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Abstract 

The telecommunications management network (TMN) architecture defines a framework for the management of telecommunications networks and services. It is based on a set of TMN standards developed by the International Telecommunications Union (ITU-T), and is finding increased interest in the telecommunications industry, where rapid development of services and open architectures are in demand. Open systems interconnection (OSI) agent/managers as defined by the OSI systems management standards play a major role in the TMN architecture. However, the complexity of these standards make the implementation of agent/managers and thus TMN systems a challenging task; methodologies and tools to ease the task of building agent/managers are needed. This article discusses the key difficulties in building OSI agent/managers and presents an architecture and a toolkit that can overcome them. The toolkit automates the generation of code that conforms to TMN and OSI standards, allowing the implementor to focus on the implementation of agent and manager specific components using the facilities provided by the toolkit.

Implementing OSI Agent/Managers for TMN 

M. Feridun, L. Heusler and R. Nielsen, IBM Zurich Research Laboratory 

The Telecommunications management network (TMN) is a framework for the management of telecommunication networks and the services provided on those networks. The TMN is based on a set of completed or in-progress standards developed by the International Telecommunication Union -- Telecommunication Standards Sector (ITU-T). These standards define elements and interfaces of a network dedicated to the management of telecommunication networks and services. A survey of the TMN architecture can be found in [1], and the current status of the standards and related activities in [2]. 

The TMN standards have taken longer to develop than expected, and consequently, TMN implementations have not been widespread in the telecommunications industry. However, with the completion of major parts of the standards, the increased competitiveness in the telecommunications markets for provision of services, and the push for open architectures, there are encouraging signs that interest in the telecommunications industry in the implementation and deployment of TMN is increasing. 

The open systems interconnection (OSI) systems management framework [3] is an essential component of the TMN architecture. Each TMN function block can play the role of an OSI manager, an OSI agent, or both. Given the importance of OSI systems management within the TMN architecture, methodologies and tools for the implementation of OSI managers and agents are much in demand. 

This article focuses on the implementation of OSI agents and combined agent/managers for TMN. In the first section, we discuss the issues in the implementation of OSI agent/managers for TMN. The next section describes an OSI agent/manager architecture and a toolkit for its implementation, and includes a small example of how the toolkit can be used to generate an OSI agent/manager. In the final section, we discuss additional features desirable for OSI agent/manager toolkits. 

Implementation Issues 
We refer the reader to [4] for a detailed survey of OSI systems management standards. Implementing OSI agents or agent/managers for TMN is generally perceived as difficult. The capabilities provided are powerful and cover a broad spectrum, but the actual implementation is challenging, to say the least. In this section, we highlight some of the difficulties within the context of building OSI agents and agent/managers for TMN. 

Implementation of Standard Behavior 
The OSI systems management standards define, among others, the generic behavior of an OSI agent. The definitions are not consolidated into a single document, but are typically contained in several documents that make up the standard. For example, if we consider the specification of the steps involved in processing a Common Management Information Protocol (CMIP) [5] create, we find that: 

* The arguments to the create service request, the message format, and the set of possible responses are documented in the Common Management Information Service (CMIS) [6] and CMIP standards. 
* The generic behavior expected of any instance processing a create request is documented in the Management Information Model (MIM) [7] and Guidelines for the Definition of Managed Objects (GDMO) [8] standards. 
* The behavior of the particular instance during create is specified in a GDMO document that may or may not be standardized. 

Once we master the art of finding the relevant specifications, we would then proceed with the actual implementation of the standardized, generic behavior. As an example, let's look at the implementation of a create request, specifically at some of the steps required to specify or initialize the attributes of an instance during the creation of the instance: 

* Attributes are defined as part of a package. Attributes of a mandatory package must be present in all instances of that class. Attributes of a conditional package must be present if conditions attached to the package are true. In some cases, a conditional package may be dynamic, that is, the package is present only if the packages attribute of the class top includes the package. An agent implementation therefore has to check the packages attribute for any conditional, dynamic packages before determining the complete set of attributes actually present in the instance being created. 
* Once we determine which attributes are present, we then assign values to the attributes. The six ways to assign values to attributes are specified in MIM. For example, an attribute may have a mandatory initial value. If it does, and if the create request also defines a value, and this value does not match the mandatory value, then the create request is rejected. Attribute values may be copied from a referenced object if one is specified. The value of an attribute may be collected directly from a resource. 

Although the above is only a small portion of the steps specified for the creation of an instance, they illustrate the intricacies of implementing an agent. 

