

University of Cyprus

PV Technology

Introduction to PV power generation forecasting

Spyros Theocharides Special Scientist, University of Cyprus

Co-funded by the Erasmus+ Programme of the European Union

Outline

- Introduction
- Risks of Bad Forecasting
- Forecasting Models
- Background and Objectives
- General Methodology
- Long-term and Mid-term Forecasting
- Day-ahead Forecasting Tool of UCY
- Forecasting Platform
- Forecasting Assessment Metrics
- Improvements on Forecasting
- Upcoming Presentations

What is a forecast? Why do we need to forecast the PV generation?

What is a forecast?

A forecast is an estimate of uncertain future events (literally, to "cast forward" by extrapolating from past and current data).

Why do we need to forecast the PV generation?

- PV production forecasting is essential because of the increasing number of grid-connected PV systems generation.
- Important for both grid and plant operators:
 - Ensures grid stability and dispatchability of the electric system (energy management and grid flexibility).
 - Advancement of commercialization for selling to the next day market.

• Forecasts may apply to a single PV system (point forecasts), or refer to the aggregation of large numbers of systems spread over an extended geographic area (aggregated forecasts).

Risks of Bad PV Forecasting

Co-funded by the Erasmus+ Programme of the European Union

Forecasting Models

9

Forecasting Models

Physical Models:

- PVWatts
- PV-GIS
- PV-USA
- System Advisor Model (SAM)

Forecasting Models

Timeseries Models:

- Autoregressive Moving Average Model (ARIMA)
- Spectral Analysis
- Wavelet Analysis
- Curve Fitting
- Nonlinear Exogenous Models
- Hidden Markov Models (HMM)

Forecasting Models

Machine Learning Models:

- Artificial Neural Networks (ANN)
- Support Vector Machines (SVM)
- Regression Trees (RT)
- Gradient Boosting Machines (GBM)

Hybrid Models:

• A combination of various models to provide optimal forecasts.

Background & Objectives

• The focus is to provide accurate PV production forecasts for point sites in the range of 5 % (nRMSE).

Specific Objectives

- Develop approaches to yield accurate forecasts.
- Prove whether the forecasting accuracy can reach state-of-the art levels
- Establish a PV power forecasting tool that will also act as a multi-agent system for active grid management.

General Methodology

Mid-term Forecasting (1 to 4 Days Ahead)

Short-term Forecasting (1 to 10 Hours Ahead)

01/04/2019

17

- Operating since December 2015 in collaboration with Electricity Authority of Cyprus.
- Fully automated tool.
- The most recent update on the tool provides 4 days-ahead PV power production forecasts to the Transmission System Operator.

Forecasting Platform

→ C ① Not secure				⊶ ☆ U 🖬 💿	
				* Coner bookman	
Forecaster	0 1	∎∧ nin ≫°			
	Dashboard Forecast	Historical Feeder Energy Flow Virtua	Power Plant	20/3/2019 11:2	
Dashboard	Dashboard				
PV System Profile	Forecasts	History S	atus		
orecast	0	— • ·			
listorical	UCY INFORPV	PV park name: UCY INFORPV	Operational		
Teoder			•		
Teeger	Alerts	PV System Profile	cation		
inergy Flow		A . Blankamy			
Artual Power Plant	No Alerts	PV system power:	B Photosoftale		
		1.36 KWp	Technology		

01/04/2019

21

Forecasting Platform

- Live monitoring of actual PV power.
- Live monitoring of forecasted power.
- Hour-ahead forecasting functionalities

22

Forecasting Assessment Metrics

Improvements on Forecasting

- Precautionary Adjustments:
 - Example: Development of different models based on weather classification
- Post-processing techniques:
 - Example: Weather classification combined with simpler model to correct the biases between the forecasted and actual observations

Upcoming Presentations

- A brief introduction to the state-of-the art levels:
 - Techniques
 - Methodologies

Advance PV production forecasting:

- Machine Learning Models:
 - Artificial Neural Networks
 - Support Vector Machine
 - Regression Trees
 - Model Selection
- Day-ahead and intra-day forecasting:
 - Methodology to derive accurate day-ahead and intra-day forecasts

Thank you for your attention

Spyros Theocharides Special Scientist

University of Cyprus 1 University Avenue New University Campus P.O. 20537 1678, Nicosia

Tel: +357 22 894397 Email: theocharidis.spyros@ucy.ac.cy Website: <u>www.pvtechnology.ucy.ac.cy</u>

Acknowledgment

