Acumulación de energía térmica

Pedro Galione

Instituto de Ingeniería Mecánica y Producción Industrial (IIMPI) Facultad de Ingeniería - Universidad de la República

- Introducción
- 2 Tipos de acumulación
- Acumulación para baja temperatura

Acumulación para energía solar de media/alta temperatura

Outline

- Introducción
- 2 Tipos de acumulación
- Acumulación para baja temperatura
- 4 Acumulación para energía solar de media/alta temperatura

Acumulación de energía (TES): Objetivos

- Corregir el desfasaje entre la disponibilidad y demanda de la energía.
- Aumentar el factor de capacidad de los equipos
 - El calor, electricidad o frío generados en horas de baja demanda se utiliza en horas pico ⇒ equipos de menor porte o aumento en la capacidad de generación.
- Trasladar la demanda de electricidad hacia horas en que su precio es menor:
 - Se puede generar frío en la noche para su utilización en las horas del día de mayor carga.

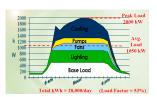


Figura : Consumo sin acumulación

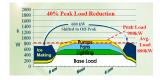


Figura : Acumulación de hielo en la noche

Acumulación de energía (TES): Objetivos

- Flexibilidad en los equipos de cogeneración
 - Muchas veces los equipos de cogeneración operan para cubrir las necesidades de calor. Con sistemas de TES, esta restricción se libera y se puede realizar el "despacho" de formas diferentes.
- Aumento en la eficiencia de operación de los equipos vinculados y del sistema energético en general
 - Equipos funcionando en un punto más cercano al óptimo (p.ej. generación de frío en la noche en que la temperatura exterior es menor).
 - Reducción de picos, utilización de electricidad en períodos valle, reducción de consumo total.
- Aumentar la "confiabilidad" del sistema:
 - Cualquier forma de acumulación de energía, normalmente hace a un sistema más robusto.

Acumulación de energía (TES): Energía solar térmica

- Desfasaje entre la disponibilidad del recurso y la demanda de la energía (consumo)
 - Diario: Tanques de agua para acumular en horas del día y consumir en horas con menor radiación
 - Estacional (acumulación en verano para consumo en invierno): subsuelo, tanques enterrados

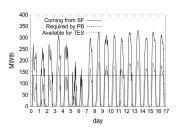


Figura: Planta CSP: producción, consumo, acumulación

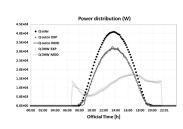


Figura : Calentamiento solar agua doméstica: disponibilidad, producción, consumo

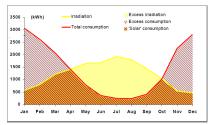


Figura : Acumulación estacional

Acumulación de energía (TES): Energía solar térmica

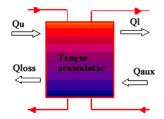

Figura: Horario/Diario

Figura : Acumulación estacional

Procesos

- Carga (acumulación)
- Espera (Idle, standby)
- Descarga (entrega de energía)
- Se pueden dar a la vez, p. ej. la carga y la descarga en un tanque de agua líquida
- Transitorios, en general sin tiempo de operación fijo

Outline

- 1 Introducción
- Tipos de acumulación
- Acumulación para baja temperatura
- 4 Acumulación para energía solar de media/alta temperatura

Clasificación según el principio físico

- Calor sensible
- Calor latente
- Energía química

Acumulación por calor sensible

Por lejos el medio más utilizado para acumular calor

Principio físico

- Capacidad de los materiales de acumular energía (interna) al incrementar su temperatura
 - Calor específico (C_p [kJ/kgK])
 - Capacidad calorífica (ρC_pV [kJ/K])
- A mayor salto de temperaturas, mayor es la energía acumulada.

$$\Delta H_{sens} = \rho V C_p \Delta T$$

Características termofísicas deseables

- Calor específico alto
- Alta densidad (menor volumen ocupado)
- Alta conductividad térmica (para lograr una extracción y acumulación rápida)

Acumulación por calor sensible

Otras características deseables

- Estabilidad química
- Baja presión de vapor
- No tóxico
- No inflamable
- No tóxico
- Abundante
- Accesible
- Barato

Lista de materiales y sistemas

- Líquidos: agua, aceites térmicos, sales fundidas, metales líquidos
- Sólidos: roca, cemento, metales ...