Access to and from Resources 
Because each managed object instance can represent a resource, there is a requirement for communication between managed object instances in an OSI agent and the resources they represent. Examples of resources include a database of customer data, or a telecommunication switch accessible using Simple Network Management Protocol (SNMP) over a Transmission Control Protocol/Internet Protocol (TCP/IP) network or using a man-machine language (MML) over a modem or X.25 connection. The communication can be initiated either by the agent (that is, managed object instances) or by the managed resources. For example, if an OSI manager creates a managed object instance representing a connection, the instance may send appropriate requests to a switch to initiate the connection. Likewise, if a new interface card is added to a switch, the switch may send a create request to the agent for the creation of the corresponding managed object instance. In such bi-directional communication, a number of requirements may arise: 

* The agent must provide a set of operations to allow the resources to perform CMIP operations, such as the creation of managed object instances. 
* CMIP operations have to be translated to the appropriate set of resource commands. The more CMIP-like the resource, the easier it will be to define this mapping. 
* The data representation between the resource and the agent can be different and may require translation in both directions. 
* The error responses can differ, and therefore require mapping in both directions. For example, a "request timed out" error received from a resource for the value request may have to be translated to the OSI error "accessDenied." 

Agents, Agent/Managers and TMN 
TMN function blocks or systems can typically play both the OSI manager and agent roles. Figure 1 (adapted from [9, Fig. 10]) illustrates how TMN systems can interwork, for example, within the TMN logical layered architecture. In this cascade of systems, system A manages system B; it assumes the role of an OSI manager to invoke operations on the managed object instances in the management information base (MIB) of B through the OSI agent in B. The operations on the information model of B may, in turn, necessitate operations on the information model of system C, which requires the support of OSI manager functions in system B. 
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Figure 1. Interworking TMN systems ([9] Fig. 10).
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In support of the dual agent/manager role, some interaction between the agent function, the managed object instances in the MIB, and the manager function within the same system is required, but is not subject to standardization. However, an OSI agent/manager toolkit for TMN should be able to provide these functions. 

What is Needed? 
The complexity, required specialization, and unwieldy organization associated with the development of OSI managers/agents for TMN can be addressed by the deployment of development environments consisting of tools, programming interfaces, and protocol stack. The goal of any such environment must be to simplify the task of producing an agent, to guide the user to implementing an agent in the easiest, most efficient way. Such a tool should embody the expertise of experts in the field of TMN management, automatically generating code that conforms to the TMN and OSI standards, while leaving the details of implementation to developers. Tools that recast the complexity of TMN management in another guise should be avoided. 

A Toolkit for OSI Agent/Manager Development 
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The agent/manager toolkit we describe in this section comprises tools, programming interfaces, and library modules that help in the implementation of an OSI agent/manager for TMN. The toolkit is centered around an architecture that defines how the components of the toolkit and those provided by the users can be integrated to form a TMN system containing an OSI agent and, if required, also an OSI manager. 


Figure 2. Agent/manager structure.
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The overall structure of the toolkit is shown in Fig. 2, consisting of the following key categories: 

*Infrastructure -- The OSI protocol stack used in both agent and manager roles for communication with other managers or agents, including directory services. 

*Agent services -- Components that support the OSI agent functions such as event forwarding and log record handling, maintenance of managed object instances, and routing of CMIS requests to instances and coordinating responses. 

*Manager services -- Components that provide OSI manager functions if required, including the ability to send CMIS/P requests. 

*Management information base (MIB) -- Implementation of the managed object instance repository as C++ objects. 

*Resource access -- Modules, if any, that support specialized access between managed object instance implementations and the resources they represent. The MIBcomposer is a tool that generates C++ implementations of managed object classes based on GDMO and Abstract Syntax Notation version 1 (ASN.1) documents as well as any user-defined behavior pertaining to interaction between instances, between instances and managed resources, and between instances and manager services. 

The toolkit consists of the stack, agent services, parts of the manager services, and the MIBcomposer tool. The completed agent/manager is a single executable, constructed using the libraries provided by the toolkit, the libraries corresponding to the C++ classes in the MIB, resource access modules (if any), and user-provided manager functions (if any). Forwarding of requests and responses between components of the agent/manager and between the agent/manager and external sources (OSI managers and agents, managed resources) is provided through either direct C++ method calls or the use of sockets. 

In the rest of this section, we will describe the toolkit components in more detail. 

Infrastructure 
The components of the infrastructure provide the functions required for the agent/manager to communicate with other open systems. The common management information service element (CMISE) supports the CMIP protocol and CMIS services. It uses the services of the association control service element (ACSE) [10] to maintain associations with other OSI agents and managers, and remote operations service element (ROSE) [11]. The directory component provides stub services to locate OSI agents, managers, or object instances. 

