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are all nonincreasing. Differentiate (4) with respect to p .  The 
terms containing derivatives of Es,- are nonpositive and so 

- ( m  - k)[pkq”-,-’ - p m - k - 1 q 2 k ] } E ~ L - I  

Use a binomial identify to obtain 

= m  ( m i  ‘ ) ( p * y m - k - l  - P m - k - l q k )  
m -  1 

k <  ~ 

‘[Elwkl - Elwm-l-kl].  

The square-bracketed term is nonpositive for p I q because 
ElW,l > E l y 1  for k > j .  Then, Esm is indeed nonincreasing. 
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Random Texts Exhibit Zipfs-Law-Like Word 
Frequency Distribution 

Wentian Li 

Abstract-It is shown that the distribution of word frequencies for 
randomly generated texts is very similar to ZipPs law observed in 
natural languages such as English. The facts that the frequency of 
occupnce of a word is almost an inverse power law function of its rank 
and the exponent of this inverse power law is very close to 1 are largely 
due to the transformation from the word’s length to its rank, which 
stretches an exponential function to a power law function. 

Index Terms-Statistical linguistics, Zipf‘s law, power-law distribu- 
tion, random texts. 
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Zipf observed long time ago [1]-[3] that the distribution of 
word frequencies in English, if the words are aligned according 
to their ranks, is an inverse power law with the exponent very 
close to 1. In other words, if the most frequently occurring word 
appears in the text with the frequency P(1), the next most 
frequently occurring word has the frequency P(21, and the 
rank-r word has the frequency P ( r ) ,  the frequency distribution 
is 

C 
r a  P ( r )  = -, (1) 

with C = 0.1 and a = 1. This distribution, also called Zipfs law, 
has been checked for accuracy for the standard corpus of the 
present-day English with very good results [4]. 

The fall-off of the distribution as the rank is increased is 
obvious, because the more frequently occurring words are guar- 
anteed to have larger frequencies than those less frequently 
occurring. Nevertheless, it seems to be a puzzle as why the decay 
is a power law instead of an exponential function or other faster 
decaying functions, and why the exponent is very close to 1 
instead of 2 or even larger values. There are attempts to incor- 
porate Zipfs law into the grander framework of “fractals” 
[5]-[7], but in doing so, little insight has been gained in under- 
standing this particular ‘‘law.’’ 

Probably few people pay attention to a comment by Miller in 
his preface to Zipfs book [8] that randomly generated texts, 
which are perhaps the least interesting sequences and unrelated 
to any other scaling behaviors, also exhibit Zipfs law. What he 
said was that Zipfs law is not exclusive for English or any other 
natural language. Miller did not give a proof of his statement, 
and it is the purpose of this short paper to provide a very simple 
proof that random texts do indeed exhibit Zipfs-law-like word 
frequency distribution. 

By “random texts,” I mean the symbolic sequences generated 
by the following procedure: each symbol out of total ( M  + 1) 
symbols is selected randomly and deposited at position i, and 
another symbol is randomly selected and deposited at position 
i + 1, and so on. There is no correlation between the selection 
of symbol at position i and that at position i + 1. Among the 
( M  + 1) symbols, one of them is called the “blank space.” Any 
“nonblank” symbol string between two blank spaces is called a 
‘word,” whereas a string of blank spaces is not. Taking the 
English alphabets for example, M = 26, and the words in ran- 
dom texts can be a,  b ,  c;.., aa, ab, ac;”, ba, bb;.., aaa, aab;.., 
etc. If the following sequence, for example, is generated, 

a -mdf-pwell- -werlppa-re- - -kkel-, 

it then contains the words a (suppose that the beginning of the 
sequence also plays the role of a blank space, (mdf ,  pwell, 
werlppa, re, and kkel. 

The probability that one would see the string -a- in a random 
text is proportional to (1/2713, which is equal to the product of 
the probability for the first symbol to be a blank space ( = 1/27), 
for the second symbol to be a(= 1/27), and for the third symbol 
to be a blank space (= 1/27). Similarly, the probability for 
finding the string -bsl- is proportional to (1/27)5. Since the first 
probability is also the frequency of occurrence for any word with 
length 1 (except a normalization factor), and the second proba- 
bility is the frequency of occurrence for any word with length 3 
(again, except a normalization factor), we have the general 
formula for the frequency of occurrence for any word with 
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length L:  

With C as the normalization factor, note that there are M L  
words having length L .  