	ρ	C_p	k	ρC_p
Material	(kg/m^{3})	(KJ/kgK)	(W/mK)	(kJ/m^3K)
Agua (I) (a T_{amb})	990	4,19	0,65	4144
Rocas	1700	1,3	1,0	2210
Aire (a T_{amb})	1,1	1,0	0,026	1,1
Sales fundidas ($T \sim 300/500^{\circ}$ C)	1900	1,5	0,52	2850
Aceite térmico ($T\sim300/400^{\circ}\text{C}$)	768	2,45	0,09	1882

Clasificación según el principio físico

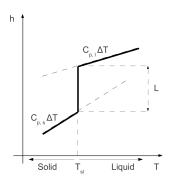
- Calor sensible
- Calor latente
- Energía química

Acumulación por calor latente

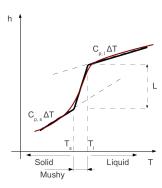
Materiales de cambio de fase (Phase Change Materials)

Materiales que sufren un cambio de fase en un rango de temperaturas de interés

¿Por qué son interesantes?


- Absorción o liberación de gran cantidad de energía (latente) a temperatura fija o en un rango corto de temperaturas.
- Se puede utilizar para acumular energía utilizando menos cantidad de material y/o menor volumen que mediante calor sensible.

Estado de desarrollo


- En algunas aplicaciones está asentada su inserción comercial (p.ej.: bancos de hielo para refrigeración)
- En la mayoría de aplicaciones está en fase de desarrollo con aún baja inserción

Energía latente

Energía latente (L[kJ/kg]): Energía absorbida o liberada en un proceso de cambio de fase de una sustancia pura.

(a) Punto de fusión (sustancias puras)

(b) Rango de temperaturas de cambio de fase (p.ej. aleaciones)

Acumulación por calor latente

Características deseables

- Termofísicas
 - Temperatura de cambio de fase en rango de operación
 - Alto calor latente
 - Calor específico alto (ambas fases)
 - Alta densidad (menor volumen ocupado)
 - Alta conductividad térmica (para lograr una extracción y acumulación rápida)

Otras

- Baja diferencia de densidades entre las fases
- Estabilidad luego de varios ciclos carga/descarga
- No presentar subenfriamiento significativo
- Baja presión de vapor
- No inflamable
- No tóxico
- Abundante
- Accesible
- Barato

Acumulación por calor latente

A destacar

- En general, no existe un material que cumpla con todas las características deseadas
- Normalmente se utiliza el cambio de fase sólido-líquido, a pesar de presentar calores latentes menores que el líquido-vapor debido a la menor diferencia de densidades entre las fases.
- Alrededor de 0ºC el agua es un gran PCM aunque puede presentar problemas de subenfriamiento, para lo cual se agregan aditivos que la inhiben (agentes nucleantes).

	T _{fusión}	ρ	C_p	k	h _{sl}
Material	(ºC)	(kg/m^3)	(KJ/kgK)	(W/mK)	(kJ/kg)
Agua/Hielo	0	990	4,19	0,9 / 2,18	344
Parafinas	-20/80	700/900		0,2	100/300
Sales hidratadas	10/140	1500/2000		0,6	100/300
Mezclas de sales	200/1700	\sim 2000	\sim 1,5	\sim 0,5/0,6	100/500 - 1000
Metales	20/1000	1000/10000	0,4/2	> 10	20/1000

Energía latente vs. sensible

- Los procesos de cambio de fase en sustancias puras ocurren a una temperatura fija, a la que se modifica únicamente la composición de fases de la sustancia (p.ej. sólido-líquido)
- La comparación entre capacidades de acumulación de energía sensible y latente de sustancias no es directa:
 - Se debe definir un salto de temperaturas en el que se evaluará el calor sensible.
 - A medida que el salto de temperaturas es mayor, menor será la relación latente/sensible:

$$\begin{array}{ll} \Delta H_{lat} &= \rho \, VL \\ \Delta H_{sens} &= \rho \, VC_p \Delta T \end{array} \right\} \Longrightarrow \frac{\Delta H_{lat}}{\Delta H_{sens}} = \frac{L}{C_p \Delta T} = \frac{1}{Ste}$$

donde Ste es el número de Stefan.

