “a description based on model-
ing the flow of information around a network
of operational elements, with each element
making use of or modifying the information
flowing into that element” [4*]. Data flows
(and therefore data flow diagrams) can be
used for security analysis, as they offer iden-
tification of possible paths for attack and dis-
closure of confidential information.
Decision tables and diagrams: used to rep-
resent complex combinations of conditions
and actions.

Flowcharts: used to represent the flow of
control and the associated actions to be
performed.

Sequence diagrams: used to show the inter-
actions among a group of objects, with
emphasis on the time ordering of messages
passed between objects.

State transition and state chart diagrams:
used to show the control flow from state to
state and how the behavior of a component
changes based on its current state in a state
machine.

Formal specification languages: textual lan-
guages that use basic notions from math-
ematics (for example, logic, set, sequence)
to rigorously and abstractly define software
component interfaces and behavior, often in
terms of pre- and postconditions. (See also
the Software Engineering Models and Meth-
ods KA.)

* Pseudo code and program design languages

(PDLs): structured programming-like lan-
guages used to describe, generally at the
detailed design stage, the behavior of a pro-
cedure or method.

2-10 SWEBOK® Guide V3.0

7. Software Design Strategies and Methods

There exist various general strategies to help
guide the design process. In contrast with general
strategies, methods are more specific in that they
generally provide a set of notations to be used
with the method, a description of the process to
be used when following the method, and a set of
guidelines for using the method. Such methods
are useful as a common framework for teams of
software engineers. (See also the Software Engi-
neering Models and Methods KA).

7.1. General Strategies
[4%, 8, ¢9, c10] [12%*, ¢7]

Some often-cited examples of general strategies
useful in the design process include the divide-
and-conquer and stepwise refinement strategies,
top-down vs. bottom-up strategies, and strategies
making use of heuristics, use of patterns and pat-
tern languages, and use of an iterative and incre-
mental approach.

7.2. Function-Oriented (Structured) Design
[4%, c13]

This is one of the classical methods of software
design, where decomposition centers on identify-
ing the major software functions and then elab-
orating and refining them in a hierarchical top-
down manner. Structured design is generally used
after structured analysis, thus producing (among
other things) data flow diagrams and associated
process descriptions. Researchers have proposed
various strategies (for example, transformation
analysis, transaction analysis) and heuristics (for
example, fan-in/fan-out, scope of effect vs. scope
of control) to transform a DFD into a software
architecture generally represented as a structure
chart.

7.3. Object-Oriented Design
[4%, c16]

Numerous software design methods based
on objects have been proposed. The field has
evolved from the early object-oriented (OO)

design of the mid-1980s (noun = object; verb
= method; adjective = attribute), where inheri-
tance and polymorphism play a key role, to the
field of component-based design, where metain-
formation can be defined and accessed (through
reflection, for example). Although OO design’s
roots stem from the concept of data abstraction,
responsibility-driven design has been proposed
as an alternative approach to OO design.

7.4. Data Structure-Centered Design
[4*, cl4, cl15]

Data structure-centered design starts from the data
structures a program manipulates rather than from
the function it performs. The software engineer
first describes the input and output data structures
and then develops the program’s control structure
based on these data structure diagrams. Various
heuristics have been proposed to deal with special
cases—for example, when there is a mismatch
between the input and output structures.

7.5. Component-Based Design (CBD)
[4%, c17]

A software component is an independent unit,
having well-defined interfaces and dependen-
cies that can be composed and deployed inde-
pendently. Component-based design addresses
issues related to providing, developing, and
integrating such components in order to improve
reuse. Reused and off-the-shelf software com-
ponents should meet the same security require-
ments as new software. Trust management is
a design concern; components treated as hav-
ing a certain degree of trustworthiness should
not depend on less trustworthy components or
services.

7.6. Other Methods
[5*, c19, c21]

Other interesting approaches also exist (see the
Software Engineering Models and Methods
KA). Iterative and adaptive methods imple-
ment software increments and reduce emphasis
on rigorous software requirement and design.

