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n important characteristic of large computer net-
works such as the Internet, the World Wide Web,

and corporate intranets is that they are heterogeneous. For
example, a corporate intranet might be made up of main-
frames, UNIX workstations and servers, PC systems running
various flavors of Microsoft Windows, IBM OS/2, or Apple
Macintosh, and perhaps even devices such as telephone
switches, robotic arms, or manufacturing testbeds. The net-
works and protocols underlying and connecting these systems
might be just as diverse: Ethernet, fiber distributed data inter-
face (FDDI), asynchronous transfer mode (ATM), Transmis-
sion Control Protocol/Internet Protocol (TCP/IP), Novell
Netware, and various remote procedure call (RPC) [1] systems,
for example. Fundamentally, the rapidly increasing extents of
these networks are due to the need to share information and
resources within and across diverse computing enterprises.

Heterogeneity in such computing systems is the result of
several factors.

Engineering Trade-offs — There is rarely only a single
acceptable solution to a complex engineering problem. As a
result, different people across an enterprise often choose dif-
ferent solutions to similar problems.

Cost Effectiveness — Vendors vary in their abilities to pro-
vide the “best” systems at the lowest cost. Though there is

some amount of “brand name loyalty,” many consumers tend
to buy the systems that best fulfill their requirements at the
most reasonable price, regardless of who makes them.

Legacy Systems — Over time, purchasing decisions accumu-
late, and already-purchased systems may be too critical or
costly to replace. For example, a company that has been suc-
cessfully running its order fulfillment applications, which are
critical to its day-to-day operations, on its mainframe for the
last 15 years is not likely to simply scrap its system and
replace it with the latest fad technologies. Alternatively, a
company may have spent large sums of money on its current
systems, and those systems must be utilized until the invest-
ment has paid off.

Ideally, heterogeneity and open systems enable us to use
the best combination of hardware and software components
for each portion of an enterprise. When the right standards
for interoperability and portability between these components
are in place, the integration of the components yields a system
that is coherent and operational.

Unfortunately, dealing with heterogeneity in distributed
computing enterprises is rarely easy. In particular, the devel-
opment of software applications and components that support
and make efficient use of heterogeneous networked systems is
very challenging. Many programming interfaces and packages
currently exist to help ease the burden of developing software
for a single homogeneous platform. However, few help deal
with the integration of separately developed systems in a dis-
tributed heterogeneous environment.

In recognition of these problems, the Object Management
Group (OMG)® was formed in 1989 to develop, adopt, and
promote standards for the development and deployment of
appli- cations in distributed heterogeneous environments.
Since that time, the OMG has grown to become the largest
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software consortium in the world,
with over 700 developers, vendors,
and end users on its membership ros-
ter. These members contribute tech-
nology and ideas in response to
requests for proposals (RFPs)
issued by the OMG. Through
responses to these RFPs, the OMG
adopts specifications based on com-
mercially available object technology.

This article describes the
OMG’s Object Management Archi-
tecture (OMA) [2] and focuses on
one of its key components, the
Common Object Request Broker Architecture (CORBA)
specification [3]. First, a brief high-level overview of the OMA
is provided, followed by a detailed outline of CORBA and
each of its subcomponents. The summary section lists some of
the OMG’s current and future plans for further promoting
distributed object technology.

THE OBJECT MANAGEMENT ARCHITECTURE

T he OMA is composed of an Object Model and a Reference
Model. The Object Model defines how objects distributed

across a heterogeneous environment can be described, while
the Reference Model characterizes interactions between those
objects. The OMG RFP process is used to adopt technology
specifications that fit into the Object Model and Reference
Model and work with the other previously adopted specifica-
tions. Through adherence to the OMA, these specifications
allow the development and deployment of interoperable dis-
tributed object systems in heterogeneous environments.

In the OMA Object Model, an object is an encapsulated
entity with a distinct immutable identity whose services can be
accessed only through well-defined interfaces. Clients issue
requests to objects to perform services on their behalf. The
implementation and location of each object are hidden from
the requesting client.

Figure 1 shows the components of the OMA Reference
Model. The object request broker (ORB) component is main-
ly responsible for facilitating communication between clients
and objects. Utilizing the ORB component are four object
interface categories, described below.

OBJECT SERVICES

These are domain-independent
interfaces that are used by many
distributed object programs. For
example, a service providing for
the discovery of other available
services is almost always necessary
regardless of the application
domain. Two examples of Object
Services that fulfill this role are:

The Naming Service — which
allows clients to find objects based
on names

The Trading Service — which allows clients to find objects
based on their properties

There are also Object Service specifications for lifecycle
management, security, transactions, and event notification, as
well as many others [4].

COMMON FACILITIES
Like Object Service interfaces, these interfaces are also hori-
zontally oriented, but unlike Object Services they are oriented
toward end-user applications. An example of such a facility is
the Distributed Document Component Facility (DDCF) [5], a
compound document Common Facility based on OpenDoc.™
DDCF allows for the presentation and interchange of objects
based on a document model, for example, facilitating the link-
ing of a spreadsheet object into a report document.

DOMAIN INTERFACES
These interfaces fill roles similar to Object Services and Com-
mon Facilities but are oriented toward specific application
domains. For example, one of the first OMG RFPs issued for
domain interfaces is for Product Data Management (PDM)
Enablers3 for the manufacturing domain [6]. Other OMG
RFPs will soon be or already have been issued in the telecom-
munications, medical, and financial domains. In Fig. 1, multi-
ple boxes are shown for Domain Interfaces to indicate the
existence of many separate application domains.

APPLICATION INTERFACES
These are interfaces developed specifically for a given applica-
tion. Because they are application-specific, and because the
OMG does not develop applications (only specifications),
these interfaces are not standardized. However, if over time it
appears that certain broadly useful services emerge out of a
particular application domain, they might become candidates
for future OMG standardization.