Energía latente vs. sensible

Ejemplo: AGUA, PCM vs. sensible

Evaluar la relación entre las capacidades de energía latente y sensible para el agua. Se considerará el cambio de fase sólido-líquido y comparará con la capacidad de energía sensible del agua líquida.

Propiedades: $C_p = 4,186 \text{ kJ/kg K}^{-1}$; L = 334 kJ/kg (fusion)

Pregunta: ¿Cómo se hace la comparación? Respuesta: No se puede así sin más. Se debe definir el salto de temperaturas del agua líquida.

$$\frac{\Delta H_{lat}}{\Delta H_{sens}} = \frac{L}{C_{p}\Delta T} = 1 \Longrightarrow \Delta T = \frac{L}{C_{p}} = \frac{334}{4,186} = 79,8 \text{ K}$$

Energía latente vs. sensible

Ejemplo: AGUA, PCM vs. sensible

Evaluar la relación entre las capacidades de energía latente y sensible para el agua. Se considerará el cambio de fase sólido-líquido y comparará con la capacidad de energía sensible del agua líquida.

Propiedades: $C_p = 4,186 \text{ kJ/kg K}^{-1}$; L = 334 kJ/kg (fusion)

Pregunta: ¿Cómo se hace la comparación?

Respuesta: No se puede así sin más. Se debe definir el salto de temperaturas del agua líquida.

$$\frac{\Delta H_{lat}}{\Delta H_{sens}} = \frac{L}{C_p \Delta T} = 1 \Longrightarrow \Delta T = \frac{L}{C_p} = \frac{334}{4,186} = 79,8 \text{ K}$$

Energía latente vs. sensible

Ejemplo: AGUA, PCM vs. sensible

Evaluar la relación entre las capacidades de energía latente y sensible para el agua. Se considerará el cambio de fase sólido-líquido y comparará con la capacidad de energía sensible del agua líquida.

Propiedades: $C_p = 4,186 \text{ kJ/kg K}^{-1}$; L = 334 kJ/kg (fusion)

Pregunta: ¿Cómo se hace la comparación?

Respuesta: No se puede así sin más. Se debe definir el salto de temperaturas del agua líquida.

$$\frac{\Delta H_{lat}}{\Delta H_{sens}} = \frac{L}{C_{p}\Delta T} = 1 \Longrightarrow \Delta T = \frac{L}{C_{p}} = \frac{334}{4,186} = 79,8 \text{ K}$$

Energía latente vs. sensible

Ejemplo: AGUA, PCM vs. sensible

Evaluar la relación entre las capacidades de energía latente y sensible para el agua. Se considerará el cambio de fase sólido-líquido y comparará con la capacidad de energía sensible del agua líquida.

Propiedades: $C_p = 4,186 \text{ kJ/kg K}^{-1}$; L = 334 kJ/kg (fusion)

Pregunta: ¿Cómo se hace la comparación?

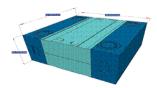
Respuesta: No se puede así sin más. Se debe definir el salto de temperaturas del agua líquida.

$$\frac{\Delta \textit{H}_{\textit{lat}}}{\Delta \textit{H}_{\textit{sens}}} = \frac{\textit{L}}{\textit{C}_{\textit{p}} \Delta \textit{T}} = \textit{1} \Longrightarrow \Delta \textit{T} = \frac{\textit{L}}{\textit{C}_{\textit{p}}} = \frac{334}{4,186} = \textit{79,8} \; \text{K}$$

Energía latente vs. sensible

Ejemplo: AGUA, PCM vs. sensible

Evaluar la relación entre las capacidades de energía latente y sensible para el agua. Se considerará el cambio de fase sólido-líquido y comparará con la capacidad de energía sensible del agua líquida.


Propiedades: $C_p = 4,186 \text{ kJ/kg K}^{-1}$; L = 334 kJ/kg (fusión)

Pregunta: ¿Cómo se hace la comparación?

