Motores de combustión Interna

Ciclo aire-combustible

Pedro Curto-Risso, Santiago Martinez-Boggio, Lidio Braga

INSTITUTO DE INGENIERÍA MECÁNICA Y PRODUCCIÓN INDUSTRIAL FACULTAD DE INGENIERÍA UNIVERSIDAD DE LA REPÚBLICA

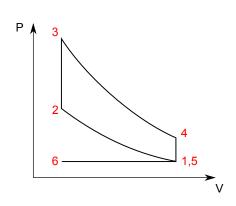
Composición del aire seco

	ppm en vol	PM(kg/kmol)	frac. molar	rel. molar con O_2 en aire	
<i>O</i> ₂	209500	31,998	0,2095	1	
N ₂	780900	28,012			
Ar	9300	38,948	0,7905	3,773	
CO ₂	300	44,009			

Definimos N_2 atmosférico: $N_{2.atmosférico} = N_2 + Ar + CO_2$

$$PM_{N_{2_{almosf.}}} = \frac{PM_{aire} - 0.2095PM_{O_{2}}}{1 - 0.2095} = 28.16kg/kmol$$

Análisis del ciclo aire - combustible - Otto



- 1 2: Compresión adiabática reversible de una mezcla de aire- combustible - vapor de agua - gases residuales o de recirculación.
- 2 3: Combustión en la que se consume todo el combustible. Sin pérdidas de calor, donde se alcanza el equilibrio.
- 3 4: Expansión adiabática y reversible de gases producto de una combustión en equilibrio químico.
- 4 1: Proceso de intercambio de gases ideal.

Cálculo de T₂ (proceso isentrópico)

Concentraciones molares y_a y y_f de la mezcla aire combustible ($y_{aqua} = y_f = 0$):

Definimos:
$$s_q = \left(\frac{\dot{n}_f}{\dot{n}_a}\right)_s$$
 \rightarrow $\phi s_q = \frac{\dot{n}_f}{\dot{n}_a}$ \rightarrow
$$\begin{cases} y_f = \frac{\phi s_q}{\phi s_q + 1} \\ y_a = \frac{1}{\phi s_q + 1} \end{cases}$$

Si conozco $T_1 o$ **supongo** $\bar{\gamma}_u o T_2 = T_1 r^{\bar{\gamma}_u - 1}$

Dos formas:

 $\bar{\gamma}_u = \frac{\widetilde{c}_{p_u}}{\widetilde{c}_u}$

$$\widetilde{c}_{p_{u}} = y_{f} \, \widetilde{c}_{p_{f}} \Big|_{\frac{T_{1} + T_{2}}{2}} + y_{a} \, \widetilde{c}_{p_{a}} \Big|_{\frac{T_{1} + T_{2}}{2}} \qquad \widetilde{c}_{p_{u}} = \frac{y_{f}}{2} \left[\widetilde{c}_{p_{f}} \Big|_{T_{1}} + \widetilde{c}_{p_{f}} \Big|_{T_{2}} \right] + \frac{y_{a}}{2} \left[\widetilde{c}_{p_{a}} \Big|_{T_{1}} + \widetilde{c}_{p_{a}} \Big|_{T_{2}} \right]$$
o bien
$$\widetilde{c}_{v_{u}} = y_{f} \, \widetilde{c}_{v_{f}} \Big|_{\frac{T_{1} + T_{2}}{2}} + y_{a} \, \widetilde{c}_{v_{a}} \Big|_{\frac{T_{1} + T_{2}}{2}} \qquad \widetilde{c}_{v_{u}} \Big|_{\frac{T_{1} + T_{2}}{2}} + \widetilde{c}_{v_{f}} \Big|_{T_{1}} + \widetilde{c}_{v_{f}} \Big|_{T_{2}} + \widetilde{c}_{v_{f}} \Big|_{T_{2}}$$

Con $\bar{\gamma}_u$ recalculamos $T_2=T_1\ r^{\bar{\gamma}_u-1}$ y continuamos hasta que cierre la iteración de $\bar{\gamma}_u$ obteniendo $\bar{\gamma}_u$ y T_2

