
Bell Labs Technical Journal ◆ October–December 2000 31

Introduction
Any practical vision for the evolution of commu-

nications services must include a strategy for how net-

working software and equipment vendors make it

possible for service providers to manage those services

and the networking equipment upon which they are

delivered. Unfortunately, the fact that there is no one,

consistent service and network management strategy

(there are many mutually inconsistent strategies)

across the communications industry makes establish-

ing such a vision very difficult. This is one of the key

issues facing both service providers and vendors of

management system applications (including element

and network management systems, services and engi-

neering support systems, and other business systems),

and it is a major barrier to fulfilling the business

promise of next-generation networks.

This paper serves as a companion to the previous

paper by Silverman, Brenner, and Shannon,1 which

proposes a strategy for network and service manage-

ment and describes an architectural framework. This

paper expands upon the architectural framework

described in the previous paper by looking at the

framework from two complementary points of view.

It also delves deeper into implementation considera-

tions and makes recommendations based upon the

authors’ view of industry experience and currently

available development technologies.

Needs and Drivers
As Silverman, Brenner, and Shannon state,

“[The] needs [of today’s network and service

providers] are … business obvious— business and

operational support systems that:

• Encourage new service creation,

• Are much easier to operate and maintain, and

• Require less integration expertise to insert into

an operator’s systems environment.

The rush of new network builds, insertion of new ele-

ments, and quick scaling of new Internet services has

passed the point of most providers to have a working

♦ Implementing a Management System
Architecture Framework
William C. Goers and Michael R. Brenner

Any practical vision for the evolution of communications services must include a
strategy for how networking vendors make it possible for service providers to man-
age their networks. While the Telecommunications Management Network (TMN)
framework has proponents, the IP services community has shown little interest.
Furthermore, operations systems developers have long attempted to produce the
best framework, but the technology is outdated before it exists. This paper
addresses both issues by presenting an application-driven model for integrated man-
agement. This model can be applied to either a “classic” framework orientation or a
management application view. What is common between these two views are a
management portal, common data models, multiple interface technologies, open
and simple network element interfaces, and common operations, administration,
and administration (OA&M) tools. These are the elements for which there needs to
be a consistent set of interface definitions. They form the basis for the construction
of next-generation management applications.

Copyright 2000. Lucent Technologies Inc. All rights reserved.

32 Bell Labs Technical Journal ◆ October–December 2000

strategy for the underlying service and network man-

agement systems.”1

Service providers are driven to constantly develop

new services and deliver them to the marketplace.

These services drive a need for innovation in network

elements, features, and interfaces. They also drive a

need for innovation in service and network manage-

ment systems—not only because of the proliferation of

network elements that expose new behavior, but also

because of the proliferation of logical (overlay) net-

works and the services delivered over those virtual

networks. Add to that the fact that these service

providers must support their traditional services

(which are supported by an embedded base of support

systems) at the same time, and it is easy to see that

management systems applications developers face

major challenges.

From an implementation perspective, these high-

level needs statements can be translated into essen-

tially three basic drivers:

• The characteristics—Promote simplicity, flexibil-

ity, openness, and evolution.

• The blueprint—Establish a common architec-

tural strategy and development approach that

facilitates end-to-end integration of multi-

vendor solutions and embedded systems.

• The key components and tools—Provide mecha-

nisms for quickly filling gaps in service and

network management functionality while

avoiding inconsistent or duplicated efforts.

The venerable Telecommunications Management

Network (TMN) model, based on ITU-T Recommen-

dation M.3010,2 still commands respect within the

telecommunications sector. The many incumbent net-

work service providers seek support for this model.

However, the IP services industry and community of

users have little interest in or respect for it. This is

reflected in their approach to management standards,

Panel 1. Abbreviations, Acronyms, and Terms

ASP—application service provider
BSS—business support system
CLI—common line interface
CMIP—common management information

protocol
COPS—common open policy service
CORBA*—Common Object Request Broker

Architecture
CPU—central processing unit
DBMS—database management system
DIAMETER—extension of RADIUS
EAI—enterprise application integration
EJB*—Enterprise JavaBeans
FAB—fulfillment, assurance, billing
FCAPS—fault, configuration, accounting,

performance, and security
GUI—graphical user interface
HTML—HyperText Markup Language
i—“integrated, intelligent, and innovative”
IDL—interface definition language
IETF—Internet Engineering Task Force
IIOP*—Internet Inter-Orb Protocol
IP—Internet protocol
ITU-T—International Telecommunication Union,

Telecommunication Standardization Sector
J2EE*—Java* Platform 2, Enterprise Edition

JDBC*—Java* Database Connectivity
LAN—local area network
LDAP—lightweight directory access protocol
NE—network element
OA&M—operations, administration, and

maintenance
ODBG—open database connectivity
ODSI—optical domain service interconnect
OEM—original equipment manufacturer
OSF—operation system function
OSS—operations support system
Q3—the TMN interface between an OSF and

