
Managing Technical Debt: An Industrial Case Study

Zadia Codabux, Byron Williams

Dept. of Computer Science and Engineering

Mississippi State University

Starkville, MS, USA

zc130@msstate.edu, williams@cse.msstate.edu

Abstract—Technical debt is the consequence of trade-offs made

during software development to ensure speedy releases. The

research community lacks rigorously evaluated guidelines to help

practitioners characterize, manage and prioritize debt. This

paper describes a study conducted with an industrial partner

during their implementation of Agile development practices for a

large software development division within the company. The

report contains our initial findings based on ethnographic

observations and semi-structured interviews. The goal is to

identify the best practices regarding managing technical debt so

that the researchers and the practitioners can further evaluate

these practices to extend their knowledge of the technical debt

metaphor. We determined that the developers considered their

own taxonomy of technical debt based on the type of work they

were assigned and their personal understanding of the term.

Despite management’s high-level categories, the developers

mostly considered design debt, testing debt and defect debt. In

addition to developers having their own taxonomy, assigning

dedicated teams for technical debt reduction and allowing other

teams about 20% of time per sprint for debt reduction are good

initiatives towards lowering technical debt. While technical debt

has become a well-regarded concept in the Agile community,

further empirical evaluation is needed to assess how to properly

apply the concept for various development organizations.

Index Terms—technical debt, Agile methods, industrial case

study, Scrum, semi-structure interviews

I. INTRODUCTION

Software development is prone to failure. One of the root

causes of this failure is the use of sequential design processes

for building complex software intensive systems. Sequential

processes work when the requirements are defined upfront and

when the remaining software development activities are

instituted based on the initial requirements (e.g., design,

implementation, testing). Traditional software development

processes, such as the waterfall model, are not the most

appropriate when business needs and technology change

rapidly. Many development groups often deviate from this

normative waterfall process. Their focus would shift to the

product and the customer needs rather than the plan. This shift

gave rise to Agile software development. Williams and

Cockburn [13] state that Agile development is “about feedback

and change,” and that Agile methodologies are developed to

“embrace, rather than reject, higher rates of change”.

One of the primary benefits of Agile software development

is the quick release of software functionality. The focus on

functionality often lessens the focus on design, good

programming practice, test coverage, etc. By focusing on

functionality, an obligation arises for the developer to go back

and complete these items neglected for the sake of

functionality. This phenomenon is known as technical debt.

While the concept of technical debt has been existent for

some time, it has been the adoption of Agile development

methods that has given the term its visibility. Agile methods

started to grow in popularity in 2001 following the signing of

the Agile Manifesto. Since then, technical debt has become an

increasingly important concept in software engineering

research. Seaman et al. gave several examples of the

consequences of not “paying off” technical debt such as large

cost overruns, quality issues, inability to add new features

without disrupting existing ones, and the premature loss of a

system (i.e., the software becoming unusable before its

expected lifetime is over) [9].

Time constraints often prohibit all software development

tasks from being accomplished; therefore, the tasks must be

prioritized. The technical debt must also be accounted for in

deciding upon priorities. It is important to understand that it is

not always a bad practice to take on debt. Technical debt is

acceptable when the priority is getting new functionality up and

running, but it is managing the debt that has presented

problems to the practitioner community.

The overall goal of our research is to study Agile

development, particularly technical debt in an industrial

context. The objective is to determine the best practices and

known challenges with Agile adoption and the management of

technical debt. To achieve this, we conducted 3 on-site process

evaluations with our industrial partner since their initial

adoption of the Agile methods. For this paper, our focus is on

technical debt. Despite the increasing interest in the technical

debt metaphor, procedural knowledge about the topic is mostly

described in blogs and there is a limited amount of quality

research to evaluate claims and further understanding. This

study highlights the insights of software practitioners on

technical debt. The aim is to contribute to the understanding of

the technical debt metaphor and its use in software

development organizations.

Section II highlights background and related work. Section

III focuses on the research methodology adopted for this work.

Section IV presents the results. Section V provides insights on

the results and discusses the limitations of this study. Section

VI concludes and outlines the future work.