The constant c can be determined from the normalization 
condition for the frequencies of occurrence of all words: 

so 

Inserting the value of c back to the (2) ,  the frequency of 
occurrence for any particular word with length L is 

1 

M ( M  + l ) L  
P i ( L )  = 

and the frequency of occurrence for all words with length L is 
M L - ~  

P (  L )  = MLPi( L )  = (6) ( M  + 1)" ' 

Both are exponential functions of L .  
In a random text, all words with the length L rank higher 

than words with the length L + 1,  because they have larger 
value of frequency of occurrence by (5). If we represent the rank 
of any word with length L by r (L) ,  we have 

L -  1 L 

I =  1 I =  1 
M [  < r ( L )  I MI (7) 

or 
M M 

M - 1  M - 1  
(ML-'  - 1) < r ( L )  I - ( M L  - 1). 

For example, 0 < r(1) I M ,  M < r(2)  I M + M 2 ,  and so on. 
Equation (8) represents the exponential transformation from 
word's length to word's rank. One implication of the transforma- 
tion to be exponential is that the longer the L ,  the more 
"stretching" of the rank variable, since there are more number 
of words with longer lengths. 

Equation (8) can be converted to 

Raising 1 / ( M  + 1 )  to the power of all the terms gives 

multiplying all terms by 1/M gives 

l o g ( M +  1) 

1 \logo 

1 
2 (11) M ( M  + l ) L  ' 

which can be written as 
r 

with 

log(M + 1 )  M 
a =  B = -  

log( M ) ' M -  1 '  
M a -  1 

(13) - - 1 M" 
and C = - 

M ( M - 1 ) "  ( M - 1 ) "  

The functional form 
C 

P ( r )  = ~ 

( r  + B)" 

is also called the generalized Zipfs law by Mandelbrot [9]. Let 
us check how close the generalized Zipfs law for random texts 
can be to Zipf s law in English: since the number of alphabets is 
M = 26, we have a = 1.01158 and C = 0.04. The exponent a is 
extremely close to what is observed in English, an amazing fact 
considering how little we have assumed. Even with the minimum 
number of symbols, M = 2 (if M = 1, .the transformation from 
the word length to the word rank is linear, and no power-law 
distribution is expected), a = 1.58496 is still not that far from 1. 

The frequency of occurrence of words by their rank repre- 
sented by (12) does not have the problem of divergence of the 
total probability typical for a power-law distribution, because the 
exponent a = 1.01158 is strictly larger than 1-which takes care 
of the integration at the tail end; and there is a cutoff of the 
smallest word rank, i.e., r = 1-which takes care of the integra- 
tion at the zero value of the rank. 

Due to the assumption that each symbol appears in the 
sequence with exactly the same probability, all words with the 
same length have the same frequency of occurrence. In other 
words, P ( r )  is a stepwise function having plateaus on P,(L)'s. 
Fig. 1 shows a numerical result of the word frequency distribu- 
tions for random texts with 2, 4, and 6 symbols, respectively. In 
the numerical simulation, a sequence of length N (which is 80 
000, 200 000, and 600 000 for M = 2, 4, and 6 )  is generated with 
the M symbols and the blank space all having the equal proba- 
bility. I also introduce a cutoff of the maximum possible word 
length L,, (6, 4, and 3 for M = 2, 4, and 6). The frequency of a 
word is derived by dividing the number of occurrence of that 
word with the total number of word countings (which is 16 306, 
18 964, and 36 320 for M = 2, 4, and 6). Since we do not count 
words whose lengths are longer than the cutoff length, the 
normalization condition (3)  now becomes 
L max 

L= 1 ML ( M  +cl)L+' 

