

Day-ahead and Intra-day PV production Forecasting

Spyros Theocharides Special Scientist, University of Cyprus

Co-funded by the Erasmus+ Programme of the European Union

Outline

- Introduction
- Approach
- Motivation
- Experimental Apparatus
- Data Quality Routines
- Day-ahead Forecasting
- Intra-day Forecasting
- Regional PV Power Forecasting
- Conclusions

Introduction

- Current focus on PV production forecasting because of the increasing number of grid-connected PV systems and the need for predictable generation.
- Important for both grid and plant operators:
 - Ensures grid stability and dispatchability of the electric system (energy management and grid flexibility).
 - Advancement of commercialization for selling onto the next day market.

Background & Objectives

• The focus is to provide accurate Day-ahead (DA) and Intra-day PV production forecasts for point and regional sites in the state-of-the art levels.

Specific Objectives

- Develop data-driven approaches to yield accurate forecasts only on historical data.
- Prove whether the forecasting accuracy can reach state-of-the art levels.
- Establish a DA and Intra-day PV power forecasting tool that will also act as a multi-agent system for active grid management.

Approach

- ANNs can approximate any linear and nonlinear mapping.
- PV system information not required Capture systematic behaviour.

Drawback: Numerical Weather Predictions

Solution: Post-processing could be utilized to reduce the respective error.

Machine learning - ANN Brief

Machine learning - ANN Brief

Experimental Apparatus

- Grid-connected Poly-c-Si PV (1.3 kWp).
- Monitoring system to acquire PV operational and meteorological measurements.
- Data acquired since June 2015 and accumulated as 60-minute averages.

Methodology – Data Quality Routine

- Identify missing (or erroneous) data, outliers and outages.
- Estimate system availability and sensor deviations.
- Correct data through data imputation techniques (kNN and Kalman filtering).

Day-ahead Forecasting

ANN Model Development

1. Data preparation									
	Range (%)								
Training	30	40	50	60	70				
Testing	30	30	30	30	30				

2. ANN Design

- Architectural Design
- Validation
- Optimization

Methodology Prediction Assessment Metrics - Validation

 $e_i = y_{i,forecasted} - y_{i,actual}$

 $APE = 100 \times \left| \frac{y_{i,forecasted} - y_{i,actual}}{y_{i,actual}} \right|$

01/04/2019

Model design: Input Parameters

Results – Model design: Number of Neurons

Model Performance - Cross validation

Model Performance

Model Performance

Intra-day Forecasting

Methodology

Data Pre-processing (Training Set)

 $P_{DC}(t+n) = G_I(t) + T_{amp}(t) + \dots$

Methodology – ANN Model Development

						Data set (1 year of hourly data)							
1. Data preparation								۸۸					
	Range (%)					Train Set (70 %)				Test Set (30 %) 111 Days			
Training	30	40	50	60	70	G	Τ.	RH	WS	W	Δ75		P
Testing	30	30	30	30	30	O poa	amb			alpha	JL		J DC
				Measured			Calculated						
Ann DesignArchitectural Design							Training (Train Set)			Validation (Test Set (15 %))			
ValidationOptimization						Testing (Test Set (15 ۶							
													04/04/

Results – Model design: Input Parameters

01/04/2019

Results – Model design: Number of Neurons

Results – Performance Assessment

Results – Testbed Period

Regional PV Power Forecasting

Co-funded by the Erasmus+ Programme of the European Union

Methodology

Co-funded by the Erasmus+ Programme of the European Union

Methodology

Results – Summary of PV Parks

PV Park	nRMSE	MBE		PV Park	nRMSE	MBE
B1	8.74	2.10		B15	8.20	1.47
B2	9.60	-1.19		MEMNON	8.55	-2.07
B3	7.17	1.30		TSERI	7.50	1.21
B4	6.10	0.95		APV	8.22	1.18
B5A	8.39	1.32	nRMSE (%): 8.0% ±2%	ATHINPOULLAS	8.06	0.89
B5B	6.44	1.13		WAVERON	7.55	1.27
B6	7.67	2.21		NISOU	6.99	-0.75
B11	7.47	1.76		PALIOMETOCHO	8.06	1.41
B12	7.08	1.43		MALOUNTA	8.74	1.19
B13	9.10	2.62		FRENAROS	9.29	-1.86

01/04/2019

Results – Study Case (20/09/2018)

Results – Aggregated Forecasts for the whole of Cyprus

Conclusions

- Machine learning models could be utilized for the implementation of agile PV power forecasting techniques.
- NWP utilised for DA forecasting.
- NWP-free approach for intra-day forecasting
- The best-performing DA and HA forecasting model comprised by 4 inputs (G_{ν} , T_{amb} , AlS and AzS) with randomly selected data from the 70% of the data set and 18 and 22 hidden neurons for the DA and intraday forecasting respectively.
- The DA model demonstrated nRMSE of 6.10%
- The intra-day forecasting model demonstrated nRMSE of 3.63% and MBE 0.15% indicating no biases among the data over the testset period (55 days). For clear sky days the nRMSE was ≈ 1%.
- The regional DA PV power forecasting demonstrated an nRMSE of $8\% \pm 2\%$.
- Post Processing techniques will be utilized to further increase the forecasting accuracy.

More Information...

Website

www.pvtechnology.ucy.ac.cy

Thank you for your attention

Spyros Theocharides Special Scientist

University of Cyprus 1 University Avenue New University Campus P.O. 20537 1678, Nicosia

Co-funded by the Erasmus+ Programme

of the European Union

Tel: +357 22 894397 Email: theocharidis.spyros@ucy.ac.cy Website: <u>www.pvtechnology.ucy.ac.cy</u>

01/04/2019