978-1-4673-6443-0/13/$31.00 c© 2013 IEEE MTD 2013, San Francisco, CA, USA8

II. RELATED WORK

This section presents related research and documented best

practices from practitioner sources on technical debt

management. Particularly, we report on research and relevant

posts identifying the types of debt, addressing the decision to

accept debt, estimating the financial impact of debt, and

prioritizing technical debts. In addition, two empirical studies

evaluating technical debt are presented.

Generally, before determining whether to accept technical

debt, one must first gather appropriate information.

Doing so requires the practitioner to know the different types

of technical debt that can be accumulated.

A. Technical Debt Taxonomy

Several attempts to define a taxonomy of technical debt

have been made. McConnell classified technical debt as

intentional and unintentional. Unintentional debt is described as

debt incurred inadvertently due to low quality work (e.g., a

junior programmer writing bad code that does not conform to

recognized coding standards). Intentional debt is described as

debt incurred deliberately such as postponing proper

reconciliation of databases by writing some glue code to

synchronize them. Another example of intentional debt is the

planned release of software that does not match the coding

standards with the expressed notion that it will be cleaned up

later. The intentional debt category can be further viewed as

either short-term or long-term debt [6].

Fowler defines a technical debt quadrant which consists of

2 dimensions: reckless/prudent and deliberate/inadvertent (see

Fig. 1) [4]. The types of technical debt as indicated by Fowler

are as follows:

 Reckless and deliberate debt

 Prudent and deliberate debt

 Reckless and inadvertent debt

 Prudent and inadvertent debt

Fig. 1. Technical Debt Quadrant [4]

One can also classify technical debt based on its association

with traditional lifecycle phases. Documentation debt, design

debt, coding debt, testing debt, and defect debt are not

exclusive to, but all are related to the phases of a traditional

waterfall lifecycle. Documentation debt is incurred when

documentation is not up-to-date or adequate. Design debt–

which has also been categorized with code debt –is debt that is

associated with the source code (e.g., modularity violations,

code smells, and grime). Testing debt is incurred when tests are

not implemented or executed despite being planned. Defect

debt is incurred when known defects are not fixed [10]. These

taxonomies require more thorough investigation into how they

are used in practice and have not been standardized.

B. Technical Debt Cost Estimation

The cost of technical debt has been modeled after the

concepts of principal and interest borrowed from the finance

discipline. Principal, in this case, is the cost of eliminating the

debt (i.e., performing the technical work necessary to fix) at the

present moment. Interest is the additional cost of not

eliminating the debt now; therefore, the interest will be paid

when the debt is addressed.

Ward Cunningham also describes the technical debt

metaphor in financial terms, introducing the concept of interest

probability as the probability that the debt will make other tasks

more expensive over time if it is not paid [1].

Nugroho et al. defines technical debt as the cost to improve

software quality to an ideal level. Interest is defined as the

additional cost of software maintenance for not achieving that

ideal quality level. He calculated debt based on Repair Effort

(RE), or the repair cost to achieve ideal quality. He further

surmised that RE is dependent upon Rework Fraction (RF),

Rebuild Value (RV) and Refactoring Adjustment (RA). The

interest is estimated as the Maintenance Effort (ME), which is

dependent on the Maintenance Factor (MF), Quality Factor

(QF) and RV [8].

S. Chin et al. break down the cost of technical debt into

Principal, Recurring Interest (RI) and Compounding Interest

(CI). As mentioned above, principal is the cost of completing

right now. RI, which is more specific to the organization, is the

cost incurred by holding onto the debt. RI considers factors

such as the cost of resolving customer defects. CI is defined as

the additional technical debt that accumulates over time due to

non-repayment [12].

Curtis et al. presented an approach for calculating technical

debt’s principal by assessing coding violations with regards to

robustness, performance efficiency, security, transferability and

changeability. The code violations are classified as low,

medium, and high severity violations. The principal is

calculated as a function of the number of should-fix violations

in the software, the hours to fix each violation, and the cost of

labor [2].

There is no generally accepted scheme or standard for

calculating principal, and interest as this research is still in its

early stages.

C. Decision Making using Technical Debt

The different options concerning whether to pay off debt or

perform enhancements and other maintenance activities to

correct bugs are presented below.