M 

which leads to a larger value of c 

but the a estimated by (13) should be the same. To make a 
comparison with Zipfs law ( -  l / r )  as well as the power law with 
the exponent 2 ( -  l /r'>,  these two functions are also plotted in 
Fig. 1. The numerical simulation confirms that the random texts 
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Fig. 1. Word frequency as the function of the word’s rank for randomly 
generated sequences with the number of symbols M = 2,4,  and 6. There 
is a cutoff for the longest word length to be counted (the cutoffs L,,, 
are 6, 4, and 3 respectively for M = 2, 4, and 6). All symbols including 
the blank space have the same probability to appear in the sequence. 
Frequency of occurrence of a word is the number of countings of that 
word divided by the number of countings of all words (they are 16 306, 
18 964, and 36 320 respectively for M = 2, 4, and 6). Also shown are 
Zipfs scaling law (power law function with the exponent 1) and the 
power law function with the exponent 2. 

exhibit a word frequency distribution very much the same with 
Zipfs law. 

It is clear now that the existence of the Zip’s-law-like word 
frequency distribution in random texts is purely due to the 
choice of the rank as the independent variable. By choosing the 
word rank rather than the word length, the exponential distribu- 
tion which is typical for random texts becomes a power law 
function. This strongly suggests that the power law as expressed 
by Zipfs law in natural languages is also purely due to the 
choice of the rank as the independent variable. Actually, besides 
the cardinal number and the ordinal number, one can also use 
the third representation of the same frequency distribution: the 
distribution on a certain position of a digit, as related to the 
notorious “first digit problem” [ 101. The transformation among 
the three representations is summarized by Gell-Mann [ 111. 

Equations (13) also explains why the exponent in Zipf s law is 
close to 1, simply because log(M + 1) = log(M) when M is 
large. As we have seen, even for the worse case of having two 
symbols ( M  = 2), the estimated a = 1.58 is still smaller than 2. 
Only for M = 1 (the sequence is a binary sequence with one 
symbol and one blank space), no mechanism exists for stretching 
the frequency distribution from exponential to power law, and 
we fail to recover Zipfs law. If Zipfs law is observed for binary 
sequences, it indicates a “true” power law scaling, and one 
should expect other nontrivial scaling behaviors, such as l/f 
noise and long-range correlations [12]. 

The stepwise structure of the frequency of occurrence distri- 
bution in Fig. 1 can be removed by introducing bias among 
different symbols, i.e., different symbols have different probabili- 
ties to appear in the sequence. For example, symbol a can be 
more likely to appear in the sequence than symbol b; and 

Words Frequency for Bias Random Texts 
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Fig. 2. Word frequency as the function of the word’s rank for biased 
random sequences with the number of symbols M = 2 and 4. There is a 
cutoff for the longest word length to be counted (L,,, = 6 and 4, 
respectively for M = 2 and 4). Different symbols as well as the blank 
space have different probability to appear in the sequence (see the text 
for their values). Frequency of occurrence of a word is the number of 
countings of that word divided by the number of countings of all words 
(they are 16 164 and 18 964, respectively for M = 2 and 4). Also shown 
are Zipfs scaling law (power law function with the exponent 1) and the 
power law function with the exponent 2. 

occurrence than word -b-. The plateaus are then easily de- 
stroyed. In particular, a word with longer length can have a 
larger frequency than the wards with shorter lengths; for exam- 
ple, word -aa- ranks higher than word -b- if the square of the 
probability for symbol a to appear in the sequence is larger than 
the probability for symbol b. Fig. 2 shows the numerical results 
for two biased random sequences with two and four symbols 
respectively. For the two-symbol sequence we choose the proba- 
bility for having blank space to be 0.33, the probability for the 
first symbol is 0.47 and that for the second symbol is 0.2 (these 
numbers are arbitrarily chosen). For the four-symbol sequence, 
the probability for the blank space is 0.2, those for the remaining 
symbols are 0.5, 0.13, 0.1, and 0.07 (again, those are arbitrary 
numbers). A much smoother power law distributions show up in 
Fig. 2. 