Cálculo de T_3 a partir de la Temperatura adiabática de llama T_{ad}

$$C_xH_y + \alpha \left(O_2 + 3,772N_2\right) \rightarrow \beta CO_2 + \gamma H_2O + \mu N_2 + \nu O_2 + \varepsilon CO + \theta H_2$$

Balance de masa:

C
$$x = \beta + \varepsilon$$

$$H$$
 $y = 2\gamma + 2\theta$

$$O] \qquad 2\alpha = 2\beta + \gamma + 2\nu + \varepsilon$$

N]
$$3,772\alpha = \mu$$

4 ecuaciones y 6 incógnitas \rightarrow

•
$$\sin \phi < 1 \rightarrow \varepsilon = \theta = 0$$

• si $\phi > 1$ $\rightarrow \nu = 0$ y asumimos la ecuación de equilibrio químico del agua:

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$

• si
$$\phi = 1 \rightarrow \varepsilon = \theta = \nu = 0$$

Cálculo de T_3 a partir de la T_{ad} - Caso $\phi < 1$

$$\phi < 1$$
 $\rightarrow \varepsilon = \theta = 0$

Ecuaciones:

C
$$x = \beta$$

$$H$$
 $y = 2\gamma$

$$O] \qquad 2\alpha = 2\beta + \gamma + 2\nu$$

N]
$$3,772\alpha = \mu$$

$$\alpha_q = \frac{4x + y}{4}$$

$$\alpha = \frac{\alpha_q}{\phi}$$

Solución:

$$\beta = x$$

$$\gamma = \frac{y}{2}$$

$$\nu = \frac{1 - \phi}{\phi} \left(\frac{4x + y}{4} \right)$$

$$\mu=\mathbf{3},\mathbf{772}\alpha$$

Cálculo de T_3 a partir de la T_{ad} - Caso $\phi > 1$

$$\boxed{\phi>1} \begin{cases} \nu=0 \\ CO_2+H_2\rightleftharpoons CO+H_2O \quad \text{ecuación de equilibrio químico del agua} \end{cases}$$

Balance de masa:

C]
$$x = \beta + \varepsilon$$

H] $y = 2\gamma + 2\theta$
O] $2\alpha = 2\beta + \gamma + \varepsilon$
N] $3,772\alpha = \mu$
 $\alpha_q = \frac{4x + y}{4}$
 $\alpha = \frac{\alpha_q}{\phi}$

Equilibrio químico

$$CO_{2} + H_{2} \rightleftharpoons CO + H_{2}O$$

$$k_{\rho} = \frac{[CO][H_{2}O]}{[CO_{2}][H_{2}]} = \frac{\gamma}{\beta} \frac{\varepsilon}{\theta}$$

$$k_{\rho} = e^{\left[2,743 - \frac{1,761\times10^{3}}{T} - \frac{1,611\times10^{6}}{7^{2}} + \frac{0,2803\times10^{9}}{T^{3}}\right]}$$

Cálculo de T_3 a partir de la T_{ad} - Caso $\phi > 1$

Solución:

$$\varepsilon = x - \beta$$

$$\theta = \beta - \frac{2x(2 - \phi) + y(1 - \phi)}{2\phi}$$

$$\gamma = \frac{2x(2 - \phi) + y}{2\phi} - \beta$$

$$\alpha = \frac{4x + y}{4\phi}$$

$$\mu = 3,772 \frac{4x + y}{4\phi}$$

 β es la solución del siguiente polinomio:

$$m\beta^{2} + n\beta + h = 0$$

$$m = k_{p} - 1$$

$$n = \frac{x}{\phi} \left[2 - k_{p} (2 - \phi) \right] + \frac{y}{2\phi} \left[1 - k_{p} (1 - \phi) \right]$$

$$h = -x \left[\frac{2x (2 - \phi) + b}{2\phi} \right]$$

Resolviendo el sistema conocemos la composición de los humos \rightarrow podemos calcular la temperatura de llama adiabática para determinar $T_3 = T_{ad}$