Aspect-oriented design is a method by which
software is constructed using aspects to imple-
ment the crosscutting concerns and extensions
that are identified during the software require-
ments process. Service-oriented architecture is
a way to build distributed software using web
services executed on distributed computers. Soft-
ware systems are often constructed by using ser-
vices from different providers because standard
protocols (such as HTTP, HTTPS, SOAP) have
been designed to support service communication
and service information exchange.

Software Design 2-11

8. Software Design Tools
[14%*, c10, Appendix A]

Software design tools can be used to support the
creation of the software design artifacts during
the software development process. They can sup-
port part or whole of the following activities:

* to translate the requirements model into a
design representation;

* to provide support for representing func-
tional components and their interface(s);

* to implement heuristics refinement and
partitioning;

* to provide guidelines for quality assessment.

2-12 SWEBOK® Guide V3.0

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Budgen 2003
[4%]

Sommerville 2011
[5%]

Page-Jones 1999
[6%]

Brookshear 2008
[12%]

Allen 2008
[13%]

Clements et al. 2010
[147]

Gamma et al. 1994
[15%]

Nielsen 1993

7]

1. Software Design
Fundamentals

1.1. General Design
Concepts

cl

1.2. The Context of
Software Design

c3

1.3. The Software
Design Process

c2

1.4. Software Design
Principles

cl

c6, ¢7,
c2l1

cl, c8,
c9

2. Key Issues in
Software Design

2.1. Concurrency

cl8

2.2. Control and
Handling of Events

c21

2.3. Data Persistence

c9

2.4. Distribution of
Components

cl8

2.5. Error and
Exception Handling
and Fault Tolerance

cl8

2.6. Interaction and
Presentation

cl6

2.7. Security

cl2,
cl8

c4

3. Software Structure
and Architecture

3.1. Architectural
Structures and
Viewpoints

cl

3.2. Architectural
Styles

cl, c2,
c3, c4,
c5

3.3. Design Patterns

c3, c4,
c5

Software Design 2-13

[(=)
2 |8 |8 |8 |2 |S | |z&
Q = 2 E_ | S| S| F_| &
_— - o gl * (o K oy ~- % *®
Sx |z | 52| 22| g2 | 2| 22| 55
E] £ ¢ I = g £ 2
&2 g % g < £ £ z.
S & 4 k) s
1954 @) O
3.4. Architecture 6
Design Decisions
3.5. Families of 6. &7
Programs and c’l 6 ’
Frameworks
4. User Interface
Design
4.1. General User 29-
Interface Design web c2
Principle
4.2. User Interface c29-
Design Issues web
4.3. The Design of 29
User Interaction web
Modalities
4.4. The Design
of Information ;2691;
Presentation
4.5. User Interface c29-
Design Process web
4.6. Localization and 8. ¢9
Internationalization ’
4.7. Metaphors and o5
Conceptual Models
5. Software Design
Quality Analysis and
Evaluation
5.1. Quahty o4
Attributes
5.2. Quality
Ana1y51§ and o4 4
Evaluation
Techniques
5.3. Measures c4 c24

2-14 SWEBOK® Guide V3.0

N S =)
5 12 |8 g |z |2 |8
S 2| 8~ | 5|8z | x| S| =
x|t | 58| 28 | g2 | 22| °2 | §&
L ST 2T | ZF | 2= E5 | 37| 2=
] = 2) = 5] g =
M g X 2 £ g z
A A~ M S {3
6. Software Design
Notations
6.1. Structural o 5
Descriptions (Static c7 c6, c7 i c7 c7
. co, c7
View)
6.2. B?he'moral o7, cl3, o4, cs,
Descriptions c18 c6, c7 6. 7 c8
(Dynamic View) ’
7. Software Design
Strategies and
Methods
7.1. General c8, ¢9, o
Strategies clo
7.2. Function-
Oriented cl3
(Structured) Design
7.3. Object-Oriented
. clé
Design
7.4. Data Structure- cl4,
Centered Design cls
7.5. Component- 17
Based Design (CBD)
7.6. Other Methods 19,
c21
8. Software Design clo,

Tools

App. A

FURTHER READINGS

Roger Pressman, Software Engineering: A
Practitioner’s Approach (Seventh Edition)
[19].