These services are supported by OSI layers 1-6 or OSI presentation and session layers over TCP/IP [12]. 

Agent Services 
Naming and Replication -- The naming tree [7] represents the containment relationship between instances. Its structure is determined by one or more name binding-relationships specified for each class in its GDMO specification. As instances are created in the agent, we need to maintain not only a list of the instances in the agent, but also the containment relationship. The latter identifies the hierarchical relationship among instances, and is used in determining the set of instances that fall within the scope specified in the CMIS/P get, set, action, and delete operations. 

The naming and replication component of the agent maintains the naming tree. It performs the following functions on CMIS/P requests received from the infrastructure: 

*Create: Verifies that the instance can be created with the given name (i.e., its distinguished name matches name binding rules); checks if the instance to be created already exists to avoid duplicates; and, if the create is successful, registers the instance in the naming tree. 
*Delete: Checks if the instance to be deleted can be deleted according to the name-binding rules for its class. 
*All requests: Checks if the destination instance exists; implements scoping, that is, given a scoped request, determines the set of instances which should receive the request, sends a "replication" of the request to each selected instance, and keeps track of responses; and verifies allomorphic CMIS/P requests. 

Core Agent -- The primary function of the core agent component is to serve as the router for CMIS/P requests coming from the naming and replication module as well as resource requests received from the resource access component. The destination of a request (i.e., a managed object instance) is located; the request is converted into an internal "standard" format and forwarded to the instance. Likewise, the response is received from the instance, put into the appropriate format, and sent to its destination. 

The agent can operate single- or multithreaded; support for both modes is provided by the core agent component. In the multithreaded mode, multiple requests can be served simultaneously, with each request handled by a separate thread, thus guaranteeing that one request cannot block the entire agent. It also makes programming easier in callbacks; rather than explicitly releasing control to the core agent and then responding later to a different request in a different state, a particular request can block when additional information is needed and resume when the information is received. 

In the multithreaded mode of operation, only one request can be active in an instance at a time. When a request arrives, we check if the destination instance is "busy" (i.e., if a request is already in process for that instance). If not, we lock the instance, and start the request processing on a new thread. Once the processing of the request terminates, the instance is unlocked. In order to support and administer multithreaded operations, the core agent component includes: 

* Object table: Contains an entry for each managed object instance present in the agent, and each entry indicates if the corresponding instance is locked or unlocked. 
* Thread manager: Keeps track of the active threads, recording for each thread the instances it has locked. It is used (a) toprevent deadlock situations, such as, if a thread locks instance A, it accesses instance B, which requires access to A; and (b) to recover when a thread is prematurely terminated, for example, sending the appropriate CMIP error response corresponding to the request processed by the terminated thread. 
* Method calls: Allow locking (accessObject) and unlocking (releaseObject) of instances from callbacks. 

Log and Event Handlers -- Based on the specification of a class, an instance of that class can generate notifications when an event such as a change in the value of an attribute takes place. Each notification is processed or filtered by the instances of two standard classes: eventForwardingDiscriminator instances [13], which determine if the notification should become a CMIS/P eventNotification; and log instances [14], which determine if the notification should be logged. The toolkit provides efficient implementations of these classes. 

MIB and the MIBcomposer 
The MIB component consists of instances of the MIBcomposer-generated C++ classes representing managed object classes and their attributes. Each class and attribute implementation fully supports the behavior specified by OSI standards. In addition, through callbacks (see the next section), user code can be embedded in the implementation to specify interactions between a managed object instance and other instances, managed resources, and components of the manager services. 

MIBcomposer -- As we stated previously, tools are needed to simplify the job of the TMN developer. The MIBcomposer is a tool to help the user compose an agent from standardized definitions. It is specifically designed to do three things. 

First, as much as possible, it generates C++ code for managed object class and attribute definitions. The generated code provides full support for: 

* CMIS/P filter operations. 
* Allomorphism, the property of an instance of a managed object class to be managed as if it were an instance of another class. 
* Run-time checking for inclusion of conditional packages. 
* Automatic instance naming. 

In fact, the MIBcomposer can produce a complete (albeit sterile) agent without any input from the user except for selection of classes and pushing a single button. The generated agent can be used to test a management application or with the addition of user-defined behavior and resource interaction code, as a production agent. 