Cálculo de T_3 a partir de la T_{ad} - Balance de energía

Balance de energía:

$$\begin{aligned} &U_{r}\Big|_{T_{2}} = U_{p}\Big|_{T_{3}} \\ &U_{r}\Big|_{T_{2}} = m_{f}u_{f}\Big|_{T_{2}} + m_{a}u_{a}\Big|_{T_{2}} \\ &U_{p}\Big|_{T_{3}} = m_{CO_{2}}u_{CO_{2}}\Big|_{T_{3}} + m_{H_{2}O}u_{H_{2}O}\Big|_{T_{3}} + m_{N_{2}}u_{N_{2}}\Big|_{T_{3}} + m_{O_{2}}u_{O_{2}}\Big|_{T_{3}} + m_{CO}u_{CO}\Big|_{T_{3}} + m_{H_{2}}u_{H_{2}}\Big|_{T_{3}} \\ &u_{i} = u_{ii}^{o} + \Delta u_{i} \end{aligned}$$

- si $\phi \le$ 1 la composición no depende de la temperatura de los humos \to calculo directamente con el balance de energía.
- si φ > 1 → T₃ interviene en la composición de los humos en la constante de equilibrio k_p(T) → debemos realizar un proceso de iteración.

Procedimiento iterativo $\phi > 1$:

Suponer $T_3 o$ calculo $k_p o \beta o$ composición de humos o balance de energía $o T_3$.

Cálculo de T_4 a partir de T_3

Si conozco $T_3 o$ **supongo** $\bar{\gamma}_b o T_4 = T_3 \; r^{1-\bar{\gamma}_b}$

Dos formas:

$$\begin{split} \widetilde{c}_{\rho_b} &= y_{CO_2} \; \widetilde{c}_{\rho_{CO_2}} \Big|_{\frac{T_3 + T_4}{2}} + ... + y_{H_2} \; \widetilde{c}_{\rho_{H_2}} \Big|_{\frac{T_3 + T_4}{2}} \\ \widetilde{c}_{v_b} &= y_{CO_2} \; \widetilde{c}_{v_{CO_2}} \Big|_{\frac{T_3 + T_4}{2}} + ... + y_{H_2} \; \widetilde{c}_{v_{H_2}} \Big|_{\frac{T_3 + T_4}{2}} \end{split}$$

o bien

$$\begin{split} \widetilde{\boldsymbol{c}}_{\rho_b} &= \frac{\boldsymbol{y}_{CO_2}}{2} \left[\widetilde{\boldsymbol{c}}_{\rho_{CO_2}} \Big|_{T_3} + \widetilde{\boldsymbol{c}}_{\rho_{CO_2}} \Big|_{T_4} \right] + \ldots + \frac{\boldsymbol{y}_{H_2}}{2} \left[\widetilde{\boldsymbol{c}}_{\rho_{H_2}} \Big|_{T_3} + \widetilde{\boldsymbol{c}}_{\rho_{H_2}} \Big|_{T_4} \right] \\ \widetilde{\boldsymbol{c}}_{\boldsymbol{v}_b} &= \frac{\boldsymbol{y}_{CO_2}}{2} \left[\widetilde{\boldsymbol{c}}_{\boldsymbol{v}_{CO_2}} \Big|_{T_3} + \widetilde{\boldsymbol{c}}_{\boldsymbol{v}_{CO_2}} \Big|_{T_4} \right] + \ldots + \frac{\boldsymbol{y}_{H_2}}{2} \left[\widetilde{\boldsymbol{c}}_{\boldsymbol{v}_{H_2}} \Big|_{T_3} + \widetilde{\boldsymbol{c}}_{\boldsymbol{v}_{H_2}} \Big|_{T_4} \right] \end{split}$$

$$ar{\gamma}_b = rac{\widetilde{c}_{
ho_b}}{\widetilde{c}_{ec{v}_b}}$$

Con $\bar{\gamma}_b$ recalculamos $T_4=T_3~r^{1-\bar{\gamma}_b}$ y continuamos hasta que cierre la iteración de $\bar{\gamma}_b$ obteniendo $\bar{\gamma}_b$ y T_4

Estados termodinámicos del ciclo

Se procede a calcular todos los estados termodinámicos del ciclo con el objetivo de determinar el trabajo específico y el rendimiento.

