Color y textura

[Newton, 1686]

"El color es producto de la luz a ciertas longitudes de onda"

J. NEwlon'

[Goethe, 1810]

"El color es producto de la percepción del observador"

for.

¿Son de igual *color* los cuadrados pequeños?

¿De qué *color* son los círculos?

El ojo

Fotoreceptores

Wavelength (nm) https://upload.wikimedia.org/wikipedia/commons/9/94/1416_Color_Sensitivity.jpg

Human Visual System Color Sensitivity

[Adaptado de https://upload.wikimedia.org/wikipedia/commons/c/c0/Eyesensitivity.svg]

Representación del color

Experimentos de Wright (1928) y Guild (1931).

- El color es una característica de tres dimensiones.
- Muchos colores pueden representarse como la mezcla de tres "colores primarios" A, B y C.
 - Adición: $D = w_a A + w_b B + w_c C$

$$D + w_a A = w_b B + w_c C \Rightarrow D = -w_a A + w_b B + w_c C$$

• Principio de tricromacia: con tres colores primarios se pueden generar otros colores (para la mayoría de las personas).

RGB (aditivo, luz)

CMY(K) (sustractivo, pigmentos)

RGB Value							
Point	Color	R	G	B			
S	Black	0.00	0.00	0.00			
R	Red	1.00	0.00	0.00			
Y	Yellow	1.00	1.00	0.00			
G	Green	0.00	1.00	0.00			
С	Cyan	0.00	1.00	1.00			
в	Blue	0.00	0.00	1.00			
\mathbf{M}	Magenta	1.00	0.00	1.00			
W	White	1.00	1.00	1.00			
K	50% Gray	0.50	0.50	0.50			
\mathbf{R}_{75}	75% Red	0.75	0.00	0.00			
\mathbf{R}_{50}	50% Red	0.50	0.00	0.00			
\mathbf{R}_{25}	25% Red	0.25	0.00	0.00			
Р	Pink	1.00	0.50	0.50			

$$C_i = (R_i, G_i, B_i)$$

• Aditivo

- Suma de tres luces sobre un papel.
- Muy simple. Usado en computadoras, monitores, cámaras, scanners, teléfonos, ...
 - Calibración para colorimetría.
- No es ajustado para operaciones con colores (p.e. promedio colores).

[Plugins > Color Inspector 3D]

Color inspector

[Plugins > Color Inspector 3D]

Tipos de imágenes RGB

True Color

Component ordering $I = (I_R, I_G, I_B)$

Packed ordering $I(u, v) = (R_{u,v}, G_{u,v}, B_{u,v})$

Indexed images

$$\begin{pmatrix} R \\ G \\ B \end{pmatrix} \leftarrow \begin{pmatrix} P_R(k) \\ P_G(k) \\ P_B(k) \end{pmatrix} = \begin{pmatrix} r_k \\ g_k \\ b_k \end{pmatrix}, \quad \text{with } k = I_{\text{idx}}(u, v).$$

Conversión a escala de grises

- Imagen con el "equivalente" en grises o la "luminancia" Y.
- No hay una única forma
 - La más simple (pero mala) $Y = \frac{R+G+B}{3}$
 - La percepción de los canales no es la misma
 - Promedios ponderados

$$Y = w_R R + w_G G + w_B B$$

$w_R = 0.299$,	$w_G = 0.587$,	$w_B = 0.114$.
$w_R = 0.2125$,	$w_G = 0.7154$,	$w_B = 0.072$.

HSB (Hue, Saturation, Brightness)

Pt.	Color	R	G	В	H	S	V
S	Black	0.00	0.00	0.00		0.00	0.00
R	Red	1.00	0.00	0.00	0	1.00	1.00
Y	Yellow	1.00	1.00	0.00	1/6	1.00	1.00
G	Green	0.00	1.00	0.00	2/6	1.00	1.00
С	Cyan	0.00	1.00	1.00	3/6	1.00	1.00
в	Blue	0.00	0.00	1.00	4/6	1.00	1.00
\mathbf{M}	Magenta	1.00	0.00	1.00	5/6	1.00	1.00
\mathbf{W}	White	1.00	1.00	1.00		0.00	1.00
\mathbf{R}_{75}	$75\%~{\rm Red}$	0.75	0.00	0.00	0	1.00	0.75
\mathbf{R}_{50}	50% Red	0.50	0.00	0.00	0	1.00	0.50
\mathbf{R}_{25}	25% Red	0.25	0.00	0.00	0	1.00	0.25
Р	Pink	1.00	0.50	0.50	0	0.5	1.00

RGB/HSV Values

- RGB \leftrightarrow HSB (HSV, HSI)
- No lineal

CIE L*a*b*

- Basado en un conjunto de colores base (imaginarios) CIE XYZ creados en 1931.
- Uniformidad cercana a la percepción visual humana.
- La distancia Euclidea entre dos colores es similar a la diferencia percibida entre ellos.
- L* corresponde a la luminosidad, a* corresponde a la variación de tonosaturación en el eje verde-rojo, y b* en el eje azul-amarillo.