NE function/mediation function/QAF
QAF—Q adapter function
QoS—quality of service
RADIUS—remote authentication dial-in user

service
SLA—service-level agreement
SNMP—simple network management protocol
TCP—transmission control protocol
TFTP—trivial file transfer protocol
TL1—Transaction Language 1
TMF—TeleManagement Forum
TMN—Telecommunications Management Network
TOM—Telecom Operations Map
XML—Extensible Markup Language

Bell Labs Technical Journal ◆ October–December 2000 33

which can be summarized as: include as much manage-

ment intelligence as possible in the network elements;

provide some external hooks to tap into that intelli-

gence; and otherwise, for the most part, ignore the fact

that services and networks need to be managed.

The TeleManagement Forum (TMF), relatively

new on the scene, has been very active in the last few

years in providing process-flow-oriented specifications

using the Fulfillment, Assurance, Billing (FAB) and

Telecom Operations Map (TOM)3 models. Those speci-

fications are more in accord with current industry

trends. They attempt to “soften” the rigidity of the

TMN model by explaining the functions needed and

the relationship between those functions, but stopping

short of endorsing protocols or layers. This leaves the

door open to new software vendors that try to project

a strategic vision around their own product set, cross-

ing, bypassing, or otherwise ignoring traditional model

boundaries and conventions and with little definition

to the landscape. They seem to think their exaggerated

claims will not be scrutinized. However, not all service

providers are accepting those claims—and the result is

an uneasy skepticism as these service providers seek

value propositions in clearly defined areas.

What one finds in the market is therefore several

trends, instead of a unifying strategy. One such trend

is toward increasing intelligence and adaptability of

management applications. Another trend embraces

the need to integrate seemingly separate applications

in response to business and operational requirements.

The Network as an Ecosystem of Applications
Sometime in the 1980s, Sun coined the phrase

“The network is the computer,” and it served the com-

pany well. In the 1990’s, one of the database vendors

(realizing the marketing leverage Sun had obtained

from its slogan), came up with “The network is the

database,” and it served some of the database manage-

ment system (DBMS) vendors well. Do the claims

boasted by Sun and the database vendors still apply?

They surely do. Not only do computer-based “hosts”

generate the majority of the traffic on networks today,

but most network elements are now based on com-

puter technology (CPUs, interfaces, memory, storage).

It is also true that the network would add much less

business value without database servers, which main-

tain the “state” of the network, its users, and services.

However, it is time to recognize a new paradigm.

The reality is that networks without management

applications are little more than pre-programmed con-

trollers, and that falls far short of what users expect

today. It is also true that the networks customers are

talking about today are mostly “virtual”—a result of

software applications that configure logical networks

over physically interconnected elements, often

dynamically. Perhaps it is time to coin a new phrase

and take the vision a step further by declaring “The

network is the application.” From a service and net-

work management perspective, this could be inter-

preted as “the management application.” From an

end-user perspective, it would be the ubiquitous appli-

cations that connect today’s user communities. The

phrase is as accurate as its predecessors are, and also

quite complementary to them.

The Application as Driver of the Management
Framework

Software vendors in the areas of operations sup-

port systems (OSSs)/business support systems (BSSs)

have attempted now for a few decades to come up

with the best framework, usually starting with a

model in mind (TMN, for example). The framework

usually pre-defines all the layers and interfaces

between layers, as well as framework services and

functions that belong in different layers. An imple-

mentation technology is then chosen for the frame-

work and an organization that has nothing to do with

the applications that need to use the framework gets

tagged to develop the framework. The framework

itself takes a year or two to develop. By then the tech-

nology is no longer the hottest, and the functions and

services needed may no longer be the same—but

developers do attempt for a while to force-fit applica-

tions into the framework to justify the investment.

Companies that have invested heavily in frame-

works development have found out sooner or later

that without substantial applications delivered as part

of the framework they cannot survive as a business. A

complex framework requires a lot of development,

and the development technology is rapidly changing.

34 Bell Labs Technical Journal ◆ October–December 2000

A framework customer has no incentive to deploy a

framework developed with yesterday’s technology and

to start building applications around it. The exceptions

are companies that focused on lightweight frameworks

that made it very easy for third-party vendors to write

compliant applications. The conclusion is that the

framework architecture is driven by the management

applications, and the implementation is driven by the

technology—which can be captured as “The applica-

tion is the framework.” In other words, it makes no

sense to promote a framework separate from the

applications it supports. The applications are “carrying”

the framework; they include it.

In a sense, the applications need to provide the

information technology equivalent of a Swiss army

knife—they need to include a set of technology

“blades,” which are adapters that allow them to

exchange information with peer applications, to pub-

lish/subscribe data, or to dig into database schemas

(see Figure 1). Practically, success demands that appli-

cations be ready to fit into a number of existing frame-

works and to drive the evolution of those frameworks

as they themselves evolve. Applications that will sur-

vive for a long time (becoming legacy applications)

will have to evolve in order to be competitive. One

way they will evolve is through adapters that will pro-

long the life of the application within the evolving

ecosystem of applications.