Seaman et al. proposed 4 distinct decision–making

approaches for prioritizing technical debt. In the Cost Benefit

Analysis approach, the principal, interest, and interest

probability of each technical debt item is assigned ordinal

9

scales of measurements such as low, medium and high. This

approach supports coarse-grained preliminary decisions on

debt action. For example, a company may decide to address

75% of their debt with high interest, 25% of their debt with

medium interest and defer the ones with low interest. The

Analytic Hierarchy Process (AHP) assigns weights and scales

to different criteria that are used to measure technical debt.

Then a series of pair-wise comparisons are performed between

the alternatives to get a prioritized ranking of the technical debt

items. Based on this technique, the items on top of the list

should be dealt with first. The Portfolio approach targets

maximization of the return of investment value and investment

risk minimization to decide the order in which technical debt is

addressed. The Options approach is analogous to investing in

refactoring the debt item with the long-term objective of

facilitating maintenance in the future, thereby saving money

[9].

Snipes et al. describe the decision to fix or defer debt as

dependent upon the amount of technical debt that has been

accumulated as defects. They identified factors that influence

the decision, which include:

 Severity

 Existence of a workaround

 Urgency of the fix required by a customer

 Effort to implement the fix

 Risk of the proposed fix

 Scope of testing required.

The factors are listed in decreasing order of importance

with severity being the most influential factor [11].

The above techniques should be empirically evaluated to

assess their validity and to gain better insights on how they can

be improved. Further examination to determine how

practitioners consider decision-making is also warranted. This

study attempts to assess decision-making from a practitioner’s

standpoint.

We have found only two empirical studies on technical debt

carried out in an industrial context [3][5]. Klinger et al.

describe an industrial case study carried out at IBM. The goal

was to find out how technical debt is analogous to financial

leverage (the extent to which borrowed money is being used in

a business or investment). The goal is to give the organization

the flexibility to incur debt intentionally and to pursue options

that would not be possible otherwise. The researchers

interviewed four technical architects to examine how the

decisions to incur debt were taken and the extent to which the

debt provided leverage. The findings of the study pointed out

the organization’s failure to assess the impact of intentionally

incurring debt on individual projects. Decisions regarding

technical debt were rarely quantified, and organizational gaps

among the business, operational, and technical stakeholders

contribute to incurring debts [5].

Lim et al. interviewed 35 software practitioners to obtain

their insights on how they characterize, perceive and

understand technical debt as well as the context in which it

occurs. The study showed debt intentionally being incurred for

some short-term benefits such as meeting budgets and delivery

constraints while accumulating long-term problems such as

decreased software quality. The findings recommend increased

communication about technical debt and making it more visible

to all the stakeholders [3].

Our study adds to this technical debt literature through our

observation of a larger pool of developers (~250) during their

end and start of PSI, retrospective meetings and sprint

planning. In addition to defining and characterizing technical

debt, we are also examining how technical debt is incurred and

what current practices are used for prioritizing debt.

III. METHODOLOGY

This section describes our research methodology. We

present the research goal, the questions, and the data collection

methods, and we describe the environment in which the study

was conducted.

Our overall goal was to conduct an industrial case study to

gain software development team members’ insights on Agile

software adoption and how technical debt affects the

development process. This study reports the initial findings of

the research conducted in 3 separate 3-day visits to our

industrial partner from April-November 2012.

The following questions were posed upon commencement

of our research. A brief description of our rationale is provided

after each question:

RQ1: How can technical debt be characterized to

distinguish the impacts of certain types of debt?

The rationale for this question lies in understanding the

distinction between the different types of debt. Our goal is to

determine how to handle various types of debts based on their

anticipated consequences. A technical debt taxonomy will

assist practitioners to understand how to evaluate different

types of debt.

RQ2: What are the consequences of technical debt on the

development process?

We want to understand the impact of long-term and short-

term debt management decisions. Do managers consider the

more immediate implications of debt (e.g., subsequent

sprints/iterations) and longer term implications (e.g., releases,

new software versions)?

RQ3: How is technical debt addressed?

We are interested in understanding the different techniques

and strategies practitioners use to reduce technical debt.

RQ4: How can technical debt be prioritized so that the

most critical ones are addressed first?

Based on the results of the previous questions, RQ4 focuses

on determining which types of debt are more critical than

others. Answers should inform a prioritization scheme to help

decide which debts should be addressed first. Practitioners can

then better allocate limited resources towards reducing

technical debt.