Evolución de la representación del color

- Primera generación: colores físicos
 - RGB, XYZ, ...
- Segunda generación: psicovisión
 - CIE Lab, Munsell, ...
- Tercera generación: apariencia espacial del color
 - CAM, Retinex, ACE, ...

[Image> Color > Retinex]

Pseudo-color

- Uso de un mapa de colores (LUT) para la visualización de imágenes monocromáticas.
 - Mejor discernimiento de colores.

Textura

- Concepto "alto nivel".
 - Suavidad, áspero, regularidad, patrón repetitivo, ...
- Análisis basado en descriptores o características (features).
 - Estructural
 - Estadístico
 - Espectral

- Elementos de textura (texels) repetitivos.
 - Texel: el elemento gráfico más pequeño que crea la impresión de una superficie texturada.

• Propiedades estadísticas homogéneas

Aplicaciones

- Clasificación: determinar el tipo (clase) a una nueva muestra
- Segmentación: partir en regiones de textura similar
- Síntesis: dada una muestra, generar otras de apariencia similar
- Recuperación de pose y estructura

Métricas estadísticas

Texture	Mean	Standard deviation	R (normalized)	Third moment	Uniformity	Entropy
Smooth	82.64	11.79	0.002	-0.105	0.026	5.434
Coarse	143.56	74.63	0.079	-0.151	0.005	7.783
Regular	99.72	33.73	0.017	0.750	0.013	6.674

- Los histogramas no tiene información de la posición de las intensidades, que es un aspecto clave para la textura.
- Matriz de co-ocurrencia

Métricas estadísticas

• Descriptores de la matriz de co-ocurrencia G

Normalized		Descriptor				
Co-occurrence Matrix	Max Probability	Correlation	Contrast	Uniformity	Homogenei	ty Entropy
$egin{array}{c} {f G}_1/n_1 \ {f G}_2/n_2 \ {f G}_3/n_3 \end{array}$	0.00006 0.01500 0.06860	-0.0005 0.9650 0.8798	10838 570 1356	0.00002 0.01230 0.00480	$0.0366 \\ 0.0824 \\ 0.2048$	15.75 6.43 13.58

- Basadas en la Transformada de Fourier o variantes como la DCT.
 - Ajustada para distinguir patrones repetitivos o periódicos.
 - Patrones globales.
- Con la TF se detectan:
 - Picos dominantes asociados a direcciones principales de textura.
 - Tamaño (frecuencia) de las repeticiones espaciales.
 - Eliminando (filtrando) esas componentes dominantes queda la información no periódica que puede describirse con métricas estadísticas.

• Representan la imagen a partir de la respuesta a un conjunto de filtros

Reconocimiento de Patrones / Aprendizaje Automático

Pattern Recognition / Machine Learning

Reconocimiento de patrones/Aprendizaje automático

Categorías de los sistemas de RP

partir de las

características.

estructura

cualitativa

paramétrico o no

Maps, ...

semi-supervisado

se conocen las etiquetas (clases) de algunos datos

supervisado

datos de entrenamiento con etiquetas (clases) o valores de salida correctos para predecir datos nuevos

- clasificación y regresión
- aprendizaje explícito
- evaluación directa
- predicción clase/valor
- paramétrico o no

Nearest Neighbor, Support Vector Machines (SVM), Decision Trees, Random Forest, Discriminant Analysis, Naive Bayes, Neural Networks, Linear Regression, SVR,

reinforcement learning

realimentación del resultado de la tarea: recompensa o penalización

- aproximación a IA
- definir estrategias ante eventos
- maximizar recompensa

Medidas de desempeño

acierto rechazo correcto falsa alarma (error I) desacierto (error II) TP: true positives, TN: true negatives, FP: false positives, FN: false negatives. login enfermedad

Accuracy (exactitud): ¿cuánto se acerca a los valores reales? Sensitivity/Recall (sensibilidad): ¿cuántos enfermos son correctamente detectados? Specificity (especifidad): ¿cuántos sanos no son seleccionados?

Precision (presición): ¿cuántos son los enfermos de los seleccionados?

False Positive Rate: ¿cuántos sanos son seleccionados?

F1 score: Media armónica entre TPR y PPV.

Receiver Operating Curve (ROC)

Pattern Recognition / Machine Learning

Pattern Recognition / Machine Learning

Referencias

- Digital Image Processing, An Algorithm Introduction to Java. Wilhelm Burger & Mark J. Burge. Springer, ISBN 978-1-84628-379-6
 - Las diapositivas usan material del libro disponible en http://www.imagingbook.com/
- Digital Image Processing, Gonzalez & Woods.
 - Las diapositivas usan material del libro http://www.imageprocessingplace.com/
- Szeliski, R. Computer Vision: Algorithms and Applications. Springer, 2010 (<u>http://szeliski.org/Book</u>)
- Bishop, C. Pattern Recognition and Machine Learning. Springer, 2006.