Constante universal de los gases, constante gases antes de combustión (unburned), constante gases quemados (burned):

$$R = 8,314472 \frac{J}{mol \ K} \qquad R_u = \frac{R}{y_f \ PM_f + y_a \ PM_a} \quad R_b = \frac{R}{y_{CO_2} \ PM_{CO_2} + ... + y_{H_2} \ PM_{H_2}}$$

Estados:

$$v_1 = \frac{R_u T_1}{P_1}$$
 $v_2 = \frac{v_1}{r}$ $v_3 = v_2$ $v_4 = v_1$ $p_2 = \frac{R_u T_2}{v_2}$ $p_3 = \frac{R_b T_3}{v_2}$ $p_4 = \frac{R_b T_4}{v_4}$

Trabajo específico y rendimiento

Trabajo:

$$w = w_{C} + w_{E} \rightarrow w = \frac{\rho_{3}v_{3}^{\gamma_{b}}}{(1 - \gamma_{b})} \left[v_{4}^{(1 - \gamma_{b})} - v_{3}^{(1 - \gamma_{b})} \right] - \frac{\rho_{1}v_{1}^{\gamma_{u}}}{(1 - \gamma_{u})} \left[v_{1}^{(1 - \gamma_{u})} - v_{2}^{(1 - \gamma_{u})} \right]$$

$$w = \frac{\rho_{3}v_{3}}{(1 - \gamma_{b})} \left[\left(\frac{v_{4}}{v_{3}} \right)^{(1 - \gamma_{b})} - 1 \right] - \frac{\rho_{1}v_{1}}{(1 - \gamma_{u})} \left[1 - \left(\frac{v_{2}}{v_{1}} \right)^{(1 - \gamma_{u})} \right]$$

$$w = \frac{\rho_{3}v_{3}}{(1 - \gamma_{b})} \left[r^{(1 - \gamma_{b})} - 1 \right] - \frac{\rho_{1}v_{1}}{(1 - \gamma_{u})} \left[1 - r^{(\gamma_{u} - 1)} \right]$$

$$w = \frac{R_{b}T_{3}}{(1 - \gamma_{b})} \left[r^{(1 - \gamma_{b})} - 1 \right] - \frac{R_{u}T_{1}}{(1 - \gamma_{u})} \left[1 - r^{(\gamma_{u} - 1)} \right]$$

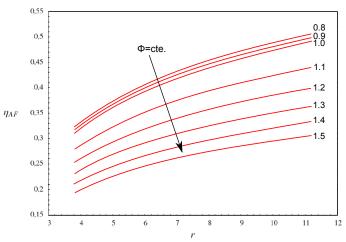
$$w = T_{3} \left[c_{v_{b}} \left(1 - r^{1 - \gamma_{b}} \right) - c_{v_{u}} \tau \left(r^{\gamma_{u} - 1} - 1 \right) \right]$$

Rendimiento:

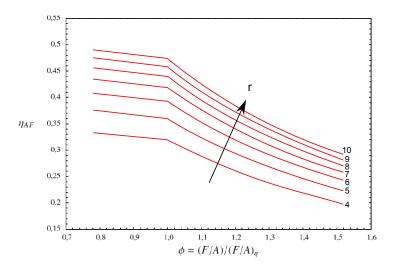
$$egin{aligned} \eta_{AF} &= rac{W}{rac{m_t}{m} Q_{V}^{j}} = rac{W}{X_{f} Q_{V}^{j}} \ X_{f} &= rac{\phi \ r_q}{1 + \phi r_q} rac{W}{Q_{V}^{j}} \end{aligned}
ight.
ightarrow \left. egin{aligned} \eta_{AF} &= rac{1 + \phi r_q}{\phi \ r_q} rac{W}{Q_{V}^{j}} \end{aligned}
ight.$$