Second, it is designed to organize and display the problem of implementing a TMN agent in an intuitive way. Rather than simply displaying the complex structure of attributes within packages within classes, it displays attributes directly within classes while still allowing the user to include or exclude packages as he or she sees fit. It also reduces the problem of implementating non-standardized behavior to 20 callbacks, or questions the user needs to answer during the processing of a CMIP request. For instance, during get processing the user is asked to check for preconditions before an attribute is retrieved, to provide the value (if it exists in the underlying resource), and to check for postconditions afterwards. When the user selects a set of classes to include in an implementation, it automatically includes all the superclasses needed, and displays only those classes and attributes that need to be dealt with. 

Finally, through its callback concept, it keeps the implementation-specific details of a managed object class or attribute separate from the standardized processing. The callback code (along with other details such as the inclusion status of packages or caching timeouts for attributes) is kept in a library of separate files that are accessed during code generation. In this way, new capabilities such as additional classes can be added to the generated code without any impact on the code previously entered by the user. By simply enhancing the generated code and regenerating, a user can gain new functions or a more efficient implementation. This feature is very useful when the agent is developed using GDMO specifications that are not yet mature. 

The user starts the MIBcomposer, specifying the names of the necessary metadata (GDMO and ASN.1) files to load into the tool and the location of the workspace directory in which the implementation details are contained. The 

MIBcomposer then parses the input documents and presents the MOTIF interface, shown in Fig. 3, to the user. 
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Figure 3. MIBcomposer user interface.


The user can edit the characteristics of classes and attributes by selecting them and entering information in special editor dialogs, group classes into ensembles, and initiate the generation of C++ code. During code generation, the MIBcomposer scans the workspace directory for files that contain implementation information and merges this with information from the GDMO and ASN.1 files to produce code libraries that are eventually used to produce the agent. Note that two different users can produce two different agent implementations from the same metadata (i.e., GDMO and ASN.1 definitions) using different workspaces, as shown in Fig. 4. 
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Figure 4. Generating implementations with MIBcomposer.


The user can, at any time, reenter the MIBcomposer and load additional documents or modify the workspace before regenerating code. The MIBcomposer maintains awareness of what has changed since the last time code was produced, and generates only the code that is necessary. 

Manager Services 
As explained previously, a TMN system can contain both an OSI agent and an OSI manager. The components grouped under manager services provide support for the OSI manager role. 

The toolkit includes the callback CMIS/P interface (CCI), which serves as an interface to issue CMIS/P requests from the agent/manager. CCI is an asynchronous interface, implemented as a set of C++ methods. CMIP requests out of a callback are sent using one of the cmip_get, cmip_set, cmip_setConfirmed, cmip_action, cmip_actionConfirmed, cmip_create, cmip_delete, and cmip_cancelGet methods. Each request returns a unique identifier; using this identifier, the receiveCMIPRsp method is used to retrieve one or more responses received for the request. The destination of a request can be a local or remote managed object instance. 

Management applications are provided by the user. Simple management operations can be embedded into the C++ object implementation in the MIB through callbacks. Complete applications can be linked together with the toolkit, and the toolkit provides facilities for such applications to interface with managed object instances and the managed resources as necessary. 

Resource Access 
The Q-adaptor function (QAF) of the TMN architecture acts as a translator between TMN and non-TMN systems. For example, to manage a non-TMN telecommunications switch from TMN, a TMN-conformant agent would be required as the Q adaptor, with the agent communicating with the switch over a non-TMN protocol. The resource access component of the agent architecture provides this communication interface. 

Communication between managed object instances and resources can be initiated from both directions. As an example, consider the creation of a connection: the creation of an instance of the connection class by an OSI manager may require the appropriate resource to be created or updated. Similarly, termination of the connection may cause a resource to delete the corresponding managed object instance. Resource access components access managed object instances through the core agent. They also provide an interface (preferably an object-oriented C++ interface) to allow managed object instances to invoke operations on the resources. The actual interface to the resources is encapsulated within the resource access module, hiding the low-level details of the communication mechanism. 

Experience Using the Agent Toolkit 
In this section, we present a small example to show how the agent/manager toolkit can be used to generate a TMN agent. Our example is based on a prototype system developed for a feasibility study. 

The primary objective of the prototype system is to provide secure and efficient route updates in a signaling network. The workflow model defined for the system consists of the following steps: 

* Uploading of active routing data from network elements such as switches. 
* Modification of the routing with a network editor. 
* Simulation and testing of the new configuration to ensure loop-free connectivity. 
* Downloading of the new configuration to the network elements. 
* Activation of the new configuration. 