Respuesta: No se puede así sin más. Se debe definir el salto de temperaturas del agua líquida.

$$rac{\Delta H_{lat}}{\Delta H_{sens}} = rac{L}{C_{p}\Delta T} = 1 \Longrightarrow \Delta T = rac{L}{C_{p}} = rac{334}{4,186} = 79,8 ext{ K}$$

Acumulación por calor latente: Ejemplos

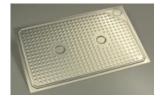
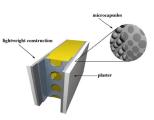



Figura : Intercambiador compacto regenerativo

Figura: Bancos de hielo

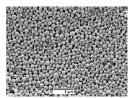


Figura : Microcápsulas en paredes

Acumulación por **calor latente**: Mejoramiento de la transferencia de calor

Objetivo:

Aumentar la razón área/volumen para aumentar la transferencia de calor por unidad de volumen:

$$\frac{\dot{Q}}{V} = \frac{UA\Delta T}{V}$$

PCMs usualmente presentan baja conductividad térmica \Rightarrow baja U .

Cómo se hace:

- Aletas de alta conductividad térmica
- Encapsulamiento (macro, mini, micro). Algunos ya disponibles comercialmente.
- Compuestos de PCM y materiales altamente conductores (metales/grafito). Fase de investigación.

Acumulación por calor latente: Desafíos

Diseño adecuado

- Elección de material:
 - Temperatura de fusión: afecta significativamente el comportamiento (cantidad de energía/exergía acumulada) necesario optimizar.
 - Depende de régimen de operación y temperaturas de trabajo (temperatura de fluido variable/constante, limitaciones en temperaturas de salida de fluido, etc.)
 - Calor latente
 - Otras propiedades físicas: densidad, conductividad.

Encapsulamiento

- Elección de material:
 - Compatibilidad con los materiales (PCM y fluido de trabajo)
 - Resistencia a cambios de presión interna por variación de volumen
 - Tamaño: menor tamaño, mejor transferencia, pero más cantidad de material necesario
- Tipo: cápsulas esféricas, tubos, carcaza de intercambiador, etc.

Clasificación según el principio físico

- Calor sensible
- Calor latente
- Energía química

Acumulación por energía química

Principio

Se acumula/libera calor a través de alguna reacción química reversible.

¿Por qué es interesante?

Mayor densidad energética que medios sensibles y latentes.

Estado de desarrollo

Aún en fase de investigación.

Ejemplos

- Reforming de gas natural: $CH_4 + H_2O = CO + 3H_2$ $T \sim 480/1195 \, ^{\circ}\text{C}$ $\Delta H = 6053kJ/kg$
- Disociación de amoníaco: $2NH_3 = N_2 + 3H_2$ $T \sim 400/500$ °C $\Delta H = 3940kJ/kg$
- Deshidratación de hidróxidos metálicos, deshidrogenación de hidruros metálicos, disociación catalítica, etc.

Outline

- 1 Introducción
- 2 Tipos de acumulación
- Acumulación para baja temperatura
- 4 Acumulación para energía solar de media/alta temperatura

Acumulación para aplicaciones de baja temperatura

- Tanques de agua
- Lechos porosos (packed-beds) de rocas
- Materiales de cambio de fase
- Acumulación estacional en subsuelo (sensible, medio sólido y fluido)

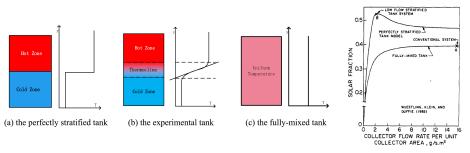
Acumulación para aplicaciones de baja temperatura

- Tanques de agua
- Lechos porosos (packed-beds) de rocas
- Materiales de cambio de fase
- Acumulación estacional en subsuelo (sensible, medio sólido y fluido)

Tanques de agua

- Calor sensible. Medio líquido (agua).
- Medio de acumulación por excelencia en colectores solares de agua doméstica.
- Volúmenes de $\sim 50 180 lt/m^2$ de colector.
- La carga y la descarga pueden darse al mismo tiempo.
- Estratificación térmica impacta sobre eficiencia del colector y sistema.
- Procesos transitorios.
- Comportamiento térmico del sistema depende de la interacción entre el recurso, el colector, sistema de acumulación y consumo (perfil).
- Necesario realizar simulaciones para predecir funcionamiento del tanque y sistema.

Tanques de agua: ventajas y desventajas


Ventajas

- Alta densidad energética:
 Agua 4100kJ/m³K
 Rocas 2200kJ/m³K
 Aire 1,1KJ/m³K
- Abundante
- No tóxico
- No inflamable
- Barato
- Etc.