The Management Framework—Reconciling Two
Views

Assuming an OSS vendor follows this suggested

approach and thus establishes a management frame-

work by contributing to an ecosystem of management

applications, there are two key issues that have to be

addressed:

1. What kinds of applications, interface technolo-

gies, and data stores are required, and how are

they maintained, given the development tech-

nologies that exist at this point in time?

*Registered trademark of Object Management Group, Inc.
†Trademark of Sun Microsystems, Inc.

CLI – Command line interface
COPS – Common open policy service
CORBA* – Common Object Request Broker
 Architecture
EJB† – Enterprise JavaBeans†

JDBC† – Java† Database Connectivity

LDAP – Lighweight directory access protocol
OA&M – Operations, administration,
 and maintenance
SNMP – Simple network management protocol
TFTP – Trivial file transfer prototol
XML – Extensible Markup Language

Web browser

CORBA* EJB† XML Other

The management application

SNMP CLI TFTP COPS

Other

LDAP

JDBC†

Data
models

Manageable elements

OA&M

Figure 1.
The “Swiss army knife” application=framework.

Bell Labs Technical Journal ◆ October–December 2000 35

2. How should the answers to the first question be

presented as a vision and strategy to the vendor’s

customers, both from a traditional perspective

(consistent with the TMN model) and from a pro-

gressive perspective (emphasizing flexibility, sim-

plicity, performance, and speed to market)?

The answer to the first question has to

support/exploit the creation of multi-purpose

(reusable) applications, common data models, simpli-

fied/common network element behavior, and com-

mon operation, administration, and maintenance

(OA&M) capabilities. While it has not been mentioned

until now, the OA&M practices that support any type

of OSS/BSS deployment are critical elements. They

directly support the interactions between the first

three items and are fundamental to achieving one of

the goals of the solution—simplicity.

The answer to the second question is perhaps the

most important, because it is the quality of that

answer that determines whether the implementation

strategy will address the full and necessary scope of the

problem.

This section explores these questions from the per-

spective of two representations. One representation,

shown in Figure 2, is based upon the TMN/TOM

model. It is a simplified representation of a manage-

ment framework described at a high-level in the

Silverman, Brenner, and Shannon paper.1 This view

consists of hierarchical layers and emphasizes the dis-

tinct needs for different types of applications and appli-

cation interfaces, common data models, and

separation (abstraction) of network element behavior.

It is mostly useful for answering question 1, although

it would be the basis for answering question 2 in the

context of traditional services management. The other

representation was fundamentally described in the

previous section and is based upon the “Swiss army

knife” application model shown in Figure 1.

This second representation will be explored

through an illustrative example of a contrived service

provisioning application (“i-Connect”). This is an

application that interacts directly with the network

elements, without having to go through the network

management or element management layers. The

power behind this view is its flexibility. It emphasizes

the applications’ ability to interface with other applica-

tions on many levels. It provides an example of how

one would answer question 2 in the context of “pro-

gressive” next-generation services.

Implementing a Service and Network
Management Strategy

A key message of the section above (and in fact of

this paper) is that these two views of the architectural

framework are both consistent and necessary to a ser-

vice and network management strategy. The sections

below—“Key Framework Applications and

Components” and “The Application Model View”—

contain specific suggestions for the implementation of

this strategy from both points of view.

Key Framework Applications and Components
The implementation strategy must begin with

what is most needed and expected to manage next-

generation networks. It must address how the services

that turn faster and larger revenues for customers are

supported with regard to fulfillment (service ordering,

configuring, provisioning, activation), assurance (ser-

vice availability, performance, time interval to fulfill

order, time interval to handle problems, compliance to

service-level agreement), and billing. It also has to

address how to integrate the legacy systems and other

assets and how legacy operations will migrate to the

new paradigm.

Instead of choosing a platform- or framework-

based approach to provisioning OSSs, the vendor

could use off-the-shelf management applications

(internally or externally developed) and construct a

Web-enabled OSS complex, fronted by a self-care

management portal. This will allow the vendor to be

in step with “new and cool” service provisioning,

while still having to fix the underlying problems

(which are everybody else’s problems, too). The fol-

lowing subsections expand upon this basic strategy by

identifying and defining the essential components.

The management portal: gate to service fulfill-

ment, assurance and billing. The self-care manage-

ment portal (shown in Figure 2 as “i-TakeCare”) could

be built in-house, acquired, or obtained though part-

nerships. It is not expected that a management solu-

tion vendor will make a lot of money by selling the

36 Bell Labs Technical Journal ◆ October–December 2000

*Registered trademark of Object Management Group, Inc.
†Trademark of Sun Microsystems, Inc.