Rendimiento ciclo aire-fuel - Otto

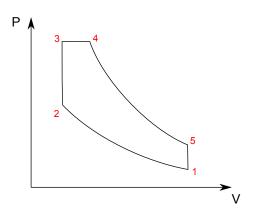
A partir del cálculo del ciclo teórico es posible determinar la evolución del η para diferentes configuraciones:



Rendimiento ciclo aire-fuel- Otto



Análisis del ciclo aire - combustible - Diésel - Dual



- **1 2**: Igual que ciclo Otto pero solo comprime aire. $T_2 = T_1 r^{(\gamma_{aire} 1)}$
- 2 4: Combustión.
- **4 5**: Expansión adiabática y reversible de gases producto de una combustión en equilibrio químico.
- **5 1**: Proceso de intercambio de gases ideal.

Proceso 2-4

Balance de energía:

$$\frac{dU}{dt} = \dot{Q} - p\frac{dV}{dt} + \dot{m}_f h_f \quad \Rightarrow \quad U_4 - U_2 = Q - p(V_4 - V_3) + m_f h_f$$

consideramos perdidas de calor = 0 \Rightarrow $U_4 - U_2 = -p (V_4 - V_3) + m_t h_t$

$$(m_f + m_a) u_4 - m_a u_2 = -p (V_4 - V_3) + m_f h_f$$

$$(m_f + m_a)[u_4 + pv_4] = m_a[u_2 + p_3v_2] + m_fh_f$$

$$(m_f + m_a) h_4 = m_a [u_2 + p_3 v_2] + m_f h_f \Rightarrow h_4(T) = \frac{1}{1 + \phi r_a} (u_2 + p_3 v_2) + \frac{\phi r_q}{1 + \phi r_a} h_f$$

$$h_4(T_4) \approx \frac{1}{1 + \phi r_q} (u_2 + r_p p_1 v_2) + \frac{\phi r_q}{1 + \phi r_q} Q_p^i$$

Cuando trabajamos con ciclos de presión limitada (Dual) p_3 es conocida \rightarrow se define la relación $r_p = p_3/p_1$.

Composición de los humos en 4: Se obtiene de forma análoga al ciclo Otto pero con < Æ → combustible Diésel.

Proceso 4-5

Análogo al ciclo Otto pero cambia la relación de expansión:

$$\begin{split} \bar{\gamma}_{b} &= \frac{c_{\rho,b}(\bar{T})}{c_{V,b}(\bar{T})} \\ T_{4} &= T_{5} r_{e}^{\bar{\gamma}_{b}-1} = T_{5} \left(\frac{V_{5}}{V_{4}}\right)^{\bar{\gamma}_{b}-1} \\ T_{5} &= T_{4} \left(\frac{V_{4}}{V_{5}}\right)^{\bar{\gamma}_{b}-1} = T_{4} \left(\frac{V_{3}}{V_{5}} \frac{V_{4}}{V_{5}}\right)^{\bar{\gamma}_{b}-1} \\ T_{5} &= T_{4} \left(\frac{\beta}{r}\right)^{\bar{\gamma}_{b}-1} \end{split}$$

Estados termodinámicos

$$R_u = \frac{R}{PM_a}$$

$$R_b = \frac{R}{PM_b}$$

$$PM_b = y_{CO_2}PM_{CO_2} + ... + y_{H_2}PM_{H_2}$$

$$v_1 = \frac{R_u T_1}{p_1}$$

$$v_2 = \frac{v_1}{r}$$

$$p_2 = \frac{R_u T_2}{p_2}$$

$$p_3 = p_1 r_p$$

$$v_4 = \frac{R_b T_4}{p_4}$$

$$p_4 = p_3$$

$$v_5 (m_f + m_a) = v_1 m_a \rightarrow v_5 = v_1 x_a$$

$$v_5 (1 + \phi r_a) = v_1$$

$$\frac{\beta}{r} = \frac{V_4}{V_5} = \frac{(m_a + m_f) v_4}{(m_a + m_f) v_5} = \frac{v_4}{v_1 x_a}$$