Desventajas

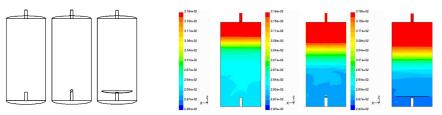
- Problemas a temperaturas cercanas a 100ºC a presión atmosférica.
- Difícil de mantener la estratificación de temperaturas

Tanques de agua: Estratificación

- Las fuerzas de empuje hacen que el fluido caliente (menos denso) suba y el frío (más denso) baje.
- Baja la temperatura de entrada al colector ⇒ Aumenta el rendimiento del captador solar.
- El fluido que entra caliente, se mantiene caliente ⇒ Hay agua a una temperatura "aceptable" para consumo durante más tiempo.

⇒ Aumenta la fracción solar del sistema

Tanques de agua: Estratificación (destrucción)


La estratificación es difícil de mantener y se destruye por diversas causas:

- La mezcla producida por la velocidad del fluido en las entradas.
 Causa principal.
- Pérdidas de calor al ambiente: el fluido caliente se enfría contra la pared y tiende a bajar, produciendo un flujo descendente por las paredes y ascendente por el centro.
- La conducción en el sentido vertical a través de las paredes (puente térmico).
- Conducción entre las capas de fluido.

Tanques de agua: Dispositivos para mantener la estratificación

Difusores de flujo a la entrada

Disminuyen la mezcla debido a la velocidad del fluido a la entrada

Imágenes extraídas de Shah & Furbo, Entrance Effects in Solar Storage Tanks, Solar Energy 75, 2003

Tanques de agua: Dispositivos para mantener la estratificación

Manifolds de distribución

El fluido se dirige hacia la zona correspondiente a su temperatura

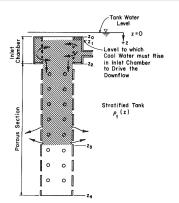


Fig. 2 Rigid, porous distribution manifold

a) Cool water entering warm tank

b) Water at intermediate temperature entering stratified tank

a) Cool water entering warm tank

temperature entering stratified tank

Fig. 9 A flexible porous manifold

Tanques de agua: cuantificación de la estratificación

- Existen diversas metodologías
- Basadas en detectar gradientes de temperatura
 - Espesor de termoclina: altura en la que se da un determinado porcentaje (90 %) del salto total de temperaturas
 - Magnitud del gradiente de temperaturas en la termoclina
- Basadas en balances de energía
 - Cuantifican, por ejemplo, la cantidad de energía extraíble a una temperatura "admisible" de salida
 - Número de estratificación
 - Número de MIX (energía ponderada por la altura)
- Basadas en la segunda ley
 - Exergía específica: $h h_0 T_0(s s_0) \Rightarrow$ Máximo trabajo extraíble, por unidad de masa
 - Estratificación perfecta (plug flow) ⇒ Máxima exergía
 - Eficiencia exergética (descargada/cargada)
 - Exergía contenida respecto a alguna referencia (totalmente estratificado y/o mezclado)

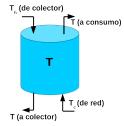
Tanques de agua: Análisis

Modelos cerodimensionales

- Todo el tanque a una única temperatura (no considera estratificación).
- Muy sencillos y con costo computacional mínimo.
- Poca precisión. Generalmente producen subestimación de la fracción solar.

Modelos unidimensionales

- La temperatura varía en la dirección vertical.
- Menos sencillos, pero su costo computacional bajo/moderado los hace aptos para cálculos de comportamiento anual.
- Permiten considerar la estratificación, lo cual los hace más precisos que los 0D.


Modelos CFD bi y tridimensionales

- La temperatura (y velocidad) varía en dos (2D) o tres (3D) direcciones.
- Complicados, no aptos para cálculos de comportamiento anual.
- Muy precisos. Se pueden utilizar para predecir con bastante detalle el nivel de estratificación.
- Útiles para diseño de componentes.