CLI – Command line interface
CMIP – Common management information
 protocol
COPS – Common open policy service
CORBA* – Common Object Request Broker
 Architecture
DCE – Distributed computing environment
EJB† – Enterprise JavaBeans†

FAB – Fulfillment, assurance, billing
HTML – HyperText Markup Language

i – “Integrated, intelligent, and innovative”
IT – Information technology
JDBC† – Java† Database Connectivity
LDAP – Lighweight directory access protocol
OA&M – Operations, administration, and maintenance
SNMP – Simple network management protocol
TFTP – Trivial file transfer prototol
TL1 – Translation Language 1
UI – User interface
XML – Extensible Markup Language

Web browser

Customer
information

database

Service
information

database

i-TakeCare
portal

i-FAB
service

Presentation abstraction bus (for example, HTML, XML)

Service workflow-oriented bus (CORBA* + EJB† + JDBC† + LDAP)

Network
information

database

i-Provision
network

i-Assure
network

i-Regulate
(policies)

Network transactions-oriented bus (CORBA + JDBC)

i-Engineer

Front-end platform

Surveillance
manager

Provisioning manager

Configuration manager

CMIP, TL1, CORBA SNMP, DCE SNMP, CLI, TFTP, COPS, LDAP

Optical
network
elements

IT
network
elements

“Hot” third-
party network

elements

Data
network
elements

UI and
OA&M

Figure 2.
The framework (a TMN-like view).

Bell Labs Technical Journal ◆ October–December 2000 37

portal (however, it is expected that a vendor will lose

money by not having one, because it will look like it is

pushing yesterday’s technology). The self-care portal is

a user’s porthole into the OSS/BSS solution (a user

being defined as an end-customer, a sales person, an

operator, or any other role player).

The portal will first authenticate and authorize the

user, via a lightweight directory access protocol

(LDAP) directory fronting pointers to other manage-

ment applications, as well as customer, service, or net-

work data to which the user is allowed access. Most of

the data itself will probably not reside in the directory,

but in DBMSs. Selective data, rarely modified but fre-

quently accessed, may be cached in the directory itself;

otherwise, the directory will simply contain pointers to

the real data.

The portal will be accessed via a Web browser that

is equipped with Java* applications necessary for pre-

sentation via the presentation abstraction bus built

with Extensible Markup Language (XML) technology

to allow flexible interfaces to other technologies. It will

not only serve as a conduit to place and update orders

as part of the fulfillment process. It will at the same

time allow users, depending on their authorization, to

check their activated services for availability and per-

formance status, service level, and problem reporting,

as well as billing reports for the services ordered.

The application transaction bus. An application

transaction bus based on enterprise application inte-

gration (EAI) technology such as Enterprise

JavaBeans* (EJB*) will provide us with an application

platform that has high flexibility and scalability. The

recommendation is to incorporate a workflow engine

using this technology. A number of middleware ven-

dors have solid workflow engines, including EJB-

architectured “bus” technology. Alternatively, tools

from other vendors could be used to develop the

appropriate bus. Yet another approach would be to use

the middleware and workflow engine a vendor

already has in place and a future EJB bus around

which future management applications may be built.

The use of a Java-based architecture for the upper-

layer of the OSS complex would provide any vendor

with an application platform that has high flexibility

and scalability. An application transaction bus built

with EJB technology would allow plugging in of vari-

ous service-related applications, such as service order-

ing, new service creation, service provisioning,

compliance analysis, and billing. Some of those appli-

cations will require access to customer and services

data, modeled by a published information model.

Access to the data will be through the same appli-

cation transaction bus, using objects enabled with

open database connectivity (ODBC) and/or Java Data-

base Connectivity (JDBC*) adapters. It is extremely

important to completely separate the data from the

applications, to ensure that new applications that

understand the published information models can

access and use them without having to be dependent

on other applications. That will allow the combination

of applications into an integrated solution and the

deployment of applications individually for small starts

that do not require a complex solution. It will also

allow product houses to make intelligent choices about

what they need to build themselves, versus what they

can reuse. The data models will have to be imple-

mented in a reusable fashion, and the applications will

have to exhibit sufficient independence. It is conceiv-

able that in certain cases a group of applications

together would meet the “sufficient independence”

criteria.

The documentation accompanying applications

should clearly articulate how applications work, indi-

vidually or as a group, in providing a well-defined

function. It is mandatory that the applications that are

fronted by a presentation module (for example, a GUI)

be developed in a fashion that will allow the same

information that is collected or reported via the pre-

sentation module to be accepted as input or sent as

output via the application bus. That will ensure that

application-to-application interactions will be easy to

achieve, allowing for a less painful flow-through

process.

The truth is that this is a blueprint for an evolving

framework; therefore, no application can fully predict

where it will end up in the functional architecture.

Thus, it would be unwise to not separate the presenta-

tion module from the algorithms of the application.