Figure 2 illustrates the other part of the OMA Reference
Model, the concept of Object Frameworks. These are domain-
specific groups of objects that interact to provide a customiz-
able solution within that application domain. These
frameworks are typically oriented toward domains such as
telecommunications, medical systems, finance, and manufac-
turing. In Fig. 2, each circle represents a component that uses
the ORB to communicate with other components. The inter-
faces supported by each component are indicated on its outer
circle. As the figure shows, some components support applica-

■ Figure 1. OMA reference model interface cate-
gories.

■ Figure 2. OMA Reference Model interface usage.

3 “Enabler” is a term derived from Total Quality Management principles.
It is simply defined as any entity, such as a computer program or human
activity, that provides or supports an abstract business process (e.g., han-
dling engineering change orders).
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tion-specific interfaces, as well as domain interfaces, common
facilities interfaces, and object services. Other components
support only a subset of these interfaces.

Within an object framework like the one shown in Fig. 2,
each component communicates with others on a peer-to-peer
basis. That is, each component is both a client of other ser-
vices and a server for the services it provides. In CORBA, the
terms “client” and “server” are merely roles that are filled on
a per-request basis. Very often, a client for one request is the
server for another.

Throughout most of its existence, much of the OMG’s
attention was focused on the ORB component of the OMA.
This was necessary because everything else in the OMA
depends on the ORB. The rest of this article will focus on the
ORB, its components, and how it is used to support distribut-
ed object systems. For more information about the upper lay-
ers of the OMA, see [7] or visit the OMG home page on the
Web at http://www.omg.org/.

THE COMMON OBJECT REQUEST
BROKER ARCHITECTURE

One of the first specifications to be adopted by the OMG
was the CORBA specification. It details the interfaces

and characteristics of the ORB component of the OMA. As
of this writing, the last major update of the CORBA specifica-
tion was in mid-1995 when the OMG released CORBA 2.0
[3]. The main features of CORBA 2.0 are:
• ORB Core 
• OMG Interface Definition Language (OMG IDL) 
• Interface Repository 
• Language Mappings 
• Stubs and Skeletons 
• Dynamic Invocation and Dispatch 
• Object Adapters 
• Inter-ORB Protocols

Most of these are illustrated in Fig. 3, which also shows
how the components of CORBA relate to one another. Each
component is described in detail below.

ORB CORE
As mentioned above, the ORB delivers requests to objects
and returns any responses to the clients making the requests.
The object to which a client wishes the ORB to direct a
request is called the target object. The key feature of the ORB
is its transparency in facilitating client–object communication.
Ordinarily, the ORB hides the following:

Object Location — The client does not know where the target
object resides. It could reside in a different process on anoth-

er machine across the network, on the same machine
but in a different process, or within the same process.

Object Implementation — The client does not
know how the target object is implemented, in which
programming or scripting language(s) it was written,
nor the operating system (if any) and hardware on
which it executes.

Object Execution State — When it makes a request
on a target object, the client does not need to know
whether that object is currently activated (i.e., in an exe-
cuting process) and ready to accept requests. The ORB
transparently starts the object if necessary before deliv-
ering the request to it.

Object Communication Mechanisms — The client does
not know what communication mechanisms (e.g., TCP/IP,
shared memory, local method call) the ORB uses to deliver
the request to the object and return the response to the client.

These ORB features allow application developers to worry
more about their own application domain issues and less
about low-level distributed system programming issues.

To make a request, the client specifies the target object by
using an object reference. When a CORBA object is created,
an object reference for it is also created. When used by a
client, an object reference always refers to the object for
which it was created as long as that object exists. In other
words, an object reference only ever refers to one single
object. Object references are both immutable and opaque, so
a client cannot “reach into” the object reference and modify
it. Only an ORB knows what is “inside” an object reference.
Object references can have standardized formats, such as
those for the OMG standard Internet Inter-ORB Protocol and
Distributed Computing Environment Common Inter-ORB Proto-
col (both of which are described later), or they can have pro-
prietary formats.

Clients can obtain object references in several different
ways.

Object Creation — A client can create a new object in order
to get an object reference. Note that CORBA has no special
client operations for object creation; making objects is done
by invoking creation requests, which are just ordinary opera-
tion invocations, on other objects called factory objects. A cre-
ation request returns an object reference for the newly
created object to the client.

Directory Service — A client can invoke a lookup service of
some kind in order to obtain object references. Two Object
Services mentioned above, the Naming Service and the Trader
Service, allow clients to obtain object references by name or
by properties of the object, respectively. Unlike factory
objects, these services do not create new objects. They store
object references and associated information (e.g., names and
properties) for existing objects, and supply them upon request.

Convert to String and Back — An application can ask the
ORB to turn an object reference into a string, and this string
can be stored into a file or a database. Later, the string can be
retrieved from persistent storage and turned back into an
object reference by the ORB. Even after being stringified and
destringified in this manner, it can still be used to make
requests on the object as long as the object exists.

Since CORBA has no special object creation operations,
object references are always obtained by making requests on

■ Figure 3. Common Object Request Broker Architecture.
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other objects. This begs the question of how an application
can bootstrap itself and obtain an initial object reference. Not
surprisingly, the ORB provides a small, simple “naming ser-
vice” of its own to provide applications with object references
of more general directory services like Naming and Trader.
For example, by passing the string NameService to the
ORB’s resolve_initial_references operation, an appli-
cation can obtain an object reference for the Naming Service
that is known to its ORB.

The fact that CORBA has no special object creation func-
tions or built-in directory services is indicative of a key theme
of CORBA: Keep the ORB as simple as possible, and push as
much functionality as possible to other OMA components such
as Object Services and Common Facilities.2 The job of the
ORB is to simply provide the communication and activation
infrastructure for distributed object applications.