Tanques de agua: Análisis cerodimensional

$$\overbrace{\rho C_p V \frac{\partial \mathbf{T}}{\partial t}}^{\text{transitorio}} = \underbrace{\dot{m}_h C_p (T_h - \mathbf{T}) + \dot{m}_c C_p (T_c - \mathbf{T})}_{\text{flujos caliente y frío}} \underbrace{\frac{\text{pérdidas}}{\text{pérdidas}}}_{\text{perdidas}} + \underbrace{\dot{Q}_{aux}}_{\text{calor auxilians}}$$

- Una ecuación diferencial de T(t)
- Requiere de correlaciones para cálculo de *U*
- Se resuelve de forma sencilla por integración numérica, por ejemplo:

$$\rho C_{p}V(\mathbf{T}_{t+\Delta t} - \mathbf{T}_{t}) =
\Delta t \left[\dot{m}_{h}C_{p}(T_{h} - \mathbf{T}) - \dot{m}_{c}C_{p}(\mathbf{T} - T_{c}) - UA(\mathbf{T} - T_{amb}) + \dot{Q}_{aux} \right]_{t}$$

Tanques de agua: Análisis unidimensional

- Intentan simular la distribución espacial (vertical) y temporal del campo de temperaturas.
- Varios modelos que difieren en sus simplificaciones y posibilidades.
- Requieren de parámetros externos, como por ejemplo:
 - Efectos de mezcla a la entrada (coeficientes de mezcla)
 - Turbulencia y transferencia de calor entre capas (factores de difusividad)
- Pueden incorporar conducción entre capas.
- Pueden incorporar entradas de fluido en zonas diferentes de los extremos.
- Resultan ecuaciones diferenciales que deben discretizarse en el espacio y tiempo, y resolverse utilizando algún método numérico directo o iterativo

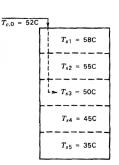


Imagen extraída de Duffie & Beckmann,

Solar Engineering of Thermal Processes,

John Wiley & Sons, 2nd ed., 1991

Tanques de agua: Análisis unidimensional

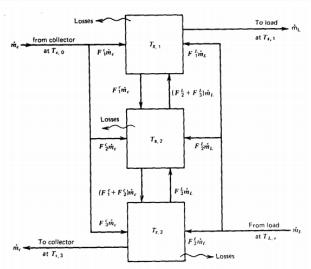


Figure 8.4.3 Three-node stratified liquid storage tank.

- Balances de energía y de masa a cada "tramo"
- Puede incorporar pérdidas al ambiente
- Puede incorporar conducción entre capas
- Puede incorporar entradas de fluido en zonas diferentes de los extremos

Tanques de agua: Análisis bi/tridimensional

- Resolución numérica de las ecuaciones diferenciales de balance de masa, energía y cantidad de movimiento.
- Se resuelven los campos de temperatura, velocidad y presión dentro del tanque.
- Requieren una cantidad mínima de parámetros externos, principalmente para definir condiciones de borde (p. ej. pérdidas al exterior) o para los modelos de turbulencia.
- La discretización de las ecuaciones resulta en sistemas de ecuaciones algebraicas de cientos de miles o millones de incógnitas ("nodos" de la "malla")
- Requieren códigos eficientes y acudir a clústeres de computadoras.

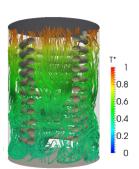


Imagen adaptada de: Torras, S., Numerical simulation of sensible and latent thermal energy storage systems, Phd Thesis, Universitat Politècnica de Catalunya, 2016

Tanques de agua: Análisis bi/tridimensional

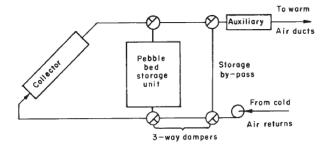
Masa

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$

Cantidad de movimiento

$$\frac{\partial \rho \vec{u}}{\partial t} + \nabla \cdot (\rho \vec{u} \vec{u}^*) = -\nabla \rho + \mu \nabla^2 \vec{u} + \rho \vec{g}$$

Energía


$$\frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho h \vec{u}) = \nabla \cdot (\lambda \nabla T)$$

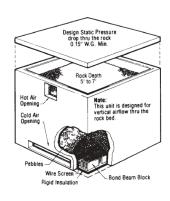
Acumulación para aplicaciones de baja temperatura

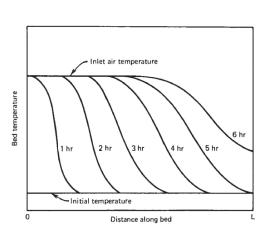
- Tanques de agua
- Lechos porosos (packed-beds) de rocas
- Materiales de cambio de fase
- Acumulación estacional en subsuelo (sensible, medio sólido y fluido)