$$\frac{\beta}{r} = \frac{v_4}{v_1} \left(1 + \phi r_q \right)$$

$$v_5 = \frac{R_b T_5}{p_5} \rightarrow p_5 = \frac{R_b T_5}{v_5}$$

$$V_3 = \frac{m_a (1 + \phi r_q) v_4 v_1}{v_4 (1 + \phi r_a) r} = m_a v_2$$

Trabajo y rendimiento

$$W = W_E - W_C$$

$$W_C = \frac{p_1 V_1}{1 - \gamma_u} \left(1 - r^{\gamma_u - 1} \right)$$

$$W_{E} = p_{3} (V_{4} - V_{3}) + \frac{p_{4} V_{4}}{1 - \gamma_{b}} \left[\left(\frac{V_{4}}{V_{5}} \right)^{(\gamma_{b} - 1)} - 1 \right] = p_{3} (V_{4} - V_{3}) + \frac{p_{4} V_{4}}{1 - \gamma_{b}} \left[\left(\frac{\beta}{r} \right)^{(\gamma_{b} - 1)} - 1 \right]$$

$$W = p_3 (V_4 - V_3) + \frac{p_4 V_4}{1 - \gamma_b} \left[\left(\frac{\beta}{r} \right)^{(\gamma_b - 1)} - 1 \right] - \frac{p_1 V_1}{1 - \gamma_u} \left(1 - r^{\gamma_u - 1} \right)$$

$$W = p_3 \left(V_1 \frac{\beta}{r} - \frac{V_1}{r} \right) + \frac{p_3 V_1 \frac{\beta}{r}}{1 - \gamma_b} \left[\left(\frac{\beta}{r} \right)^{(\gamma_b - 1)} - 1 \right] - \frac{p_1 V_1}{1 - \gamma_u} \left(1 - r^{\gamma_u - 1} \right)$$

$$W = p1V1 \left[r_p \left(\frac{\beta}{r} - \frac{1}{r} \right) + r_p \frac{1}{1 - \gamma_b} \left(\frac{\beta}{r} \right) \left[\left(\frac{\beta}{r} \right)^{(\gamma_b - 1)} - 1 \right] - \frac{1}{1 - \gamma_u} \left(1 - r^{\gamma_u - 1} \right) \right]$$

Trabajo y rendimiento

$$\eta = \frac{W}{m_f Q_p^i} = \frac{p1 V1}{m_f Q_p^i} \left[r_p \left(\frac{\beta}{r} - \frac{1}{r} \right) + r_p \frac{1}{1 - \gamma_b} \left(\frac{\beta}{r} \right) \left[\left(\frac{\beta}{r} \right)^{(\gamma_b - 1)} - 1 \right] - \frac{1}{1 - \gamma_u} \left(1 - r^{\gamma_u - 1} \right) \right]$$

$$\eta = \frac{p1v_1m_a}{m_tQ_p^i}\left[r_p\left(\frac{\beta}{r} - \frac{1}{r}\right) + r_p\frac{1}{1 - \gamma_b}\left(\frac{\beta}{r}\right)\left[\left(\frac{\beta}{r}\right)^{(\gamma_b - 1)} - 1\right] - \frac{1}{1 - \gamma_u}\left(1 - r^{\gamma_u - 1}\right)\right]$$

$$\eta = \frac{p_1 v_1}{Q_p^i \phi r_q} \left[r_p \left(\frac{\beta}{r} - \frac{1}{r} \right) + r_p \frac{1}{1 - \gamma_b} \left(\frac{\beta}{r} \right) \left[\left(\frac{\beta}{r} \right)^{(\gamma_b - 1)} - 1 \right] - \frac{1}{1 - \gamma_u} \left(1 - r^{\gamma_u - 1} \right) \right]$$