Our study was carried out with an industrial partner, a

leading global provider of networking and communications

equipment. One software development division of the

organization primarily focused on adopting Agile methods,

particularly Scrum and established 28 scrum teams. The Agile

process was instituted approximately 20 weeks prior to our

10

initial visit. Prior to then, only 2 teams within the division had

any formal experience with Agile at the organization.

A. Study Design

We used participant observation, semi-structured

interviews, and a questionnaire to gather data for this study.

The study consisted of 3 visits to the partner facility within a

10-month period. Our participant observations took the “fly-on-

the-wall” approach to observing meetings related to Agile

implementation including sprint planning, review,

retrospective, and the larger Scrum of Scrum meetings within

the entire division. The semi-structured interviews were used

to assess the practitioner’s (both management and technical)

viewpoints of technical debt and to understand the terminology

used. The interviews were of both individual developers and

Scrum teams (6-9 team members). We used a questionnaire to

obtain background information (e.g., work experience) on each

interview participant. Additional details are elaborated below.

B. Data Collection

This first phase of the study was carried out over a 3-day

period to investigate the adoption of Agile methods at the

organization. We met with members of the Agile adoption

team to assess their approach to incorporating Agile throughout

the 250+ member development division under review (of about

1800 employees). The group adopted Scrum, and the 3-day

visit included the Scrum of Scrums meeting that involved all

Scrum teams. Our visit coincided with their 2nd 10-week

Potentially Shippable Increment (PSI) meeting. The PSI

meeting takes place every 10 weeks and includes a 10-week

review, retrospective, and planning meeting (for the next 10-

week PSI) that the 28 Scrum teams are involved in. PSIs

consist of five 2-week sprints. Our goal was to evaluate the

organization’s Agile adoption during its earliest stages. We

also wanted to obtain informal feedback to assess the reaction

of the engineers (i.e., Agile team members) on the Agile

adoption.

The second phase of the study took place over 3 days to

observe the end of an iteration PSI 3-2 (i.e., the 3rd PSI

meeting and 2nd 2-week sprint) meeting and the start of the

following iteration PSI 3-3 meeting. This visit included 10

semi-structured 30-minute interviews with both engineers (e.g.,

developers, testers, Scrum masters etc.) and product owners

(i.e., managers). The first set of interviews was conducted to

assess the engineers’ insights on the Agile adoption and their

views on technical debt. The interview questions were

threefold. The first set was demographic, the second set

focused on their understanding of how Scrum impacted their

individual projects and their perception of the Agile adoption.

The third set was some general questions on managing

technical debt. By analyzing the results of these interviews, we

were able to refine our interview strategy and questions list for

our third visit.

The main focus of the third visit was to carry out semi-

structured interviews lasting 30 minutes with a central focus on

technical debt. The target audience of the interviews was

broadened to include hardware engineers, which collaborate

with the software engineers. One aspect of this assessment is to

determine the impact of the Agile adoption on the hardware

team and whether technical debt is a concept hardware teams

are familiar with. In addition, the pre-demographic questions

from the second visit were sent in advance as an online

questionnaire to make optimal use of the time. All but one

participant responded to the online questionnaire.

Participation for the interviews was voluntary. The

potential participants included all engineers within the division.

Our industrial partner’s management requested volunteers to

give their feedback and many obliged. The interviews were

conducted over a 2-day period from 9-5pm. During each

interview, the first author took notes while the second author

asked the questions.

As the focus of this work is on the technical debt aspect, we

will focus only on the insights gained related to technical debt

and not Agile adoption. The high-level research questions 1-4

were decomposed into the following interview questions:

Section 1: Technical debt

1. How would you define/describe technical debt?

2. How important is lowering technical debt in the

organization? Why? Do you think your team does a

good job addressing technical debt?

Section 2: Categories

1. Debts at the organization are typically classified as

automation debt and infrastructure debt. How would

you classify the debts that you address?

Section 3: Cost Estimation

1. Does your team incur debt intentionally? If yes, why?

What are the benefits of doing so?

2. Do you record how much time you spend reducing

debt?

3. If yes, how much time do you spend reducing debt?

Section 4: Prioritize/decision making

1. What type of debt is most difficult to address?

2. What methodology do you use to track debt?

3. How do you prioritize technical debt?

4. What are the impacts of technical debt for (1) the team

(2) the customers (3) future modifications of the

system?