The network and information technology infra-

structure management. Under the “layers” so far

38 Bell Labs Technical Journal ◆ October–December 2000

described lie all the classical fault, configuration,

accounting, performance, and security (FCAPS) sys-

tems known as element managers and network man-

agers. Those tend to be systems that reflect

(unfortunately, too much) the realities of the physical

elements and the networks composed of physical ele-

ments from which they are trying to engineer, moni-

tor, maintain, troubleshoot, upgrade, and collect

information. This includes information needed for

forecasting additional capacity, for being able to bill for

the usage, or for providing data that can be compared

against what was contracted. The traditional network

includes network elements, but considering that the

network is also “the computer” and “the database”

and “the application,” Lucent and other vendors are

faced with the prospect of having to manage an

increasingly complex solution with the addition of

servers, storage solutions, and applications. Assuming

that an end customer is using a service that traverses

the Internet and accesses a page on a Web site, it is of

little relevance to the customer if failure to receive a

response is due to a failure in the “traditional net-

work” (Internet or the LAN in the data center) or fail-

ure of an Apache Web server running on a Sun host.

In addition to the existing elements, new elements

appear with an increasing frequency, and some of

them expose new management behaviors. Most of the

elements or network management systems, existing or

planned, have very well identified targets. They do

their job well for specific elements, and most of the

time it is because the particularities of the elements

force them into certain implementations. However,

these systems need to expose a northbound interface

(towards the service management applications) that is

more consistent and standards compliant. That means

it is unlikely to be changed very often, very reliable,

and near real time. For a network management soft-

ware vendor in particular, it is expected that this is an

internal interface that allows a services application to

talk to network and element management applica-

tions, with the purpose of sending in specific provi-

sioning parameters and collecting well-defined alarms,

performance reports, and usage counts (or pointers to

data collected in files).

A bus that allows pair-wise interactions between

applications via well-defined CORBA* interface defini-

tion languages (IDLs) is the industry standard. Stability

for this type of pair-wise interaction (as opposed to the

flexibility desired at the services applications layer) is

derived from the fact that, once deployed, those appli-

cations will be used for managing long-term network

infrastructure. The degree of change decreases as one

moves from services to networks and elements.

CORBA technology is also a popular choice with many

OSS vendors (Lucent supports CORBA interfaces in

the Inter-Domain Configuration Manager, Navis, and

WaveStar† product lines).

Initially several IDLs will exist; over time the

expectation is that the number of different IDLs will

remain contained and reused by new-emerging sys-

tems, rather than continuing to grow indefinitely. Of

course, a minimal requirement is that all of the ven-

dor’s management applications exchanging informa-

tion over the CORBA bus use the same CORBA

middleware (not a mandatory requirement initially,

since Internet Inter-Orb Protocol [IIOP*] can be used

to exchange information between different CORBA

implementations, but certainly a desired requirement

in the long run, allowing the vendor to use develop-

ment teams more efficiently). That will allow for reuse

of network management or element management

application “shells,” simplifying the development and

integration of new network applications in support of

new network elements or the combination of different

types of elements. Those “shells” need to be engi-

neered around a well-defined strategy of specializing

applications (for example, the “role-based” approach

that is currently pursued by many vendors, including

Lucent).

The “role-based” approach addresses the major

human operations roles required for a network opera-

tor and supports those roles through focused applica-

tions. The “i-Engineer” application, shown in Figure 2,

is focused on network engineering, including physical

inventory, cards, ports, physical circuit installation and

configuration, and facilities availability and perfor-

mance reporting, as well as troubleshooting tools. The

“i-Provision” application will support assignment of

facilities; changes to network elements during service

provisioning process; logical circuit modifications (cre-

Bell Labs Technical Journal ◆ October–December 2000 39

ation, deletion, editing); and management of transac-

tional workflow, including back-out, monitoring, and

troubleshooting of logical circuits. An “i-Assure” appli-

cation supports end-to-end circuit views, service per-

formance monitoring, service alarm presentation,

network-correlated faults by circuit, service, customer,

or history, trend analysis, periodic reports, and service-

level agreement (SLA) compliance reports.

One of the desirable goals of such a strategy is to

produce “shells” of “i-Engineer,” “i-Provision,” “i-Assure.”

Those “shells” would serve several purposes. One

would obviously be the one previously mentioned

(reuse by another organization when the complete

original application cannot be reused, because of the

need for different algorithms in performing the task). A

second purpose would be to use the “shells” to wrap

any third-party vendor applications, or to allow third

parties to quickly build appropriate management appli-

cations for “hot” new elements that the vendor may

want to support. Last, but not least, the vendor could

learn from and improve on something that at least one

vendor does well today: when and if an opportunity

exists to acquire another company that has a “hot” net-

work element, one of the preconditions would be for

the vendor to fit the acquired company’s management

applications into the vendor’s pre-existing manage-

ment “shells.”