OMG INTERFACE DEFINITION LANGUAGE
Before a client can make requests on an object, it must know
the types of operations supported by the object. An object’s
interface specifies the operations and types that the object sup-
ports and thus defines the requests that can be made on the
object. Interfaces for objects are defined in the OMG Inter-
face Definition Language (OMG IDL). Interfaces are similar
to classes in C++ and interfaces in Java. An example OMG
IDL interface definition is:

// OMG IDL
interface Factory

{ Object create();
};

This definition specifies an interface named Factory that
supports one operation, create. The create operation takes
no parameters and returns an object reference of type
Object. Given an object reference for an object of type Fac-
tory, a client could invoke it to create a new CORBA object.
This interface might be supported by one of the factory
objects mentioned above, for example.

An important feature of OMG IDL is its language indepen-
dence. Since OMG IDL is a declarative language, not a pro-
gramming language, it forces interfaces to be defined
separately from object implementations. This allows objects to
be constructed using different programming languages and yet
still communicate with one another. Language-independent
interfaces are important within heterogeneous systems, since
not all programming languages are supported or available on
all platforms.

OMG IDL provides a set of types that are similar to
those found in a number of programming languages. It pro-
vides basic types such as long, double, and boolean, con-
structed types such as struct and discriminated union, and
template types such as sequence and string. Types are
used to specify the parameter types and return types for
operations. As seen in the example above, operations are
used within interfaces to specify the services provided by
those objects that support that particular interface type. To
define exceptional conditions that may arise during the
course of an operation, OMG IDL provides exception def-
initions. Like structs, OMG IDL exceptions may have
one or more data members of any OMG IDL type. The
OMG IDL module construct allows for scoping of definition
names to prevent name clashes. The OMG IDL type system
is described below.

Built-in Types — OMG IDL supports the following built-in
types:
• long (signed and unsigned) — 32-bit arithmetic types
• long long (signed and unsigned) — 64-bit arithmetic

types
• short (signed and unsigned) — 16-bit arithmetic

types
• float, double, and long double — IEEE 754-1985

floating point types
• char and wchar — character and wide character types
• boolean – Boolean type
• octet — 8-bit value3

• enum — enumerated type
• any — a tagged type that can hold a value of any OMG

IDL type, including built-in types and user-defined
types
The CORBA specification precisely defines the sizes of all

the basic types to ensure interoperability across heteroge-
neous hardware platforms.

Constructed Types — OMG IDL also supports constructed
types:
• struct — data aggregation construct (similar to structs

in C/C++).
• Discriminated union — a type composed of a type dis-

criminator and a value of one of several possible OMG
IDL types specified in the union definition. OMG IDL
unions are similar to unions in C/C++, with the addi-
tion of the discriminator that keeps track of which alter-
native is currently valid.

Template Types — In addition, OMG IDL supports tem-
plate types whose exact characteristics are defined at declara-
tion time:
• string and wstring — string and wide-character

string types. Both unbounded strings/wstrings and
bounded strings/wstrings can be declared. For
example, a string with a maximum length of 10 charac-
ters requires angle brackets to specify the bound:
string<10>. An unbounded string, which has no length
limit, is simply specified as string with no angle brack-
ets or bound numbers.

• sequence — a dynamic-length linear container whose
maximum length and element type can be specified in
angle brackets. For example, sequence<Factory>
defines an unbounded sequence of Factory object refer-
ences, while sequence<string,10> defines a bounded
sequence of no more than 10 strings.

• fixed — a fixed-point decimal value with no more than
31 significant digits. For example, fixed<5,2> has a
precision of 5 digits and a scale of 2, which might be
used to represent a monetary value in dollars, up to
$999.99, with accuracy to 1 cent.

Object Reference Types — OMG IDL object reference
types can simply be declared by naming the desired interface
type. For example:

// OMG IDL
interface FactoryFinder {

// define a sequence of Factory
// object references
typedef sequence<Factory> FactorySeq;

2 This theme of “separating components” occurs again later in the discus-
sion of other ORB components such as the Object Adapter.

3 An octet is guaranteed not to undergo conversions when transmitted over
a network by the ORB.
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FactorySeq find_factories(
in string interface_name 

);
};

This OMG IDL specification defines an interface named
FactoryFinder4 that contains the definition of a type named
FactorySeq . The FactorySeq type is defined as an
unbounded sequence of Factory object references. The
find_factories operation takes an unbounded string type
as an input argument and returns an unbounded sequence of
Factory object references as its result.

Interface Inheritance — An important feature of OMG
IDL interfaces is that they can inherit from one or more other
interfaces. This makes it possible to reuse existing interfaces
when defining new services. For example, look at the follow-
ing OMG IDL specification:

// Same as OMG IDL example above
interface Factory { 

Object create(); 
};

// Forward declaration of Spreadsheet 
// interface (full definition not shown)
interface Spreadsheet;

// SpreadsheetFactory derives from Factory
interface SpreadsheetFactory : Factory { 

Spreadsheet create_spreadsheet(); 
};

In this example, the SpreadsheetFactory interface
inherits from the Factory interface, so an object supporting
the SpreadsheetFactory interface provides two operations:
• The create operation inherited from Factory
• The create_spreadsheet operation defined directly in

the SpreadsheetFactory interface
Interface inheritance is very important in CORBA. It

allows the system to be open for extension while keeping it
closed for modification, which is called the Open-Closed Prin-
ciple [8, 9]. Since a derived interface inherits all operations
defined in all its base interfaces, objects supporting the
derived interface must also support all inherited operations.
This allows object references for derived interfaces to be sub-
stituted anywhere object references for base interfaces are
allowed.