Lechos porosos de rocas

- Acumulación por calor sensible
- Principalmente para calentadores solares de aire
- Procesos transitorios de calentamiento y enfriamiento de las rocas
- Análisis similar que para los tanques de agua

Lechos porosos de rocas: ventajas y desventajas

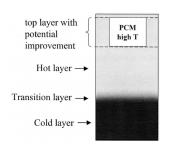

Ventajas


- Abundante, no tóxico, no inflamable y barato.
- No requiere un intercambiador de calor aparte, ya que hay contacto directo entre aire y rocas
- Soporta temperaturas mayores a 100ºC
- Estratificación de temperaturas se mantiene más fácilmente que en tanques de agua
- Sin problemas de corrosión ni congelamiento

Desventajas

- Densidad energética menor que la del agua, por lo que requiere mayores volúmenes (150 – 350lt/m² de colector): Agua 4100kJ/m³K Rocas 2200kJ/m³K
- Por ser aire el fluido de trabajo, la potencia de bombeo es relativamente mayor que en los sistemas con agua

Lechos porosos de rocas



Acumulación para aplicaciones de baja temperatura

- Tanques de agua
- Lechos porosos (packed-beds) de rocas
- Materiales de cambio de fase
- Acumulación estacional en subsuelo (sensible, medio sólido y fluido)

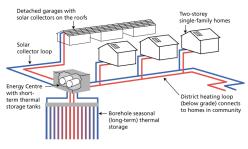
Materiales de cambio de fase

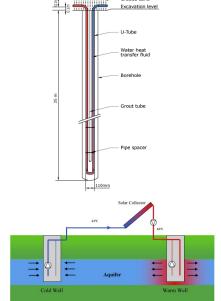
- Acumulación por calor latente y sensible (generalmente no despreciable) ⇒ Mayor densidad energética
- Ej.: Parafinas, sales hidratadas
- Diversas posibilidades:
 - Integración dentro de tanques de agua, por ejemplo en la parte superior (punto de fusión cercano a temperatura alta)
 - Lechos porosos
 - Otros
- Diseño más complejo:
 - Elección de PCMs
 - Interacción con la estratificación

Acumulación para aplicaciones de baja temperatura

- Tanques de agua
- Lechos porosos (packed-beds) de rocas
- Materiales de cambio de fase
- Acumulación estacional en subsuelo (sensible, medio sólido y fluido)

Acumulación estacional


 De la variación de temperatura en un sistema cerrado con pérdidas al ambiente, la variación de energía interna por unidad de masa resulta en:

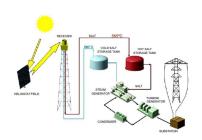

$$C_{V} rac{\partial T}{\partial t} = -rac{U}{
ho} \left[rac{\mathbf{A}}{\mathbf{V}} \right] (T - T_{amb})$$

- En general (aunque no siempre), un mayor volumen de acumulación resulta en una menor relación ^A/_V ⇒ Menores pérdidas por unidad de volumen o masa acumulada
- Grandes volúmenes:
 - Grandes capacidades de almacenamiento
 - Bajas pérdidas por unidad de masa
 - ⇒ Acumulación de grandes cantidades de energía por grandes períodos de tiempo

Acumulación estacional en subsuelo

- Tubos enterrados (closed loop):
 - Horizontales
 - Verticales: tubos en U (Boreholes)
- En acuífero (open loop): Pozos de inyección/extracción de agua subterránea
- Tanques enterrados

200mm XPS insulation Graded sand


Figura: Drake Landing Solar Community

Outline

- 1 Introducción
- 2 Tipos de acumulación
- Acumulación para baja temperatura
- Acumulación para energía solar de media/alta temperatura

¿Para qué? ¿Cómo?

- Permite la producción de energía eléctrica/térmica fuera de las horas de sol.
 - Aumenta las horas de utilización del bloque de generación de electricidad.
 - Permite el despacho de energía en horas punta (ventaja respecto de otras renovables como eólica o PV).
 - Requiere un "sobredimensionamiento" del campo de captación solar.
- En general, resulta en un aumento en la rentabilidad del proyecto.
- Tecnología "estrella": doble tanque de sales fundidas (calor sensible).
- En fase de desarrollo/investigación: acumulación en materiales sólidos (calor sensible) y PCM (sensible/latente).