5. How much time can a debt be on hold in the backlog?

1) Demographic data on participants

The participants first completed the online demographic

survey prior to the interview. The demographic questions

served to assess factors which might influence the answer of

the engineers, namely work experience (within the organization

and outside of the organization), educational background (i.e.,

computer science / software engineering, etc.) and amount of

Agile training received. The questions from the online survey

were as follows:

1. What system does your team work on?

2. What is your role in on the team?

3. What are your responsibilities?

4. How many people are on your team?

5. How many years of work experience do you have? (in

and outside of the company)

11

6. How many years of Agile work experience do you

have?

7. What academic degree do you have?

8. Are team members geographically distributed?

9. How often do members of the development team

interact with stakeholders?

10. Did you receive any formal Agile training? Duration

of training?

The 28 participants included product owners, Scrum

masters and team members (i.e., developers, testers). The

distribution of the team members can be found in Fig. 2.

Fig. 2. Roles of participants

The tasks performed by the team members include coding,

test automation, design, debugging, and other software

development planning tasks (e.g., configuration management).

The work experience of the team members ranges from 6

months to 30 years while the experiences in an Agile

environment range from 4 months to 3 years. Only one

participant received formal external Agile training while the

others took part in an in-house training conducted by the

organization’s externally trained engineers for a maximum of 2

days.

C. Coding Scheme

Prior to the interviews, the questions were categorized

according to themes. This process was the foundation for our

coding scheme. Coding involves attaching labels or tags to

pieces of text that are relevant to the different aspects of

technical debt that are being researched. The process involves

listening to the interview recordings, transcribing it and

assigning these pre-identified codes to relevant pieces of text.

TABLE I. CODING SCHEME

Codes Description

Definition Words/phrases used to define/describe
technical debt

Categories Different types of technical debt

Causes and Impact Causes - Motivations behind incurring

technical debt
Impact - Consequences of technical

debt

Prioritization Techniques/process to prioritize

technical debt

Management Tracking/managing/handling technical

debt

The above categories were identified with the aim of

providing insights and answers to the high level research

questions. TABLE I. defines the coding scheme.

IV. RESULTS

This section summarizes the findings of the research with a

predominant focus on interview results. The results are grouped

according to the codes defined in the previous section.

A. Definition

Division management defines technical debt as

infrastructure and automation debt. Infrastructure debt is the

work that improves the team’s process and ability to produce a

quality product. Examples of ways to address infrastructure

debt include refactoring, repackaging, and developing unit

tests. Automation debt is defined as the work involved in

automating tests of previously developed functionality to

support continuous integration and faster development cycles.

We wanted to assess how the training impacted the

participants’ understanding of technical debt. Could they define

it consistently? When asked to define what they understand by

technical debt, most of the participants were familiar with the

term.

One example definition:

 “People make bad decisions, not necessarily wrong but

it would have been better if done in a cohesive way.

Accumulation of technical debt occurs because there is

no disciplined environment and speed – we want to

respond to the customer faster, so we pull the technical

debt credit card out and we will fix it later”

By “no disciplined environment”, the participant explained

that the development environment does not have a lot of rules.

Techniques considered best practices by most (e.g., coding /

design standards) are not strictly enforced. Speed refers to their

need to get features released quickly.

Other examples include (grammatical edits in brackets):

 “It is a conscious decision to get things out quickly and

plan to come back and address [any issues that arise]”

 “To do something in a hurry – not [necessarily] the

right way.”

 [When we] create bad software to get it out of the door

and make money. Then we have to go back and fix it”

 “Our tests not [being] automated”

 “Something that will hurt you later. It is better to pay

upfront. It is the lack of refactoring or anything that

can be done more efficiently or anything that makes

you slow down.”

The majority of participants’ responses indicate that

technical debt is influenced by lack of time needed to properly

design and code new features.

B. Categories

This code summarizes the types of debt encountered by the

participants. Some example categories include:

 “Architecture, safety and consistency, packaging”

12

The practitioner described an example of safety and

consistency debt as not initializing a variable or eliminating all

compiler warnings.

 “Unit testing”

This refers to the amount code that has not been unit tested

because the code is only modified in rare cases.

 “Automation debt, fix defects and bugs”

To ‘fix defects and bugs’ refers to all defect related debt.

Several participants used this categorization. Automation debt

includes test automation, which is one priority of the division

to ease Agile adoption.