The architecture of the prototype is shown in Fig. 5. The workflow manager is an OSI manager that performs the functions outlined above. It uses the Q3 interface to access the TMN agent. 
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Figure 5. Prototype architecture.


The agent implemented in the prototype performs both TMN mediation (MF) and Q-adaptor (QAF) functions. The MIB contains two principal sets of managed object classes. The first set provides a model of the managed network in terms of routing configuration, suitable for the tasks performed by the workflow manager. The second set is of classes that model the components of the managed network (e.g., a telecommunication switch). The mediation function is required to provide mapping between these two models in both directions, to expand the first model to the level of network components, and, in reverse, to consolidate the component data to create the more abstract model of the network. 

The switches used in the prototype are accessible through MML. Connecting these non-TMN network elements to the TMN environment at the m reference point requires a Q-Adaptor Function. Using the toolkit, we built a resource access component for MML called the MML interface which enables bidirectional communication between managed object instances and telecommunication switches. It is implemented as a C++ class, and its methods can be called from callbacks within instances to send MML commands to a switch; the implementation details of how an MML command is sent to switch over modem connections is hidden from the callbacks. Responses to requests are forwarded to the requesting managed object instance. 

Due to the limited scope of the application, we found that a set of seven managed object classes was sufficient to model the problem domain; for example, retrieving routing data was mapped onto an CMIS/P action for the exchange managed object class. The code corresponding to the selected classes was generated using the MIBcomposer. The toolkit permitted us to design the prototype "on the fly." We were able to generate an MIB corresponding to the new GDMO or ASN.1 documents and additional behavior, interface via MML with an Ericsson AXE switch, and successfully demonstrate the working prototype within less than four weeks. 

Additional Agent Features 
This section discusses a number of desirable features that can be incorporated into the agent/manager toolkit. 

Persistence 
Some or all of the managed object instances in an agent may need to be persistent to allow fast recovery after an agent failure. There are two major design considerations in implementing persistence: 

Performance -- Any persistent agent has to be fast enough to handle fast restarts after a failure. One way to ensure this is to realize that not all instances need to be persistent. For example, the instance representing a leased line between two communication nodes may need to be persistent, because it represents configuration data, whereas an instance representing a connection that would have been terminated when the agent crashed does not. Using selective persistence, the number of instances stored in nonvolatile storage can be reduced. In addition, efficient mechanisms for storing persistent data need to be implemented. Object-oriented databases are promising as long as they support selective persistence and good data compaction. More traditional databases or even flat files can be used, depending on the performance requirements of the agent. 

Synchronization -- When we restart an agent, the restored managed object instances need to be synchronized with the corresponding managed resources. For example, values of a counter will need updates; there can be hardware changes made during maintenance, such as replacement of an adapter that has to be reflected in the corresponding managed object instance. Synchronization requires exchange of "are you there" and "what are the current values" types of messages between the resources and managed object instances at restart time. 

Dynamic Loading of Classes and Attributes 
Although TMN is based on standards, these standards can change over time, or the capabilities of an agent may have to be enhanced. In some cases, the agents are too critical to shut down in order to add the new class and attribute definitions; instead, dynamic loading of these definitions is necessary. The latter can be done using the MIBcomposer to generate the new, additional class and attribute definitions, create a dynamically loadable library, and change the core agent such that it can load such definitions from the created library. 

Agent Monitoring 
If one wants to find out how an agent is performing, or what condition it is in, the standards do not provide much help. There is a benefit to knowing, for example, how busy an agent is (number of processed CMIS/P requests), or how many instances have been created. It may also be desirable to dynamically configure the agent, for example, to change the name of the file where log messages are being recorded, or to increase the maximum number of active threads. 

In order to successfully monitor and control the operations of the agent, we need to 

* Instrument the agent in order to collect a useful set of agent statistics. 
* Provide access to configurable parameters such as the maximum number of active threads. 
* Make the statistics and configuration data available to applications outside of the agent. 

Access to agent data can be implemented either as a console function (e.g., over TCP/IP) or through CMIS/P, using appropriate managed object instances. 

Conclusion 
In spite of the complexities, OSI agent/managers for TMN are efficiently implementable if the right set of tools are available. The most effective tools are those that take care of complex but standard features of an agent/manager, leaving the implementor to focus on the implementation specific details of the agent, such as accessing the managed resources. In this article, we have presented an architecture for an agent/manager toolkit that provides a development environment with automatic generation of code for standard agent behavior and facilities to ease the realization and integration of implementation-specific agent components. The concepts developed for this toolkit were incorporated into the IBM TMN Workbench and Support Facility products [15]. 
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