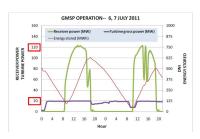


Figura : Acumulación de hielo en la noche

Diferentes medios/tecnologías estudiadas

- Doble tanque de sales fundidas
 - Calor sensible
 - Medio fluido
 - Tecnología estándar para plantas de CSP
- Lechos porosos de rocas
 - Calor sensible
 - Medio sólido (rocas) y fluido (p.ej. sales fundidas)
 - Solar One (10MWe, 1982-1988, California): tanque relleno de arena y rocas, con aceite térmico de fluido
- Bloques de cemento:
 - Calor sensible
 - Medio sólido
 - DISTOR Project: Planta piloto de generación directa de vapor (DSG) y acumulación en cemento y PCM
- Materiales de cambio de fase
 - Calor latente (y sensible)
 - En desarrollo

Acumulación por calor sensible: doble tanque de sales fundidas

- Tecnología estándar en la actualidad
- Sales en estado líquido, almacenada en dos tanques, uno frío y otro caliente
- Funcionamiento:
 - Carga: se extrae sal del tanque frío, se calienta, y se almacena en el caliente.
 - Descarga: proceso inverso, caliente -> frío.
- Mínimas pérdidas de exergía, ya que se mantiene una estratificación casi perfecta.
- Se precisa alrededor del doble de volumen de almacenamiento del que ocupan las sales.
- La cantidad de sal necesaria es alta.
- Se estudian alternativas de menor costo:
 - Un tanque en vez de dos
 - Utilizar relleno sólido de menor costo (requiriendo menos sal)
 - Otros medios (sólido, PCM)

Doble tanque de sales fundidas. Casos

Algunas instalaciones existentes

- Andasol (España):
 - 50 MWe cilindroparabólica
 - 7,5 horas de acumulación a potencia nominal, 2 tanques de 14m altura y 36m diámetro
 - Temperaturas: 291ºC (tanque frío) -384ºC (tanque caliente)
- Gemasolar (España):
 - 20 MWe torre central
 - 15 horas de acumulación a potencia nominal, 2 tanques de 10,5m altura y 23m diámetro
 - Temperaturas: 290°C (tanque frío) -565°C (tanque caliente)

Figura : Andasol

Figura: Gemasolar

Acumulación por calor sensible: acumulación en sólidos

Cemento

- Ventajas: más compacto, menor costo
- Desventajas:
 - Pérdidas de exergía: conducción interna en sólido, contacto entre fluido caliente y sólido frío
 - Velocidad de carga/descarga limitada.

The state of the s

Figura : Cemento

Lecho de rocas (packed-bed thermocline)

- Ventajas: un único tanque, menor costo
- Desventajas:
 - Pérdidas de exergía: transferencia de calor dentro del medio de acumulación.
 - Limitaciones velocidad de carga/descarga.
 - Limitaciones en temperaturas de salida (no constantes) pueden afectar a capacidad efectiva de acumulación

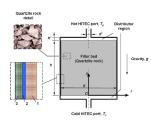


Figura: Tanque termoclina

Alta temperatura: Calor latente

- Especialmente compatible con generación directa de vapor en el campo solar:
 - Diferencia de T constante: fluido de trabajo en cambio de fase líquido-vapor y material de acumulación sólido-líquido
- También aplicable en plantas convencionales:
 - PCMs en cascada
 - Combinación de PCMs y material sólido
 - Prestar atención especial a las temperaturas admisibles de entrada y salida.
- En desarollo:
 - Compatibilidad de materiales
 - Degradación luego de muchos ciclos de carga/descarga
 - Elección de configuración adecuada: temperaturas de fusión

,

Acumulación por calor latente (DISTOR Project)

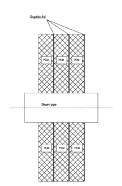
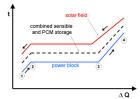



Figura : Intercambiador con PCM (DISTOR project).

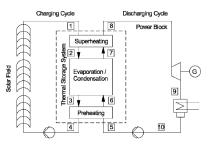


Figura : Ciclo Rankine con Generación Directa de vapor (DISTOR project).

Figura : T vs h en acumulación latente/sensible en planta de generación directa de vapor.