 “Test debt, bug debt”

 “Code design debt”

The participant mentioned that this type of debt was

indicated by “plenty of code smells in the code base.” These

debts include creating unit tests and refactoring poor design

choices.

When asked which type of debt is most difficult to handle,

most participants mentioned architecture debt (i.e., debt related

to refactoring or restructuring the system to encompass ‘good

design’ principles) for the following reasons:

 “Changing system architecture requires lots of

cooperation”

“Lots of cooperation” requires involving engineers from

other teams in order to achieve the refactoring. The issues that

require more cooperation are usually more difficult to address.

Another participant described their system as not being

flexible enough when a particular feature impacts other features

(i.e., when changing a portion of code requires touching other

codes managed by different teams).

The responses from the interview indicate that the

participants categorize technical debt mostly according to

design, testing and defect debts.

C. Consequences

The motivations for incurring technical debt vary. One of

the participants mentioned that the engineers do not know the

“balance on the credit card and [keep] on charging”.

Management will decide when enough debt has been incurred,

and this management decision is greatly influenced by

customer needs. There are cases where software is released

with known defects because of the fear of “breaking other

things” while fixing a defect, which is a common occurrence in

the software industry. Other more general responses for

incurring technical debt intentionally include resource

constraints such as a limited timeframe and the unavailability

of developers to continue working on the feature.

Concerning the impact of technical debt, one participant

mentioned, “if [the debt is] not solved for two years, it kills a

project”. He further elaborated that it is easier to re-write the

software from scratch rather than go back and address the

amount of technical debt that exists from a coding perspective.

We could not conclude whether any projects were actually

“killed” due to technical debt.

D. Prioritization

Customer requests are the predominant factor in

determining if there are available resources to address technical

debt. The product owner prioritizes technical debt based on

customer needs. The second main factor of influence includes

the severity of the debt, where in several cases, development

work cannot continue until the debt is resolved. The debt is

considered a blocking issue. The number of participants who

quoted customers as the main factor to consider for

prioritization was roughly twice as many as those who

considered severity as the main factor for prioritization.

E. Management

There are different ways to handle infrastructure debt at the

organization according to the participants: refactoring,

reengineering and repackaging. Refactoring is “tidying up” the

code, thereby increasing its maintainability without affecting its

behavior. Reengineering is “shred it and re-do it”, eliminating

the code to rewrite from it scratch. Repackaging includes

grouping “cohesive pieces that belong together with

manageable dependencies. The aim is to simplify and architect

the code so that we have only one copy and for consistency

purpose, everybody uses that copy.”

There are a few teams within this division that are solely

dedicated to reducing technical debt. The technical debt

reduction teams describe their work as “putting out little fires

before it spread and at the same time, there are new fires in

different areas.” This analogy illustrates the fact that technical

debt reduction is ongoing work. These teams address all types

of infrastructure and automation debt.

In addition to the technical debt reduction teams, other

teams also contribute to the reduction of technical debt, mostly

by automating manual tests and fixing defects in their own

code. However, they also pointed out that while they

understand the benefits of lowering debt, some debts “stay in

the backlog forever” if not a priority because the focus is on

new features.

V. DISCUSSION

This section provides some insight on Agile adoption.

Answers to the research questions identified earlier in the study

are evaluated based on the results from the previous section.

In our first and second visits, we saw that shift to a more

agile software development methodology was important

because the previous methodology (more closely related to

traditional waterfall) was no longer working. Some of the

benefits of the switch based on informal discussion with

engineers is that Agile is more focused, process-minded and the

teams are aware of deadlines far in advance. Many of the

participants interviewed highlighted increased visibility when

referring to project management deadlines as to why they are

pleased with the process. They know exactly what the priorities

are for their current 2-week iteration and 10-week PSI. They

analogize the shift from waterfall to Agile as “large irregular

successes” to “small regular successes” and feel there is an

increase in productivity now compared to the pre-Agile

process. Management can know see what features are currently

13

being developed, and the release dates are more consistent. The

developers get feedback on their work on a daily basis during

the daily stand-up (daily Scrum) meetings, and they can request

immediate help when problems arise. As they now work in

multiple independent groups, they don’t have to wait on others

to do their work. Communication and collaboration has

instilled a sharing culture among the teams as they are aware

that the work accomplished by the other teams and know who

to go to for help.