Becoming more systematic in approaching man-

agement interfaces and data exposed by network ele-

ments is critical to the implementation of this new

vision for management. The network and element

management “shells” described before will force con-

forming behavior of the elements that they manage.

While a large variety of possible interfaces are in

effect today, simple network management protocol

(SNMP) seems to be the “simple” preferred choice

today for fault and performance measurements; trivial

file transfer protocol (TFTP), the choice for hardware

configuration; and command line interface (CLI), the

choice for access control lists. There is no clear winner

in policy management with respect to the protocol for

communicating policies to the elements (COPS,

DIAMETER, LDAP all vie for a place). However, it is

relatively obvious that systems are moving away from

CMIP/Q3 and TL1, and few elements are successfully

implementing CORBA in the embedded software.

Therefore, the recommendation is to go with SNMP,

CLI, TFTP, and one of the policy communication pro-

tocols (the one that best fits the needs of the specific

element).

The policy management applications (“i-

Regulate”) will have to support all de-facto standards.

Data models. Three main categories of data mod-

els are suggested here.

The Customer Information Model includes the data

and the behavior of the processes interfacing with

customer-specific information. That should include all

the information needed to be captured for any cate-

gory of users for any service offered by a service

provider (customer organization, end users at the cus-

tomer’s location, sales force, operators), authentication

and authorization of those customers for services

offered, pointers to services active for each customer.

All the customer-related information should be kept in

one logical data model, accessible by any application

that needs to access that information and is authorized

to do so. It is expected that a well-defined and well-

implemented customer information model can be

reused by all integrated management solutions and

should be designed and built only by one of the ven-

dor’s development organizations.

The Service Information Model includes the defini-

tion of all services offered by a service provider via a

service catalog; for specific users, a repository of all ser-

vices in use and their current state (order state, billing

state, operational state) needs to be kept up to date.

Each service defined should carry a service profile that

would allow a selection of SLA classes, characterized

by quality of service (QoS) attributes. The model has

to allow the flexibility of mapping of specific SLA met-

rics into QoS classes, and both the type of QoS classes

and the SLA metrics need to remain extensible. The

service definition needs to allow for services inheri-

tance and lateral dependencies on other services, as

well as support the behavior needed to create new ser-

vices. Basically the model has to support complex ser-

vices. It also needs to include classes related to orders,

mirroring the user’s request. The user’s request will be

decomposed into several network order requests that

can be supported by the network model. It is expected

40 Bell Labs Technical Journal ◆ October–December 2000

that a well-defined and well-implemented Service

Information Model, designed and built only by one of

the vendor’s development organizations, can be

reused by all integrated management solutions.

The Network Model needs to address all types of

technology-driven networks. The model will address

network topology, managed elements, subnetworks,

and traffic descriptors. Other common data to be rep-

resented in the network model includes physical

inventory data, problem-handling data, performance

data, capacity data, alarm-related data, and routing

protocols data. Both inter-technology domain and

individual domain network models are needed to

complete the model. A large-scale deployment may

need the implementation of all the classes of the

model, while a smaller-scale or specific customer seg-

ment may only need a subset of the network model. It

is expected that a well-defined and well-implemented

network information model can be designed and

implemented by one of the vendor’s development

organizations. This will allow for it to be reused across

customer segments and scaling requirements, while

facilitating other organizations to contribute new

classes that handle specific aspects of their technology

domain to the common data model.

OA&M tools. A number of requirements apply to

the common use of OA&M tools. This is an area that is

less glamorous than other areas for developers, and it

is rarely a sellable feature. Therefore, it is frequently

considered as an afterthought. Paradoxically, these are

good reasons for dealing with this rarely and consis-

tently—in other words, it makes a lot of sense to

establish a set of reusable tools and procedures and

enforce them rigorously in all management applica-

tions, including the integrated result of such applica-

tions. Accepting that as a guiding principle usually

implies standardizing on certain hardware platforms,

operating systems, and software tools, which seems to

be the more difficult issue. While this is not something

that can be resolved immediately, it is something that

can be imposed as a requirement for new manage-

ment applications and solutions—as part of the “shell”

concept.

The other non-negotiable requirement should be

for management applications not to be developed as a

standalone system (more often than not, an OSS ven-

dor’s applications take control of the host they use as a

platform, deliberately or accidentally). As a viable

requirement, a vendor could decide that all new man-

agement applications to be developed first be imple-

mented on a preferred hardware and software

(operating system) platform (further porting being dri-

ven by business needs).

This policy will immediately facilitate other prac-

tices. Software packaging, installation, distribution and

update procedures may easily be developed around a

primary software choice, including tools provided by

the same vendor. Standard startup and shutdown pro-

cedures should be the same, and a similar approach

could be taken with respect to DBMS to be used ini-

tially—which would then simplify the choices for data

backup/restore. A standard tracing package should be

easy to adopt across applications, as long as one orga-

nization would volunteer to provide and maintain it

on the platform of choice. It would most likely have to

provide a C++ and Java library. Following such

requirements would at least make possible, if not

probable, co-residency of management applications on

the same host and therefore reduce the number of

“boxes” needed in the solution.