For example, a SpreadsheetFactory object reference
can be used anywhere that a Factory object reference is
expected because a SpreadsheetFactory supports all Fac-
tory operations. The new capabilities of SpreadsheetFac-
tory objects can therefore be added to the system without
requiring changes to either existing applications that use the
Factory interface, or to the Factory interface itself.

OMG IDL has one special case of interface inheritance: all
interfaces are implicitly derived from the Object interface
defined in the CORBA module. It is as if each interface defini-
tion were written as follows:

// CORBA::Object is the base interface
// for all interfaces
interface Factory : Object { ... };

Since this inheritance from CORBA::Object5 is automatic
for every OMG IDL interface, it need not be explicitly
declared as shown here.

The OMG IDL type system is sufficient for most distribut-
ed applications, but at the same time is minimal and will be
kept that way. Keeping OMG IDL as simple as possible
means it can be used with many more programming languages
(ranging from COBOL to Java to C++) than if it contained
types that could not be realized in some popular programming
languages. Given the inevitable heterogeneity of distributed
object systems, the simplicity of OMG IDL is critical to the
success of CORBA as an integration technology.

LANGUAGE MAPPINGS
As mentioned above, OMG IDL is just a declarative lan-
guage, not a full-fledged programming language. As such, it
does not provide features like control constructs, nor is it
directly used to implement distributed applications. Instead,
language mappings determine how OMG IDL features are
mapped to the facilities of a given programming language.

At the time of this writing, the OMG has standardized lan-
guage mappings for C, C++, Smalltalk, and Ada 95. Like-
wise, mappings for the UNIX Bourne shell and COBOL are
nearing completion. A mapping for the Java language is just
beginning, but is slated to finish quickly to keep up with the
high demand for Java/CORBA integration. Language map-
pings for other languages such as Perl, Eiffel, and Modula-3
have also been written by various interested parties, but have
not been submitted to the OMG for approval.

To understand what a language mapping contains, consider
the mapping for the C++ language. Not surprisingly, OMG
IDL interfaces map to C++ classes, with operations mapping
to member functions of those classes. Object references map
to objects that support the operator-> function (i.e., either a
normal C++ pointer to an interface class, or an object
instance with an overloaded operator->). Modules map to
C++ namespaces (or to nested classes for C++ compil-
ers that do not yet support namespaces). Mappings for the
rest of the OMG IDL types are shown in Table 1.

Another important aspect of an OMG IDL language map-
ping is how it maps the ORB interface and other pseudo-
objects that are found in the CORBA specification.
Pseudo-objects are ORB interfaces that are not implicitly
derived from CORBA::Object, such as the ORB itself.6 In
other words, pseudo-objects are not real CORBA objects, but
specifying such interfaces just as normal object interfaces are
specified allows applications to manipulate the ORB much
like they manipulate normal objects.

A third important part of any language mapping specifica-
tion is how CORBA objects are implemented in the language.
In object-oriented languages such as Java, Smalltalk, and
C++, for example, CORBA objects are implemented as pro-
gramming language objects. In C, objects are written as
abstract data types. For instance, a typical implementation
consists of a struct that holds the state of the object and a
group of C functions (which correspond to the OMG IDL

5 Within an IDL specification, the keyword Object is used to mean
CORBA::Object; use of the fully scoped name is not allowed.

6 For some of the pseudo-objects in the CORBA 2.0 Specification, another
differentiating characteristic is that they are defined using non-IDL expres-
sions. Some people consider this a feature, while others consider it a defect
in the specification. Because of such disagreements, groups within the
OMG are currently working to eliminate pseudo-objects and ensure that
all CORBA interfaces are defined in normal OMG IDL.

4 The notion of a “factory finder” comes from the OMG Common Object
Services Lifecycle Specification. It is a directory service object for factories
that helps applications control the locations at which they create objects.
For simplicity, the FactoryFinder interface shown here is not the same as
the standard interface defined in the Lifecycle Specification.
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operations supported by the object)
to manipulate that state.

OMG IDL language mappings
are where the abstractions and con-
cepts specified in CORBA meet the
“real world” of implementation.
Thus, their importance for CORBA
applications cannot be overstated.
A poor or incomplete mapping
specification for a given language
results in programmers being
unable to effectively utilize CORBA
technology in that language. Lan-
guage mapping specifications are
therefore always undergoing period-
ic improvement in order to incorpo-
rate evolution of programming
languages, as well as to add features
that fulfill new requirements discov-
ered by writing new applications.

INTERFACE REPOSITORY
Every CORBA-based application
requires access to the OMG IDL
type system when it is executing.
This is necessary because the appli-
cation must know the types of val-
ues to be passed as request
arguments. In addition, the application must know the types
of interfaces supported by the objects being used.

Many applications require only static knowledge of the
OMG IDL type system. Typically, an OMG IDL specification
is compiled or translated into code for the application’s pro-
gramming language by following the translation rules for that
language as defined by its language mapping. Then this gener-
ated code is built directly into the application. With this
approach, the application’s knowledge of the OMG IDL type
system is fixed when it is built. If the type system of the rest of
the distributed system ever changes in a way that is incompati-
ble with the type system built into the application, the applica-
tion must be rebuilt. For example, if a client application
depends on the Factory interface, and the name of the cre-
ate operation in the Factory interface is changed to cre-
ate_object, the client application will have to be rebuilt
before it can make requests on any Factory objects.

There are some applications, however, for which static
knowledge of the OMG IDL type system is impractical. For
example, consider a Gateway that allows applications in a foreign
object system (such as Microsoft Component Object Model,
or COM, applications) to access CORBA objects. Having to
recompile and rebuild the Gateway every time someone adds
a new OMG IDL interface type to the system would result in
a very difficult management and maintenance problem.
Instead, it would be much better if the Gateway could dynami-
cally discover and utilize type information as needed.