$$\eta = \frac{r_p R_a T_1}{Q_p^i \phi r_q} \left\{ \left[\frac{\beta}{r} - \frac{1}{r} \right] + \frac{1}{(1 - \gamma_b)} \left(\frac{\beta}{r} \right) \left[\left(\frac{\beta}{r} \right)^{(\gamma_b - 1)} - 1 \right] - \frac{1}{r_p (1 - \gamma_u)} \left(1 - r^{\gamma_u - 1} \right) \right\}$$

$$\boxed{ \eta_{AF} = \frac{r_p T_1}{Q_p^i \ \phi \ r_q} \left\{ R_a \left[\frac{\beta}{r} - \frac{1}{r} \right] + \frac{R_a}{(1 - \gamma_b)} \left(\frac{\beta}{r} \right) \left[\left(\frac{\beta}{r} \right)^{(\gamma_b - 1)} - 1 \right] + \frac{c_{V_a}}{r_p} \left(1 - r^{\gamma_u - 1} \right) \right\} }$$

Trabajo específico y rendimiento

$$\eta_{AF} = \boxed{\frac{r_{\rho}T_{1}}{Q_{\rho}^{i} \phi r_{q}}} \left[\left\{ R_{a} \left[\frac{\beta}{r} - \frac{1}{r} \right] + \frac{R_{a}}{(1 - \gamma_{b})} \left(\frac{\beta}{r} \right) \left[\left(\frac{\beta}{r} \right)^{(\gamma_{b} - 1)} - 1 \right] + \frac{c_{v_{a}}}{r_{\rho}} \left(1 - r^{\gamma_{u} - 1} \right) \right\} \right]$$

$$\eta_{AF}(\phi, r, r_0) = f(\phi; r_0) q(r; r_0)$$

Trabajo específico y rendimiento

$$\eta^* = \frac{\eta(0,91; r; r_p) \cdot \eta(\phi; 15; r_p)}{\eta(0,91; 15; r_p)}$$

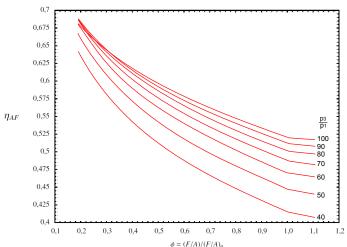
$$\eta^* = \frac{f(0,91; r_p) \ g(r; r_p) \cdot f(\phi; r_p) \ g(15; r_p)}{f(0,91; r_p) \ g(15; r_p)}$$

$$\eta^* = g(r; r_p) \cdot f(\phi; r_p) = \eta(\phi, r, r_p)$$

$$\eta_{AF} = \frac{\eta_{AF} \left(0, 91; r; r_{p}\right) \cdot \eta_{AF} (\phi; 15; r_{p})}{\eta_{AF} (0, 91; 15; r_{p})}$$

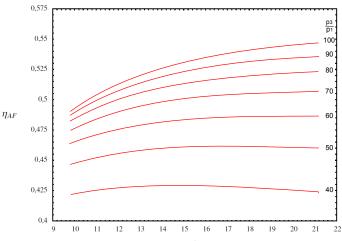
Rendimiento ciclo aire-fuel - Dual

Rendimientos calculados a partir de la resolución del ciclo teórico sin considerar gases residuales, tomando como datos iniciales $p_{in} = p_{ex} = 1$ atm, $T_{in} = 289$, 15K y r = 15.



Rendimiento ciclo aire-fuel- Dual

Rendimientos calculados a partir de la resolución del ciclo teórico sin considerar gases residuales, tomando como datos iniciales $p_{in} = p_{ex} = 1$ atm, $T_{in} = 289, 15$ K y $\phi = 0,91$.



Rendimiento ciclo aire-fuel - Dual

Cuando trabajamos con ciclos de presión limitada (Dual) hay un parámetro más que tener en cuenta, la relación p_3/p_1 .

