

University of Cyprus Battery Pilot Plan

Nikolas Chatzigeorgiou Special Scientist, University of Cyprus

Montevideo, Uruguay, 25-29 March 2019

- 1. Introduction
- 2. Current status
- 3. UCY Residential BESS Pilots
- 4. Residential Pilots Preliminary Results
- 5. UCY Laboratory BESS Pilot
- 6. UCY Laboratory BESS Equipment
- 7. UCY Social BESS Pilot
- 8. UCY Public BESS Pilot

University of Cyprus

PV Technology

Introduction

- Absence of Energy Storage in Cyprus
 - Not included in the regulations yet
- Cyprus is heavily depended on conventional generation
 - About 90% of final energy comes from imported fossil fuels
- High solar irradiance
 - Increasing PV penetration to the power network in recent years
 - Residential PV systems under Net-Metering (common practise)
- High PV penetration may impose instability issues to the grid
- "Out-dated", isolated power network
- Conventional power units to stabilise the network's performance

Need for flexibility → **Need for energy storage!**

Current status

- First grid-connected Energy Storage Systems in Cyprus.
- Funded by the ERDF and national funds.
- Pilots include:
 - **o** 9 Residential Battery Energy Storage Systems (BESS)
 - Households in the wider area of Nicosia
 - **o 1** Laboratory BESS
 - PV Technology Lab, University of Cyprus
 - $\circ~$ 1 Social BESS
 - Low Voltage Distribution Substation in Nicosia
 - \circ **1** Public BESS
 - New Nicosia Town Hall

UCY Residential & Laboratory BESS Pilots

- 9 2.5 KW / 9.8 KWh BESS installed
- Existing 3 KWp roof-top PV systems
 & Smart Meters
- System monitoring and data collection through <u>manufacturer's online portal</u>

UCY Residential & Laboratory BESS Pilots

PV ESTIA

- Electricity power data ٠
- In KW, 15-min averaged values, csv file format lacksquare
 - Household electricity consumption \bigcirc
 - PV system production Ο
 - Grid interaction (power import & export) Ο
 - Storage performance (SoC, charge & discharge) Ο
 - **Direct PV consumption** Ο

Image taken from https://www.lg.com

Two available modes

- "Increase Self-Consumption" mode
 - Storage of excess generation
 - Limit exported energy
 - Limit imported energy
- "Time-scheduled Charging" mode
 - Suitable for Time-of-Use Tariffs

٠

EMS

Specifications

• Intelligent energy management

Functionalities

- Increase Self-consumption

PV power meter

٠

Bidirectional load

meter

Time-of-Use Tariffs
 Limit export electricity
 Scheduled Battery Charging

• Integrated web-server

01/04/2019

13

Residential Pilots Preliminary Results

Approx. **20%**

Self-Consumption increase during summer 2018.

14

Residential Pilots Preliminary Results

Approx. 30%

Self-Sufficiency increase during summer 2018.

Residential Pilots Preliminary Results

Approx. **20%** Grid Feed-in reduction during summer 2018.

01/04/2019

Residential Pilots Preliminary Results

Residential Pilots Preliminary Results

01/04/2019

- Installation of additional monitoring equipment
 - Temperature & humidity monitoring
 - Thermal consumption monitoring

UCY Laboratory BESS Pilot

UCY Laboratory BESS Equipment

- Battery: LG Chem RESU 10H
 - 5 KW maximum power, 9.3 KWh usable energy capacity
- Battery inverter: SMA Sunny Boy Storage 2.5
 - $\circ~$ 1-ph, 2.5 KW rated power at 230 V, 50 Hz

Images taken from https://www.sma.de/en/

Image taken from https://www.lg.com

UCY Laboratory BESS Equipment

- Battery: LG Chem RESU 10H
 - 5 KW maximum power, 9.3 KWh usable energy capacity
- Battery inverter: SMA Sunny Boy Storage 2.5
 - $\circ~$ 1-ph, 2.5 KW rated power at 230 V, 50 Hz

UCY Laboratory BESS Equipment

- Load emulator: Programmable AC Electronic Load
 - Power Rating: 1.8/3.6/4.5 KW
- PV system: 3 KWp PV system
 - Installed at 30 deg. (common practice in Cyprus)

Image taken from https://www.chromausa.com

AC Load emulation

- Rated Power 4500W
- Real and accurate simulation capabilities
- Prevents overstressing the instrument
- Reliable and unbiased test results
- GIPB&RS232 interface for remote control & monitoring
- Modes of operation: CC, CP, CR *

CC = Constant Current CP = Constant Power CR = Constant Resistance

01/04/2019 22

UCY Laboratory BESS Pilot

- Figures show real load consumption data emulated to the AC Electronic Load and the ٠ energy balance and behaviour of the BESS over a period of 24-hrs.
- Constant Power (CP) Mode / Emulate typical residential load / 24-hrs period

Battery Lithium-ion Technology

- High Voltage (800 VDC)
- 50 kWh Usable Capacity ٠
- Regulated Air Cooling • 10 years warranty

Inverter

Bidirectional Technology

- 30 KW / 30 KVar power ٠
- Efficiency up to 96% ٠
- Support HV batteries
- Integrated Web Server

EMS

Integrated Web Server

- **Optimal Power Balancing** ٠ ٠
- Frequency Control (P[f]) ٠
- Support of SCADA ٠
- Target SoC
 - Voltage Control (Q[u])
- Control & Monitoring via UI

- Outdoor installation
- Insulating container
- Local and remote control •
- AC-coupling topology
- Coupled with LV feeder
- Power analyser at PCC
- Monitor grid operation (P, V, I, f)
- EMS to perform power balancing and grid ancillary services

System Parameters		Interface	
Rated power	30 KW	Data Monitoring	SCADA
Nominal AC Voltage/Freq.	400V, 50Hz		Ethernet
Nominal Current	43.5A	Communication	Modbus
THD	<2%		GPRS/Satellite
Inverter efficiency	>96%		
Weight	2 tones		
Storage Battery			auta
Cell Chemistry	NCM		
Life cycles	6000		
Efficiency @ 0.5C	>96%		

- Turnkey solution possible for integration of Off-grid & On-grid applications
- Ancillary grid services:
 - Frequency Control (P[f]) Active Power Compensation
 - Voltage Control (Q[u]) Reactive Power Compensation
 - Harmonic compensation
 - Peak shaving and Peak shifting
 - Fault ride through ability

UCY Public BESS Pilot

• New Nicosia Town Hall, 12 KWp roof-top PV system

UCY Public BESS Pilot

Images taken from https://www.sma.de/en/

Image taken from https://www.lg.com

UCY Public BESS Pilot

Thank you for your attention!

Nikolas Chatzigeorgiou Special Scientist

University of Cyprus 1 University Avenue New University Campus P.O. 20537 1678, Nicosia

Tel: +357 22 894397 Email: <u>nchatz05@ucy.ac.cy</u> Website: <u>www.pvtechnology.ucy.ac.cy</u>

Acknowledgment

University of Cyprus PV Technology