The Application Model View
Figure 3 illustrates how an optical connection

provisioning application would drive the management

framework. This only illustrates a subset of the service

fulfillment process, and it does not illustrate at all the

service assurance or billing aspects of a complete solu-

tion. The application (“i-Connect”) would have XML,

EJB/J2EE, CORBA, and JDBC “blades,” in addition to

a “blade” for signaling connections data to the optical

network elements. The XML would be used to present

user screens with dynamic content, rather than the

static representation available through HyperText

Markup Language (HTML). This would allow the Web

pages and product catalog that would be presented via

the “i-TakeCare” portal not to require revision every

time the application changes. The XML interface

would also be exposed (as an option) as a loosely cou-

pled flow-through interface to an external OSS.

The portal would have an LDAP “blade” that

would allow the connection request to be authenti-

Bell Labs Technical Journal ◆ October–December 2000 41

cated and authorized with the help of customer infor-

mation previously stored in an LDAP directory. The

portal would be implemented using EJB/J2EE tech-

nology, allowing it to interface to the “i-Distribute”

engine. The interface to “i-Connect” (or the entire

“i-Connect” application) could be implemented using

EJB/J2EE technology. The “i-Connect” would interact

with the service information database to extract infor-

mation about the specifics of the service requested,

such as class of service and SLA metrics associated

with the class. This information would be processed by

the application to determine QoS parameters needed

to be signaled to the network elements. The “i-Connect”

application would obtain physical/logical port and

topology information from the network information

database, either using direct access via its JDBC

“blade” or using the “i-Engineer” application as a

proxy process (a design choice). A third alternative

*Trademark of Sun Microsystems, Inc.
†Registered trademark of Object Management Group, Inc.

CORBA† – Common Object Request Broker Architecture
EJB* – Enterprise JavaBeans*

IP – Internet protocol
i – “Integrated, intelligent, and innovative”
JDBC* – Java* Database Connectivity
LDAP – Lighweight directory access protocol

OA&M – Operations, administration,
 and maintenance
TCP – Transmission control protocol
TL1 – Transaction Language 1
UI – User interface
XML – Extensible Markup Language

Web browser

Customer
information

database
XML

LDAP
directory

i-TakeCare
portal

EJB* i-Workflow

i-Connect

Service
information

database

Network
information

database

i-Engineer

Optical network elements

UI and
OA&M

LDAP

EJB

TL1 over TCP/IP

CORBA†

JDBC

JDBC*

Figure 3.
The framework (an application view).

42 Bell Labs Technical Journal ◆ October–December 2000

would be for the “i-Connect” application to obtain all

the network-related data directly from the elements,

without any need to access the network data reposi-

tory. Using data entered or subsequently obtained and

processed, the “i-Connect” application can now signal

the connection directly to the optical elements via a

to-be-defined “blade” (a standard—for example, opti-

cal domain service interconnect [ODSI]—or propri-

etary protocol over TCP/IP or SNMP or CORBA,

depending on the protocol supported by the particular

network elements).

Approaching Policy-Based Management
Discussing how this implementation strategy

relates to policy-based management is beyond the

scope of this paper. However, we believe that the

two views presented here and the work that is going

on in the Internet Engineering Task Force (IETF) in

policy management are consistent and complemen-

tary. To illustrate this belief, we offer the following

observations.

Extending the “role-based” strategy beyond the

handling of element and network services would

make for a more powerful strategy. A policy manage-

ment application that will handle QoS policies, secu-

rity policies, and any other administrative (OA&M)

policies for any type of network should be common to

any solution beyond a small-scale customer. While the

policies may differ by market segment or technology

domain, how they are communicated and adminis-

tered is not something that every organization needs

to develop in a vacuum.

Policy management could be further extended as

a complement to the “i-Distribute” application by asso-

ciating rules/policies to handle routing of order infor-

mation, provisioning information, and reporting

information. Furthermore, policies would then be

developed to automatically handle decomposition of a

bundled service into objects that “i-Provision” types of

applications can handle or to compose the results of

“i-Assure” types of applications. The latter would then

be fed into an analysis and diagnosis application that

would weigh the composite assurance result against a

contractual obligation represented by an SLA with a

specific customer (“i-Comply”).

A good example of a market segment where this

type of application is becoming increasingly important

is service providers offering services that cross several

administrative domains and technologies (the so-called

“CyberCarriers,”4 ASP aggregators or services brokers).

A typical service like this would be offering access from

an enterprise or residence to applications hosted in an

Internet data center. The packets exchanged between

the user and an application hosted in a server in the

Internet data center will traverse access equipment,

possibly metro-rings, a core backbone, an Internet data

center LAN infrastructure, servers, and storage—and

those may be either owned or at least administered by

different organizations.

