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What is a forecast? Why do we need to forecast the PV generation?



Introduction
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What is a forecast? 

A forecast is an estimate of uncertain future events (literally, to "cast forward" by 

extrapolating from past and current data).



Introduction

• PV production forecasting is essential because of the 

increasing number of grid-connected PV systems 

generation.

• Important for both grid and plant operators:

• Ensures grid stability and dispatchability of the 

electric system (energy management and grid 

flexibility).

• Advancement of commercialization for selling to 

the next day market.
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Why do we need to forecast the PV generation?



Introduction

• Forecasts may apply to a single PV system (point forecasts), or refer to the

aggregation of large numbers of systems spread over an extended geographic

area (aggregated forecasts).
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Risks of Bad PV Forecasting
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Forecasting Models
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Forecasting Models
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Physical Models:

• PVWatts

• PV-GIS

• PV-USA

• System Advisor Model (SAM)



Forecasting Models
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Timeseries Models:

• Autoregressive Moving Average Model (ARIMA)

• Spectral Analysis

• Wavelet Analysis

• Curve Fitting

• Nonlinear Exogenous Models

• Hidden Markov Models (HMM)



Forecasting Models
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Machine Learning Models:

• Artificial Neural Networks (ANN)

• Support Vector Machines (SVM)

• Regression Trees (RT)

• Gradient Boosting Machines (GBM)

Hybrid Models:

• A combination of various models to provide optimal forecasts.



Background & Objectives
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• The focus is to provide accurate PV production forecasts for point sites in the 

range of 5 % (nRMSE).

Specific Objectives

• Develop approaches to yield accurate forecasts.

• Prove whether the forecasting accuracy can reach state-of-the art levels

• Establish a PV power forecasting tool that will also act as a multi-agent system 

for active grid management.



General Methodology
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Input Processing Output



Mid-term Forecasting (1 to 4 Days Ahead)
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Numerical Weather Predictions

Forecasting Model

PV Power Forecasting



Short-term Forecasting (1 to 10 Hours Ahead)
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Day-ahead Forecasting Tool of UCY
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Day-ahead Forecasting Tool of UCY
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• Operating since December 2015 in 

collaboration with Electricity Authority of 

Cyprus.

• Fully automated tool.

• The most recent update on the tool 

provides 4 days-ahead PV power 

production forecasts to the Transmission 

System Operator.



Day-ahead Forecasting Tool of UCY
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Day-ahead Forecasting Tool of UCY
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Forecasting Platform
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Forecasting Platform
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• Live monitoring of 

actual PV power.

• Live monitoring of 

forecasted power.

• Hour-ahead forecasting 

functionalities



Forecasting Assessment Metrics
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MBE / RMSE / nRMSE(%) over a day period

Error / APE for each point
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Persistence Model (Reference Model)

Measurements for Day (D) Forecast for D + 1

Measures the average accuracy of forecasts without 

considering error direction and gives a relatively high 

weight to large errors

Measures the average accuracy of forecasts without 

considering error direction

Indicates over or under estimation of the forecasting



Improvements on Forecasting
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• Post-processing techniques:
• Example: Weather classification combined with simpler model to correct the biases between the forecasted and actual observations

• Precautionary Adjustments:
• Example: Development of different models based on weather classification



Upcoming Presentations
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• A brief introduction to the state-of-the art levels:
• Techniques

• Methodologies

• Advance PV production forecasting:
• Machine Learning Models:

• Artificial Neural Networks

• Support Vector Machine

• Regression Trees

• Model Selection

• Day-ahead and intra-day forecasting:
• Methodology to derive accurate day-ahead and intra-day forecasts
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