For roughly three decades, Roger Pressman’s
Software Engineering: A Practitioner’s Approach
has been one of the world’s leading textbooks in
software engineering. Notably, this complemen-
tary textbook to [5*] comprehensively presents
software design—including design concepts,
architectural design, component-level design,
user interface design, pattern-based design, and
web application design.

“The 4+1 View Model of Architecture” [20].

The seminal paper “The 4+1 View Model” orga-
nizes a description of a software architecture
using five concurrent views. The four views of
the model are the logical view, the development
view, the process view, and the physical view.
In addition, selected use cases or scenarios are
utilized to illustrate the architecture. Hence, the
model contains 4+1 views. The views are used to
describe the software as envisioned by different
stakeholders—such as end-users, developers, and
project managers.

Len Bass, Paul Clements, and Rick Kazman,
Software Architecture in Practice [21].

This book introduces the concepts and best prac-
tices of software architecture, meaning how soft-
ware is structured and how the software’s compo-
nents interact. Drawing on their own experience,
the authors cover the essential technical topics
for designing, specifying, and validating software
architectures. They also emphasize the impor-
tance of the business context in which large soft-
ware is designed. Their aim is to present software
architecture in a real-world setting, reflecting
both the opportunities and constraints that orga-
nizations encounter. This is one of the best books
currently available on software architecture.

Software Design 2-15

REFERENCES

[1] ISO/IEC/IEEE 24765:2010 Systems and
Software Engineering—Vocabulary, 1SO/
IEC/IEEE, 2010.

[2] IEEE Std. 12207-2008 (a.k.a. ISO/IEC
12207:2008) Standard for Systems and
Software Engineering—Software Life Cycle
Processes, IEEE, 2008.

[3] T. DeMarco, “The Paradox of Software
Architecture and Design,” Stevens Prize
Lecture, 1999.

[4*] D. Budgen, Software Design, 2nd ed.,
Addison-Wesley, 2003.

[5*] I. Sommerville, Software Engineering, 9th
ed., Addison-Wesley, 2011.

[6*] M. Page-Jones, Fundamentals of Object-
Oriented Design in UML, 1st ed., Addison-
Wesley, 1999.

[7] Merriam-Webster’s Collegiate Dictionary,
11th ed., 2003.

[8] IEEE Std. 1069-2009 Standard for
Information Technology—Systems
Design—=Software Design Descriptions,
IEEE, 20009.

[9] ISO/IEC 42010:2011 Systems and Software
Engineering—Recommended Practice for
Architectural Description of Software-
Intensive Systems, ISO/IEC, 2011.

[10] J. Bosch, Design and Use of Software
Architectures: Adopting and Evolving a
Product-Line Approach, ACM Press, 2000.

[11] G. Kiczales et al., “Aspect-Oriented
Programming,” Proc. 1ith European Conf.
Object-Oriented Programming (ECOOP
97), Springer, 1997.

http://en.wikipedia.org/wiki/Use_case

2-16 SWEBOK® Guide V3.0

[12*] J.G. Brookshear, Computer Science: An

Overview, 10th ed., Addison-Wesley, 2008.

[13*¥] J.H. Allen et al., Software Security
Engineering: A Guide for Project
Managers, Addison-Wesley, 2008.

[14*] P. Clements et al., Documenting Software
Architectures: Views and Beyond, 2nd ed.,
Pearson Education, 2010.

[15¥] E. Gamma et al., Design Patterns:
Elements of Reusable Object-Oriented
Software, 1st ed., Addison-Wesley
Professional, 1994.

[16] I. Jacobson, G. Booch, and J. Rumbaugh,
The Unified Software Development
Process, Addison-Wesley Professional,
1999.

[17*] J. Nielsen, Usability Engineering, Morgan
Kaufmann, 1993.

[18] G. Booch, J. Rumbaugh, and I. Jacobson,
The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

[19] R.S. Pressman, Software Engineering: A
Practitioner’s Approach, 7th ed., McGraw-
Hill, 2010.

[20] P.B. Kruchten, “The 4+1 View Model of
Architecture,” IEEE Software, vol. 12, no.
6, 1995, pp. 42-55.

[21] L. Bass, P. Clements, and R. Kazman,
Software Architecture in Practice, 3rd ed.,
Addison-Wesley Professional, 2013.