An end-to-end service provider would have to

break up an order for such a service into the appropri-

ate service components (via an “i-FAB” service, with F

for “fulfillment”), which then will be provisioned via

“i-Provision” applications. The “i-Assure” applications

would provide assurance for each of the components

of the service. An “i-FAB” service will then collect all

the assurances from the components of the service and

create a composite assurance report that can be

matched against the contractual obligation. These

types of applications are really technology or service

independent and therefore definitely reusable across

different customer segments.

Conclusions
This paper provides recommendations for the

implementation of an architecture framework that

promotes commonality and simplicity, while at the

same time supporting the flexibility required to

address the challenges service providers face in operat-

ing and leveraging their networks today. It includes a

set of recommendations on how to accomplish such

an integrated framework and justification for those

recommendations. The recommendations take into

account the need for a new vision, while at the same

time providing an opportunity to capitalize on a ven-

dor’s best assets and successful strategies in place. If

implemented, such a framework will provide product

houses with the opportunity to reuse every other

management application created as part of the frame-

work, without forcing product houses into waiting for

Bell Labs Technical Journal ◆ October–December 2000 43

a capability that has not been created yet (therefore

encouraging them to develop it and extend the frame-

work’s value).

Certainly it is desirable to develop some guide-

lines/policies around such flexibility. The most impor-

tant one would have to be that the management

application comply with the evolving framework—to

the point that it either is completely self-contained or

it has been integrated with other applications that

have passed that litmus test beforehand. The vendor’s

product houses that currently build management

applications will have to relinquish some control, since

they will have to rely on other partner organizations

to contribute to the completeness of the solution. This

price will be offset by the benefits associated with

focusing resources on building specific applications

that add the most value for the service providers and

hence produce the greatest major for the software

vendor.

The strategy will be well received regardless of

whether the networking vendor leads with products

or with an integrated end-to-end solution. When lead-

ing with products, the vendor will be able to offer role-

based, focused applications, that either can be easier

integrated into a customer’s solution with multi-

vendor products or can be scaled up to the complete

vendor’s management solution when the customer is

ready. When leading with an integrated solution, this

strategy would be much easier to communicate, sell,

and deploy, because it addresses end-to-end integra-

tion, openness and flexibility and can keep pace with

the innovations in technology.

*Trademarks
CORBA and IIOP are registered trademarks of Object

Management Group, Inc.

EJB, Enterprise JavaBeans, J2EE, Java, and JDBC are
trademarks of Sun Microsystems, Inc.

References
1. K. S. Silverman, M. R. Brenner, and

G. E. Shannon, “Toward a Vision for Network
and Service Management,” Bell Labs Tech. J.,
Vol. 5, No. 4, Oct.–Dec. 2000, pp. 21–30.

2. International Telecommunication Union,
Telecommunication Standardization Sector,
“Principles for a Telecommunications
Management Network (TMN),” Rec. M.3010,
May 1996, <http://www.itu.int/ITU-T>.

3. TeleManagement Forum, “Telecom Operations
Map,” Document GB910, Version 2.1, Mar.
2000, <http://www.tmforum.org>.

4. M. R. Brenner, M. Chu, G. Gross, and M. Malek,
“CyberCarrier Service and Network Manage-
ment,” Bell Labs Tech. J., Vol. 5, No. 4,
Oct.–Dec. 2000, pp. 44–62.

(Manuscript approved March 2001)

WILLIAM C. GOERS is director of Offer Definition,
Broadband Networks Group, at Lucent
Technologies in Holmdel, New Jersey. He
leads a group of networking engineers and
architects in defining high-level solutions to
help Lucent’s customers meet their business

objectives. These solutions, or “offers,” are based on
industry-leading technologies from across the full
breadth of Lucent’s product portfolio. Each focuses on
providing value-added services to end-users. With many
years of experience in communications technology,
Mr. Goers has worked with compressed digital video
conferencing control systems, satellite communications
network control and monitoring systems, packet data
communications systems, and digital cross connects.
A member of IEEE, he holds M.S.E.E. and B.S.E.E degrees
from Texas A&M University in College Station.

MICHAEL R. BRENNER is a technical manager in the
Network Solutions Architecture Depart-
ment at Lucent Technologies in Holmdel,
New Jersey. He leads a group of architects
who define service and network manage-
ment and application architecture in sup-

port of Lucent’s network-hosted services solutions. He
joined Bell Labs to work on applied expert systems and
OSSs after an extensive career in software design and
development for real-time systems, medical imaging
processing, and pioneering work in picture archiving
and communication systems. Later, he developed and
managed network management software for Lucent’s
ATM switches and for forward-looking technologies,
such as mobile agents and policy management.
Mr. Brenner holds B.S. and M.S. degrees in computer
science from the Polytechnic Institute in Bucharest,
Romania. ◆