In conclusion, Zipf s law is not a deep law in natural language 
as one might first have thought. It is very much related the 
particular representation one chooses, i.e., rank as the indepen- 
dent variable. A symbolic sequence which exhibits Zipfs law 
does not have to exhibit other scaling phenomena such as the 
l/f noise or long-range correlation. In fact, the long-range 
correlation and l/f spectrum are absent in natural languages, as 
observed by the author that the mutual information function 
between two letters decays faster than power laws of small 
exponents [13]. Mandelbrot [5] seems to derive the same result 
that random texts exhibit the generalized Zipfs law by using 
lexicographic trees, and noticed that Zipf s law is “linguistically 
very shallow.” But he still tries to link Zipfs law with other 
scaling phenomena. This correspondences provides a much intu- 
itive derivation and emphasizes that Zipfs law does not share 

consequently, word -a- has a larger value of the frequency of the common ground with other scaling behaviors. 
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A Branching Process Analysis of the Stack Algorithm 
for Variable Channel Conditions 

Marie-JosC Montpetit, Member, IEEE, David Haccoun, Senior 
Member, IEEE, and Gilles Deslauriers 

Abstract-A branching process analysis in random environment is 
presented for bounding the average number of computations of sequen- 
tial decoding over a finite state channel. Closed-form expressions appli- 
cable to specific cases are derived and evaluated. These unique bounds 
substantially reduce the need for lengthy simulations. 

Index Terms-Stack algorithm, variable channel, sequential decoding, 
branching processes, random environments. 

I. INTRODUCTION 

It is well known that the number of computations necessary to 
decode one bit in sequential decoding has, asymptotically, a 
Pareto distribution. In spite of this variability, bounds on the 
average decoding effort of the stack algorithm over a binary 
symmetrical channel (BSC) have been found by using a multi- 
type branching process model of the dynamics of the decoder [l]. 
However, over a channel with memory, a straightforward appli- 
cation of this analysis fails to provide good results. We now 
propose to model sequential decoding over a finite state channel 
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Fig. 1. Finite state channel. 

(FSC) with branching processes in random environments 
(BPRE). By doing this, we establish the basis for a broadened 
examination of sequential decoding under variable conditions 
and we show that the stack algorithm is much more robust than 
expected under hostile conditions, provided we adapt it to these 
varying conditions. Our analysis differs from the one over the 
BSC [l], as we distinguish between generations in the branching 
process, since it is not homogeneous, and we use approximation 
matrices based on the varying channel statistics, to obtain 
closed-form expressions of the bounds. Although the proposed 
theoretical bounds and the simulated average number of compu- 
tations of the stack algorithm are shown to generally agree, it 
can be said that the bounds found over the FSC are not as tight 
as those previously found over the BSC [l] for which more exact 
models can be used. 

11. BOUNDS ON THE AVERAGE NUMBER OF COMPUTATIONS 

As previously mentioned, we are using the FSC, a channel 
which has two distinct states known as T~ and 7,. As shown in 
Fig. 1, state T~ is a BSC with transition probability eo, and state 
T~ is a BSC with transition probability el where el >> eo. P and 
Q are the transition probabilities between T~ and T~ which 
constitute the two states of a Markov chain with P << Q 1. 
These probability assignments assure that both states will be 
persistent. Furthermore, most of the time the channel is in state 
T ~ .  This simulates the behavior of a realistic bursty channel. 

In sequential decoding, the Fano metric depends on the 
channel probability assignments and thus, in each state T,, the 
possible set of branch metrics are +uo,,  -a,,, and -a2,, i = O , l ,  
for a coding rate of 1/2. Since all channel states are persistent, 
we can consider the accumulated metric to be the sum of the 
individual branch metrics. On average, the total accumulated 
metric increases on the correct path. However, the metric falls 
rapidly in the presence of bursts of channel noise. Hence, we 
define the metric dip D, as 

D , = p k -  minp,, f o r k = 0 , 1 , 2 . . .  . (1)  
r > k  

D, is the difference between the accumulated metric pk of a 
node on the correct path at depth k and its smallest succeeding 
value. When D, = 0, node k is called a “breakout node” and 
will be decoded by a single computation. When D, > 0, node k 
is nonbreakout and becomes the root of a tree of incorrect 
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