The CORBA Interface Repository (IR) allows the OMG
IDL type system to be accessed and written programmatically
at runtime. The IR is itself a CORBA object whose opera-
tions can be invoked just like any other CORBA object. Using
the IR interface, applications can traverse an entire hierarchy
of OMG IDL information. For example, an application can
start at the top-level scope of the IR and iterate over all of
the module definitions defined there. When the desired mod-
ule is found, it can open it and iterate in a similar manner
over all the definitions inside it. This hierarchical traversal
approach can be used to examine all the information stored
within an IR.

Another way to access IR infor-
mation, perhaps more efficiently,
is  to obtain an InterfaceDef
object reference from the
get_interface operation
defined in the CORBA::Object
interface. Since all interfaces are
derived from CORBA::Object ,
every object supports the
get_interface operation. Thus,
an InterfaceDef object refer-
ence can be obtained for every
object without having to know the
derived types of interfaces sup-
ported by that object.

Since the IR allows applications
to programmatically discover type
information at runtime, its real utili-
ty lies in its support of CORBA
dynamic invocation (described
later). It can also be used as a
source for generating static support
code for applications, as described
in the next section, since the OMG
IDL definitions in the IR are equiv-
alent to those written in an OMG
IDL file.

STUBS AND SKELETONS
In addition to generating programming language types, OMG
IDL language compilers and translators also generate client-
side stubs and server-side skeletons. A stub is a mechanism
that effectively creates and issues requests on behalf of a
client, while a skeleton is a mechanism that delivers requests
to the CORBA object implementation. Since they are trans-
lated directly from OMG IDL specifications, stubs and skele-
tons are normally interface-specific.

Dispatching through stubs and skeletons is often called
static invocation. OMG IDL stubs and skeletons are built
directly into the client application and the object implementa-
tion. Therefore, they both have complete a priori knowledge
of the OMG IDL interfaces of the CORBA objects being
invoked.

Language mappings usually map operation invocation to
the equivalent of a function call in the programming language.
For example, given a Factory object reference in C++, the
client code to issue a request looks like this:

// C++
Factory_var factory_objref;

// Initialize factory_objref using Naming
// or Trading Service (not shown), then
issue request
Object_var objref = factory_objref->create();

This code makes the invocation of the create operation
on the target object appear as a regular C++ member func-
tion call. However, what this call is really doing is invoking a
stub. Because the stub essentially is a stand-in within the local
process for the actual (possibly remote) target object, stubs
are sometimes called surrogates or proxies. The stub works
directly with the client ORB to marshal the request. That is,
the stub helps to convert the request from its representation
in the programming language to one suitable for transmission
over the connection to the target object.

Once the request arrives at the target object, the server
ORB and the skeleton cooperate to unmarshal the request

■ Table 1. C++ mappings for OMG IDL types.

long, short long, short

float, double float, double

enum enum

char char

boolean bool

octet unsigned char

any Any class

struct struct

union Class

string char*

wstring wchar_t*

sequence Class

fixed Fixed template class

Object reference Pointer or object

Interface Class

OMG IDL type C++ mapping type
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(convert it from its transmissible form
to a programming language form) and
dispatch it to the object. Once the
object completes the request, any
response is sent back the way it came:
through the skeleton and the server
ORB, over the connection, and then
back through the client ORB and stub,
before finally being returned to the
client application. Figure 3 shows the
positions of the stub and skeleton in
relation to the client application, the
ORB, and the object implementation.

This description shows that stubs
and skeletons play important roles in connecting the program-
ming language world to the underlying ORB. In this sense they
are each a form of the Adapter and Proxy patterns [10]. The
stub adapts the function call style of its language mapping to
the request invocation mechanism of the ORB. The skeleton
adapts the request dispatching mechanism of the ORB to the
upcall method form expected by the object implementation.

DYNAMIC INVOCATION AND DISPATCH
In addition to static invocation via stubs and skeletons,
CORBA supports two interfaces for dynamic invocation:
• Dynamic Invocation Interface (DII) — supports dynamic

client request invocation
• Dynamic Skeleton Interface (DSI) — provides dynamic

dispatch to objects
The DII and DSI can be viewed as a generic stub and gener-

ic skeleton, respectively. Each is an interface provided directly
by the ORB, and neither is dependent on the OMG IDL
interfaces of the objects being invoked.

Dynamic Invocation Interface — Using the DII, a client
application can invoke requests on any object without having
compile-time knowledge of the object’s interfaces. For exam-
ple, consider the foreign object Gateway described above.
When an invocation is received from the foreign object sys-
tem, the Gateway must turn that invocation into a request dis-
patch to the desired CORBA object. Recompiling the
Gateway program to include new static stubs every time a new
CORBA object is created is impractical. Instead, the Gateway
can simply use the DII to invoke requests on any CORBA
object. The DII is also useful for interactive programs such as
browsers which can obtain the values necessary to supply the
arguments for the object’s operations from the user.

It is through the create_request operation provided by
the CORBA::Object interface that applications create
Request pseudo-objects. Since every OMG IDL interface is
derived from CORBA::Object, every object automatically sup-
ports create_request. By calling this operation on an object
reference for the target object, an application can create a
dynamic request for that object. Before the request can be
invoked, argument values must be provided for the request by
invoking operations directly on the Request pseudo-object.
The types of the arguments can be determined using the IR.

Once a Request pseudo-object has been created and argu-
ment values have been added to it, it can be invoked in one of
three ways.

Synchronous Invocation — The client invokes the request,
and then blocks waiting for the response. From the client’s
perspective, this is essentially equivalent in behavior to an
RPC. This is the most common invocation mode used for
CORBA applications because it is also supported by static
stubs.

Deferred Synchronous Invocation —
The client invokes the request, con-
tinues processing while the request is
dispatched, and later collects the
response. This is useful if the client
has to invoke a number of indepen-
dent long-running services. Rather
than invoking each one serially and
blocking for each response, all
requests can be issued in parallel,
and responses can be collected as
they arrive.

