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Introduction 

Classification models and in particular binary classification models are ubiquitous 

in many branches of science and business.  Consider, for example, classification models 

in bioinformatics that classify catalytic protein structures as being in an active or inactive 

conformation.  As an example from the field of medical informatics we might consider a 

classification model that, given the parameters of a tumor, will classify it as malignant or 

benign.  Finally, a classification model in a bank might be used to tell the difference 

between a legal and a fraudulent transaction. 

Central to constructing, deploying, and using classification models is the question 

of model performance assessment (Hastie, Tibshirani, & Friedman, 2001). Traditionally 

this is accomplished by using metrics derived from the confusion matrix or contingency 

table.  However, it has been recognized that (a) a scalar is a poor summary for the 

performance of a model in particular when deploying non-parametric models such as 

artificial neural networks or decision trees (Provost, Fawcett, & Kohavi, 1998) and (b) 

some performance metrics derived from the confusion matrix are sensitive to data 

anomalies such as class skew (Fawcett & Flach, 2005).  Recently it has been observed 

that Receiver Operating Characteristic (ROC) curves visually convey the same 

information as the confusion matrix in a much more intuitive and robust fashion (Swets, 

Dawes, & Monahan, 2000).   



Here we take a look at model performance metrics derived from the confusion 

matrix.  We highlight their shortcomings and illustrate how ROC curves can be deployed 

for model assessment in order to provide a much deeper and perhaps more intuitive 

analysis of the models.  We also briefly address the problem of model selection. 

Background 

A binary classification model classifies each instance into one of two classes; say 

a true and a false class.  This gives rise to four possible classifications for each instance: a 

true positive, a true negative, a false positive, or a false negative.  This situation can be 

depicted as a confusion matrix (also called contingency table) given in Fig. 1.  The 

confusion matrix juxtaposes the observed classifications for a phenomenon (columns) 

with the predicted classifications of a model (rows).  In Fig. 1, the classifications that lie 

along the major diagonal of the table are the correct classifications, that is, the true 

positives and the true negatives.  The other fields signify model errors.  For a perfect 

model we would only see the true positive and true negative fields filled out, the other 

fields would be set to zero.  It is common to call true positives hits, true negatives correct 

rejections, false positive false alarms, and false negatives misses.   

A number of model performance metrics can be derived from the confusion 

matrix.  Perhaps, the most common metric is accuracy defined by the following formula: 

! 

accuracy =
TP + TN

TP + TN + FP + FN
. 

Other performance metrics include precision and recall defined as follows: 

! 

precision =
TP

TP + FP
, 



! 

recall=
TP

TP + FN
. 

Note, that when we apply a model to a test dataset we obtain only one scalar value 

for each performance metric.  Fig. 2 shows two confusion matrices of one particular 

classification model built on the ringnorm data by Breiman (Breiman, 1996).  Part (a) 

shows the classification model being applied to the original test data that consists of 7400 

instances roughly split evenly between two classes.  The model commits some significant 

errors and has an accuracy of 77%.  In part (b) the model is applied to the same data but 

in this case the negative class was sampled down by a factor of ten introducing class 

skew in the data.  We see that in this case the confusion matrix reports accuracy and 

precision values that are much higher than in the previous case.  The recall did not 

change, since we did not change anything in the data with respect to the ‘true’ class. We 

can conclude that the perceived quality of a model highly depends on the choice of the 

test data.  In the next section we show that ROC curves are not so dependent on the 

precise choice of test data, at least with respect to class skew. 

 
Figure 1: Format of a Confusion Matrix. 

 



 
Figure 2: Confusion matrices with performance metrics. (a) Confusion matrix of a model 
applied to the original test dataset, (b) confusion matrix of the same model applied to the 
same test data where the negative class was sampled down by a factor of ten. 