Por tanto para poder calcular el rendimiento para un r \neq 15 y ϕ \neq 0,91 se asume un comportamiento lineal:

$$\boxed{\eta_{AF}\left(r;\phi\right) = \eta_{AF}\left(r;0,91\right) \frac{\eta_{AF}\left(15;\phi\right)}{\eta_{AF}\left(15;0,91\right)}}$$

En la tabla se presentan algunos valores para η_{AF} (15; 0, 91):

p_3/p_1	40	50	60	70	80	90	100
η_{AF} (15; 0, 91)	0.42862	0.46055	0.48346	0.50053	0.51353	0.52356	0.53134

Hipótesis: Tanto para ciclo Otto como para Dual, se considera que la combustión se da en el punto correcto por lo tanto una combustión centrada.

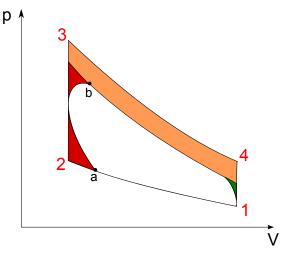
Pérdidas

Sin tomar en cuenta los procesos de admisión y escape, las diferencias más importantes entre el ciclo real y el ciclo ideal se deben a las pérdidas (irreversibilidades).

- Pérdidas de tiempo pérdidas asociadas al proceso de mezclado (se necesita cierto tiempo para tener una mezcla uniforme) y el proceso de combustión tampoco es instantáneo (se necesita cierto tiempo para que la combustión se desarrolle).
- Pérdidas de escape como el proceso de liberación de gases se hace con válvulas, hay que abrirlas antes de que el pistón alcance BC y se pierde parte de la energía.
- Pérdidas de calor debido al flujo de calor a través de las paredes del cilindro.

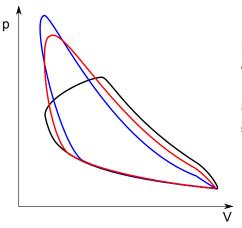
Pérdidas

Pérdidas operando a plena carga:



- Pérdidas de tiempo 6%
- Pérdidas de calor 12%
- Pérdidas de escape 2%

Efectos del avance de la ignición

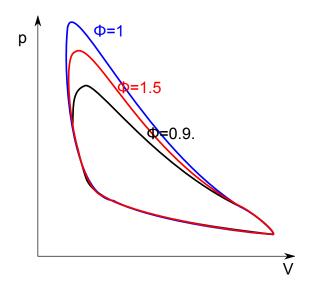


Existe un área máxima para cada velocidad de giro.

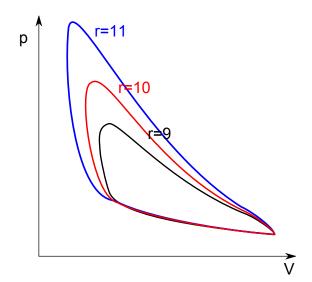
Si se fija N \Rightarrow queda fija la masa, además si $\phi = cte \Rightarrow m_f = cte \Rightarrow$

$$\eta = rac{W}{m_t Q_V^i} \Rightarrow \eta_{ extit{max}} = rac{W_{ extit{max}}}{m_t Q_V^i}$$

Efecto de la riqueza del combustible



Efectos de la relación de comprsión



Relación rendimiento térmico indicado y rendimiento del ciclo aire combustible (Rendimiento diagramático)

Los resultados experimentales han demostrado que sis e fijan ϕ y r, el rendimiento del ciclo aire combustible es prácticamente proporcional al rendimiento térmico indicado:

Otto

$$rac{\eta_{\it ti}}{\eta_{\it AF}} = (0.83 - 0.85)$$

<u>Diésel</u>

$$rac{\eta_{\it ti}}{\eta_{\it AF}} = (0.85 - 0.90)$$

Se define
$$\boxed{\eta_{\textit{d}} = \dfrac{\eta_{\textit{ti}}}{\eta_{\textit{AF}}}}$$