One-Way Invocation — The client
invokes the request and then continues processing; there is no
response. This form is sometimes called “fire and forget”
because the only way the client can tell that the request is
received is by some other means (e.g., having the object
invoke a separate callback request when the first request com-
pletes successfully).

Currently, CORBA applications that require the ability to
invoke requests using something other than a synchronous or
one-way model must use the DII. This is because the deferred
synchronous request invocation capability is currently only
provided by the DII. However, this restriction will soon be
removed. Recently, the OMG issued an RFP for an Asyn-
chronous Messaging Service [11] that should result in the adop-
tion of technology for higher-level communications models,
such as store-and-forward services for the ORB. This RFP
also requests technology for supporting deferred synchronous
request invocation via static stubs.

While the DII offers more flexibility than static stubs, users
of the DII should also be sure they are aware of its hidden
costs [12, 13]. In particular, creating a DII request may cause
the ORB to transparently access the IR to obtain information
about the types of the arguments and return value. Since the
IR is itself a CORBA object, each transparent IR request
made by the ORB could, in fact, be a remote invocation.
Thus, the creation and invocation of a single DII request
could actually require several actual remote invocations, mak-
ing a DII request several times more costly than an equivalent
static invocation. Static invocations do not suffer from the
overhead of accessing the IR since they rely on type informa-
tion already compiled into the application.

Dynamic Skeleton Interface — Analogous to the DII is the
server-side DSI. Just as the DII allows clients to invoke
requests without having access to static stubs, the DSI allows
servers to be written without having skeletons for the objects
being invoked compiled statically into the program.

The foreign object Gateway described above is a good
example of an application that requires DSI functionality. A
bidirectional Gateway must be able to act as both client and
server — it must translate requests from the foreign object
system into requests on CORBA objects, and turn requests
from CORBA applications into foreign object invocations. As
mentioned above, it can use the DII when it wants to act as a
client. To act as a server, however, it needs a server-side
equivalent of the DII, allowing it to accept requests without
requiring that static skeletons for each object’s interface type
be compiled into it. Requiring that the Gateway be recom-
piled each time a new OMG IDL interface was introduced
into the CORBA side of the system would not work well in
practice.

Unlike most of the other CORBA subcomponents, which
were part of the initial CORBA specification, the DSI was
only introduced at CORBA 2.0. The main reason for its intro-

■ Figure 4. Role of an object adapter.
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duction was to support the implementation of gateways
between ORBs utilizing different communications protocols.
Even though inter-ORB protocols were also introduced at
CORBA 2.0, it was thought by some at the time that gateways
would become the method of choice for ORB interoperation.
Given that most commercially available ORB systems already
support the standard Internet Inter-ORB Protocol (IIOP)
(described below), this prediction does not appear to have
come true. Still, the DSI is a useful feature for a certain class
of applications, especially for bridges between ORBs and for
applications that serve to bridge CORBA systems to non-
CORBA services and implementations.

OBJECT ADAPTERS
The final subcomponent of CORBA, the Object Adapter
(OA), serves as the glue between CORBA object implementa-
tions and the ORB itself. As described by the Adapter pattern
[10], an object adapter is an object that adapts the interface of
another object to the interface expected by a caller. In other
words, it is an interposed object that uses delegation to allow
a caller to invoke requests on an object even though the caller
does not know that object’s true interface. Figure 4 illustrates
the role of an object adapter.

Object adapters represent another aspect of the effort to
keep the ORB as simple as possible. Responsibilities of object
adapters include:
• Object registration — OAs supply operations that allow

programming language entities to be registered as imple-
mentations for CORBA objects. Details of exactly what
is registered and how the registration is accomplished
depend on the programming language.

• Object reference generation — OAs generate object refer-
ences for CORBA objects.

• Server process activation — If necessary, OAs start up
server processes in which objects can be activated.

• Object activation — OAs activate objects if they are not
already active when requests arrive for them.

• Request demultiplexing — OAs must cooperate with the
ORB to ensure that requests can be received over multi-
ple connections without blocking indefinitely on any sin-
gle connection.

• Object upcalls — OAs dispatch requests to registered
objects.
Without object adapters, the ability of CORBA to support

diverse object implementation styles would be severely com-
promised. The lack of an object adapter would mean that
object implementations would connect themselves directly to
the ORB to receive requests. Having a standard set of just a
few object upcall interfaces would mean that only a few styles
of object implementation could ever be supported. Alterna-
tively, standardizing many object upcall interfaces would add
unnecessary size and complexity to the ORB itself.

Therefore, CORBA allows for multiple object adapters
(Fig. 3). A different object adapter is normally necessary for
each different programming language. For example, an object
implemented in C would register itself with the object adapter
by providing a pointer to a struct holding its state along
with a set of function pointers corresponding to the opera-
tions defined by its OMG IDL interfaces. Contrast that with a
C++ object adapter, which would allow an object implemen-
tation to be derived from a standardized object adapter base
class that provides the upcall interface. Using the C language
object adapter for C++ object implementations or vice versa
would be unnatural to programmers in either language.

Though CORBA states that multiple object adapters are
allowed, it currently only provides one: the Basic Object
Adapter (BOA). When it was first specified, it was hoped that

the BOA would suffice for the majority of object implementa-
tions, and that other object adapters would only fill niche roles.
What the BOA designers failed to realize was that object
adapters tend to be very language-specific due to their close
proximity to programming language objects. As a result of the
goal to make the BOA support multiple languages, the BOA
specification had to be made quite vague in certain areas, such
as how to register programming language objects as CORBA
objects. This, in turn, has resulted in nontrivial portability prob-
lems between BOA implementations because each ORB ven-
dor has filled in the missing pieces with proprietary solutions.