A. RQ1: How can technical debt be characterized to

distinguish the impacts of certain types of debt?

With reference to Cunningham and Muller’s description of

technical debt [1][7], we noticed that the “definitions” given by

the participants encompass more than speedy development,

inability to manage maintenance costs, and handling software

evolution.

According to the different taxonomies of technical debt

presented in Section II, the participants described both

intentional and unintentional debts. The engineers

acknowledged that in order to deliver features to adhere to the

10 week PSI cycle, they had to compromise on some standard

practices (e.g., complete test coverage, full unit testing,

following known principles of good design) for the sake of the

sprint schedule.

Several engineers recognized that the most difficult type of

debt to reduce is architecture debt. Architecture debt can be

described as debt incurred due to poor design decisions that

affect the software structure and the interaction between

objects.

As mentioned earlier, division management defines two

types of debt for their process: infrastructure and automation

debt. The participants described subcategories of these debts. It

is difficult to state that there was a consensus among the

different subcategories of debts addressed at the organization.

This can be a potential problem when technical debt has to be

lowered as management won’t be able to distinguish between

different types of debt and decide which one is more difficult to

address than the other.

B. RQ2: What are the consequences of technical debt on the

development process?

Technical debt was incurred to complete objectives and

satisfy the customer. Developers feared acquiring more work if

resolving some technical debts meant having to touch other

related areas as a consequence of addressing the debt.

Addressing the debt could thereby break other features and

require more work from the developers.

There was only minimal insight obtained regarding the

longer-term impact of technical debt. We feel that this is

mostly due to Agile being newly introduced, and there is only

limited observation of the impact of technical debts in an Agile

context. Some practitioners feared that technical debt over the

long-term has the potential to seriously hinder a project.

Despite the potential serious consequences of long-term

technical debt, the practitioners are willing to take on debt to

satisfy their short-term requirements.

Practitioners at our industrial partner are aware that

incurring technical debt in the short term will help them

towards achieving the objective of getting features released.

However, they are unable to predict what would be the long-

term impact of technical debt on the project. Based on these

findings, we feel that the research community should focus on

evaluating the risks of accepting certain types of debts. Such

tools would be valuable in the software industry.

C. RQ3: How is technical debt addressed?

The participants mentioned three techniques to address

architecture / design debt namely refactoring, repackaging and

reengineering. While refactoring is a common technique

mentioned in literature, reengineering and repackaging are less

common.

The Agile Enterprise Team at our partner organization

established several scrum teams whose only focus is to address

technical debt (e.g., testing / test automation teams, defect and

infrastructure teams). However, there were several participants

who mentioned that some debts remain in the backlog for

extended periods if they are not impacting the development of

new features. The priority is to develop new feature and not to

optimize existing ones.

Despite the fact that the organization is just beginning its

Agile adoption, it has implemented some practices which seem

to be beneficial to the organization. While the primary focus is

producing new features, dedicated teams are assigned to reduce

technical debt, and a majority of teams spend roughly 20%

time in each PSI towards debt reduction. Such initiatives could

be regarded as a best practice and adopted by other software

development companies.

D. RQ4: How can technical debt be prioritized so that the

most critical ones are addressed first?

In deciding which technical debts should be addressed first,

none of the formal techniques described by Seaman et al. were

used [9]. However, there was some coherence between the

factors of influence mentioned by Snipes et al. and the way

decisions to prioritize debt were made at the organization [11].

Severity and customer impact were considered important when

deciding development priorities. Participants, however, did not

mention any assessments based on expected effort to address

the debt or any risks associated with a fix or the scope of

testing.

In order to minimize the negative impact of technical debt,

the most critical debts should be addressed first. It is important

that a coherent mechanism be put in place to determine which

debts are most critical based on its long-term impact. Currently,

the organization is determining which debts are most critical

based on whether the issue is “customer facing” or whether it

prevents other work from being completed. The participants

indicated that they knew how to handle debt prioritization

based on the customer that is being affected. A process to

determine factors influencing technical debt decisions should

be agreed upon as it will become more difficult when the

engineers have cases of technical debt that they think are

equally important.

14

E. Limitations

There are some limitations to this study. First, the study

was conducted with one industrial partner whose main focus

was development of software for communication devices.