Fortunately, the OMG has recognized this problem and is
currently actively working to solve it. It recently issued a
Portability Enhancement RFP [14] that will result in the
adoption of specifications for standard portable object
adapters. The OMG should complete its work on the RFP
around mid-1997, meaning that portable object adapters
should be commercially available by the end of 1997.

INTER-ORB PROTOCOLS
Before CORBA 2.0, one of the biggest complaints about com-
mercial ORB products was that they did not interoperate.
Lack of interoperability was caused by the fact that the
CORBA specification did not mandate any particular data
formats or protocols for ORB communications. The main rea-
son that CORBA did not specify ORB protocols prior to
CORBA 2.0 was simply that interoperability was not a focus
of the OMG at that time.

CORBA 2.0 introduced a general ORB interoperability
architecture that provides for direct ORB-to-ORB interoper-
ability and bridge-based interoperability. Direct interoperabili-
ty is possible when two ORBs reside in the same domain — in
other words, they understand the same object references and
OMG IDL type system, and perhaps share the same security
information. Bridge-based interoperability is necessary when
ORBs from separate domains must communicate. The role of
the bridge is to map ORB-specific information from one ORB
domain to the other.

The general ORB interoperability architecture is based on
the General Inter-ORB Protocol (GIOP), which specifies
transfer syntax and a standard set of message formats for
ORB interoperation over any connection-oriented transport.
GIOP is designed to be simple and easy to implement while
still allowing for reasonable scalability and performance.

The IIOP specifies how GIOP is built over TCP/IP trans-
ports. In a way, the relationship between IIOP and GIOP is
somewhat like the relationship between an object’s OMG IDL
interface definition and its implementation. GIOP specifies
protocol, just as an OMG IDL interface effectively defines the
protocol between an object and its clients. IIOP, on the other
hand, determines how GIOP can be implemented using
TCP/IP, just as an object implementation determines how an
object’s interface protocol is realized. For a CORBA 2.0
ORB, support for GIOP and IIOP is mandatory.

The ORB interoperability architecture also provides for
other environment-specific inter-ORB protocols (ESIOPs).
ESIOPs allow ORBs to be built for special situations in which
certain distributed computing infrastructures are already in use.
The first ESIOP, which utilizes the Distributed Computing
Environment (DCE) [15], is called the DCE Common Inter-
ORB Protocol (DCE-CIOP). It can be used by ORBs in envi-
ronments where DCE is already installed. This allows the ORB
to leverage existing DCE functions, and allows for easier inte-
gration of CORBA and DCE applications. Support for DCE-
CIOP or any other ESIOP by a CORBA 2.0 ORB is optional.

In addition to standard interoperability protocols, standard
object reference formats are also necessary for ORB interop-
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erability. While object references are opaque to applications,
ORBs use the contents of object references to help determine
how to direct requests to objects. CORBA specifies a stan-
dard object reference format called the Interoperable Object
Reference (IOR).7 An IOR stores information needed to
locate and communicate with an object over one or more pro-
tocols. For example, an IOR containing IIOP information
stores host name and TCP/IP port number information.

Most commercially available ORB products already sup-
port IIOP and IORs and have been tested to ensure interop-
erability. Interoperability testing is currently done directly
between ORB vendors rather than by an independent con-
formance-testing body. One interesting exception to this rule
is an interoperability testbed called CORBAnet [16], which
was established by the OMG to help facilitate ORB interop-
erability testing and prove commercial viability. CORBAnet
is an interactive meeting room booking system implemented
over a number of interoperating commercial ORB products
on a variety of hardware platforms. It can be used interac-
tively via a Web browser by accessing http://corbanet.
dstc.edu.au/.

OMG ACTIVITIES AND FUTURE PLANS

W ith over 700 members, the OMG is a very active consor-
tium. Its many task forces and special interest groups

cover nearly the entire spectrum of topics related to distribut-
ed computing, including real-time computing, Internet,
telecommunications, financial systems, medical systems, object
analysis and design, electronic commerce, security, database
systems, and programming languages. RFPs and technology
adoptions in almost all of these areas have either already
occurred or soon will.

When there were fewer OMG members and CORBA was
still under development, most of the OMG’s technical activi-
ties were focused within its ORB Task Force, which is where
the CORBA specification was created. This effectively gave
ORB vendors a fair bit of clout when it came to determining
the technical direction of the OMG, which tended to keep the
technical focus directed at the CORBA component.

In early 1996 the OMG reorganized itself to give users of
the CORBA component the power to set their own technical
directions. Part of this reorganization involved splitting the
OMG Technical Committee into two parts:
• Domain Technical Committee (DTC) — This part focus-

es on technologies that are vertically oriented (i.e.,
domain-specific). Task Forces chartered under the DTC
include Financial, Manufacturing, Medical, Business, and
Telecommunications.

• Platform Technical Committee (PTC) — This part focus-
es on technologies that are horizontally oriented (i.e.,
domain-independent). Task Forces chartered under the
PTC include ORB/Object Services (ORBOS) and Com-
mon Facilities.
This split has resulted in a shift in the OMG focus from

the CORBA component to the other higher-level components
of the OMA. Such a shift is precisely what should occur as an
architecture like the OMA matures. Separating the DTC
groups from the domain-independent groups has made it easi-
er for them to issue their own RFPs and adopt suitable
domain-specific technology.

To ensure the continued integrity of the OMA even with
two technical committees, the OMG also created, as part of
the same reorganization, an Architecture Board (AB). The
AB, which is composed of ten elected members and a chair-
person, has the power to reject RFPs and technologies that do
not fit into the OMA. The AB is also charged with finding
and defining answers for broad technical issues related to the
OMA, such as clarifications of the OMA object model.

Areas that are currently being investigated by OMG task
forces include the following.