Engineers working on other types of software systems were not

considered. Second, the insights of the engineers were analyzed

and interpreted by the researcher who may be biased by her

perspective.

VI. CONCLUSIONS AND FUTURE WORK

This study presents the insights and results of interviews

carried out with engineers in one software development

division of a mid-sized company. The goal was to understand

how technical debt is characterized, addressed and prioritized

as well as how each factor influences technical debt decisions.

The industrial division under study recently (within a few

months of the initial visit) adopted Agile. The insights provided

are not from a mature Agile development group but a group

that has had success quickly adopting and implementing Agile

for around 250 developers and 28 newly formed Scrum teams.

The insights relating to technical debt should be beneficial to

other companies interested in adopting Agile practices. The

large sample size of the group involved in this study allowed us

to interview multiple Agile roles and provided actual

practitioner insights which could be shared with the software

engineering community.

The interview participants came up with several definitions

and categories of technical debt based on the type of work they

are responsible for. There was lack of consensus among the

engineers related to technical debt terminology, which may

come with time as the process matures. Other insights include:

 Further work is needed in order to evaluate the risks of

taking on certain types of debt, both in the short term

and long term.

 One effective debt management strategy includes

having dedicated teams whose aim is debt reduction

and also each team use about 20% of the PSI to focus

on debt reduction.

 While prioritization of technical debt is greatly

influenced by its impact on the customer and the

severity of the debt, further study is needed to be able

to determine which debts are more critical in the long

term.

We would like to replicate this study at our industrial

partner as the process matures and replicate with other

industrial partners. Ultimately, our goal is to use these

industrial findings with other empirical investigations of

technical debt to develop a scheme to characterize various

types of debt, evaluate the impact of these debts in certain

contexts, and use this information to prioritize and plan

technical debt reduction.

ACKNOWLEDGMENT

The authors would like to thank our industrial partner and

their employees for their eager participation in this study.

REFERENCES

[1] W. Cunningham, "The Wycash Portfolio Management System,"

Addendum to the proceedings on Object-oriented programming systems,

languages, and applications (Addendum), Vancouver, British Columbia,
Canada, 1992, ACM, pp. 29-30.

[2] B. Curtis, J. Sappidi, and A. Szynkarski, "Estimating the Size, Cost, and
Types of Technical Debt", Managing Technical Debt (MTD), 2012

Third International Workshop on, 2012, pp. 49-53.

[3] E. Lim, A Balancing Act: What Software Practitioners Have to Say
About Technical Debt, N. Taksande and C. Seaman, Editors. 2012. p.

22-27.

[4] M. Fowler, Technicaldebtquadrant, 2009.

[5] T. Klinger, et al., "An Enterprise Perspective on Technical Debt,"

Proceedings of the 2nd Workshop on Managing Technical Debt,
Waikiki, Honolulu, HI, USA, 2011, ACM, pp. 35-38.

[6] S. Mcconnell, 10x Software Development, 2007.

[7] M. Muller, Interview with Ipek Ozkaya (Sei) on Technical Debt, Agile

and Architecture, 2012.

[8] A. Nugroho, J. Visser, and T. Kuipers, "An Empirical Model of

Technical Debt and Interest," Proceedings of the 2nd Workshop on

Managing Technical Debt, Waikiki, Honolulu, HI, USA, 2011, ACM,
pp. 1-8.

[9] C. Seaman, et al., "Using Technical Debt Data in Decision Making:
Potential Decision Approaches", Managing Technical Debt (MTD),

2012 Third International Workshop on, 2012, pp. 45-48.

[10] C. Seaman and N. Zazworka. Identifying and Managing Technical Debt.
2011; Available from: http://www.slideshare.net/zazworka/identifying-

and-managing-technical-debt.

[11] W. Snipes, et al., "Defining the Decision Factors for Managing Defects:

A Technical Debt Perspective", Managing Technical Debt (MTD), 2012

Third International Workshop on, 2012, pp. 54-60.

[12] E. H. Stephen Chin, Walter Bodwell, Israel Gat, "The Economics of

Technical Debt ", Cutter IT Journal, vol. 23, no. 10, 2010.

[13] L. Williams and A. Cockburn, "Agile Software Development: It's About

Feedback and Change", Computer, vol. 36, no. 6, 2003, pp. 39-43.

15