Medical — Master Patient Indexing. Patient identification can
be surprisingly difficult, due to multiple people with the same
name, illegal use of identification numbers, and so on. At the
time of this writing, the CORBAmed Medical Task Force was
very close to issuing an RFP for technology related to the
identification of patients.

Telecommunications — Isochronous Streams. Streams for
audio and video data have special quality of service require-
ments due to their isochronous nature. The CORBAtel
Telecommunications Task Force recently issued an RFP seek-
ing technology for the management and manipulation of
isochronous streams [17].

Business — Business Objects. Portions of many business pro-
cesses are very similar, and thus can be abstracted out into
frameworks. The Business Objects Task Force will soon begin
evaluating responses to its Business Objects RFP, which seeks
object frameworks to support business processes [18].

Common Facilities — Systems Management Facility. The
OMG has nearly completed the adoption of the X/Open sys-
tems management specification, which defines a set of extended
services for the monitoring and management of distributed sys-
tems [19]. These services complement those specified in the exist-
ing OMG Common Object Services Lifecycle Specification [4].

ORBOS — Objects by Value. CORBA currently allows object
references to be passed as arguments and return values, but
does not allow objects to be passed by value. This makes the
use of encapsulated data types (e.g., linked lists) difficult from
languages such as C++. The ORBOS Task Force will soon
begin evaluating responses to its Objects By Value RFP [20],
which will describe technology for passing objects by value
between CORBA applications.

Another special area of interest for the ORBOS Task
Force is providing specifications that allow for the bidirection-
al interoperation of Microsoft COM and Distributed COM
(DCOM) applications with CORBA applications. A specifica-
tion for COM/CORBA interoperability has already been
approved, while work on DCOM/CORBA interworking has
just begun. Contrary to industry rumors, the OMG does not
view COM or DCOM as CORBA competitors; rather, it sees
them as another set of technologies that can be integrated
under the CORBA umbrella.

The end goal of the development of standard OMG speci-
fications is the realization of a true commercial off-the-shelf
(COTS) software component marketplace. The OMG will
continue working to help create a market in which buying and
using software components in distributed heterogeneous envi-
ronments is a reality. To this end, many OMG member com-
panies have devoted some of their “best and brightest”
experts to the OMG to assist with the development of practi-
cal, complete, and relevant standards.

The OMG is also working to establish an OMA compli-

7 Applications use IORs just as they use any other object reference. In
OMG IDL terms, there is nothing different about IORs as compared to
other object references (i.e., there is no special OMG IDL type for an
IOR). Object interfaces are independent of object reference format.
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ance “branding” program that would prove whether or not an
OMA-based product complies properly with the appropriate
OMG specifications. Such branding will be necessary in a
component marketplace to ensure that OMA-based compo-
nents interoperate and cooperate correctly.

Of particular importance to the OMG community is a
recent press release by Netscape Corporation stating that they
will build IIOP and an ORB into future releases of their prod-
ucts, including their Navigator browser software [21]. They
intend to allow remote CORBA objects and services to
appear as browser plug-ins, using IIOP to forward requests to
them. Because of the popularity of Netscape Navigator, this
decision effectively brings CORBA to 40 million desktops
around the world. Moreover, it unifies Web technology with
distributed object technology, allowing the strengths of each
to enhance the other. The deployment of these unified tech-
nologies will finally provide the beginnings of a software com-
ponent marketplace infrastructure.

CONCLUSION

T his article has described the Common Object Request
Broker Architecture portion of the OMG Object Manage-

ment Architecture. CORBA provides a flexible communica-
tion and activation substrate for distributed heterogeneous
object-oriented computing environments. The strengths of
CORBA include the following.

HETEROGENEITY
The use of OMG IDL to define object interfaces allows these
interfaces to be used from a variety of programming lan-
guages and computing platforms. The fact that CORBA sys-
tems have already been written in such diverse programming
languages as C, C++, Smalltalk, Ada’95, Java, COBOL,
Modula-3, Perl, and Python, and successfully deployed across
everything from mainframes to test and measurement equip-
ment, is strong evidence that CORBA can be used to imple-
ment real-life heterogeneous distributed applications.

OBJECT MODEL
The Object Model and Reference Model provided by the
OMA define the rules for interaction between CORBA
objects such that the interactions are independent of underly-
ing network protocols. Unlike typical distributed software sys-
tems, which are tied closely to underlying networking
protocols and mechanisms, CORBA-based applications are
abstracted away from the networking details and thus can be
used in a variety of environments.

LEGACY INTEGRATION
Because CORBA does not mandate implementation, a well-
designed ORB does not require that components and tech-
nologies already in use be abandoned. Instead, the CORBA
specification is flexible enough to allow ORBs to incorporate
and integrate existing protocols and applications, such as
DCE or Microsoft COM, rather than replace them.

OBJECT-ORIENTED APPROACH
CORBA itself and applications built on top of it are best
designed using object-oriented (OO) software development
principles. For example, the fact that object interfaces must be
defined in OMG IDL helps developers think about their
applications in terms of interacting, reusable components. The
management of complexity afforded by OO software develop-
ment techniques is very important for the practical implemen-
tation and deployment of CORBA applications.

Both the Internet and corporate intranets will inevitably

remain heterogeneous. Having to deal with the integration of
diverse applications, as well as management of their associated
complexities, are absolute requirements for our ever-expanding
networked systems. The ongoing work to unify the World
Wide Web with CORBA will soon allow the new “universal user
interface,” the Web browser, to cleanly and transparently make
use of the varied technologies and legacy systems that exist
across today’s computing enterprises. With the capabilities
and flexibility of CORBA serving to unify the infrastructure,
we can focus more on providing solid solutions for higher-
level problems and worry less about how to make simple
things work in our distributed heterogeneous environments.
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