Main Focus of Chapter 

ROC Curves – The Basics 

ROC curves are two-dimensional graphs that visually depict the performance and 

performance trade-off of a classification model (Fawcett, 2004; P. Flach, Blockeel, Ferri, 

Hernandez-Orallo, & Struyf, 2003; P. Flach, 2004; P. A. Flach, 2003).  ROC curves were 

originally designed as tools in communication theory to visually determine optimal 

operating points for signal discriminators (Egan, 1975).   

We need to introduce two new performance metrics in order to construct ROC 

curves (we define them here in terms of the confusion matrix), the true positive rate (tpr) 

and the false positive rate (fpr): 

! 

true positive rate =
TP

TP + FN
= recall, 

! 

false postive rate =
FP

TN + FP
.  



ROC graphs are constructed by plotting the true positive rate against the false 

positive rate (see Fig. 3(a)). We can identify a number of regions of interest in a ROC 

graph.  The diagonal line from the bottom left corner to the top right corner denotes 

random classifier performance, that is, a classification model mapped onto this line 

produces as many false positive responses as it produces true positive responses.  To the 

left bottom of the random performance line we have the conservative performance 

region.  Classifiers in this region commit few false positive errors.  In the extreme case, 

denoted by point in the bottom left corner, a conservative classification model will 

classify all instances as negative.  In this way it will not commit any false positives but it 

will also not produce any true positives.  The region of classifiers with liberal 

performance occupies the top of the graph.  These classifiers have a good true positive 

rate but also commit substantial numbers of false positive errors.  Again, in the extreme 

case denoted by the point in the top right corner, we have classification models that 

classify every instance as positive.  In that way, the classifier will not miss any true 

positives but it will also commit a very large number of false positives.  Classifiers that 

fall in the region to the right of the random performance line have a performance worse 

than random performance, that is, they consistently produce more false positive responses 

than true positive responses.  However, because ROC graphs are symmetric along the 

random performance line, inverting the responses of a classifier in the “worse than 

random performance” region will turn it into a well performing classifier in one of the 

regions above the random performance line.  Finally, the point in the top left corner 

denotes perfect classification: 100% true positive rate and 0% false positive rate.   



The point marked with A is the classifier from the previous section with a tpr = 

0.90 and a fpr = 0.35.  Note, that the classifier is mapped to the same point in the ROC 

graph regardless whether we use the original test set or the test set with the sampled down 

negative class illustrating the fact that ROC graphs are not sensitive to class skew. 

Classifiers mapped onto a ROC graph can be ranked according to their distance to 

the ‘perfect performance’ point.  In Fig. 3(a) we would consider classifier A to be 

superior to a hypothetical classifier B because A is closer to the top left corner. 

The true power of ROC curves, however, comes from the fact that they 

characterize the performance of a classification model as a curve rather than a single 

point on the ROC graph.  In addition, Fig. 3 shows some typical examples of ROC 

curves.  Part (b) depicts the ROC curve of an almost perfect classifier where the 

performance curve almost touches the ‘perfect performance’ point in the top left corner.  

Part (c) and part  (d) depict ROC curves of inferior classifiers.  At this level the curves 

provide a convenient visual representation of the performance of various models where it 

is easy to spot optimal versus sub-optimal models. 



 
(a)  

 
Figure 3: ROC curves: (a) regions of a ROC graph (a) an almost perfect classifier (b) a 
reasonable classifier (c) a poor classifier.1 

ROC Curve Construction 

In order to interpret ROC curves in more detail we need to understand how they 

are constructed.  Fundamental to the construction of ROC curves is the notion of instance 

ranking or prediction confidence value.  ROC curves can be directly computed for any 

                                                
1 Figures (b), (c), and (d) due to Peter Flach, ICML’04 tutorial on ROC analysis, 
International Conference on Machine Learning, 2004 (P. Flach, 2004). 



classification model that attaches a probability, confidence value, or ranking to each 

prediction.  Many models produce such rankings as part of their algorithm (e.g. Naïve 

Bayes (Mitchell, 1997), Artificial Neural Networks (Bishop, 1995), Support Vector 

Machines (Cristianini & Shawe-Taylor, 2000)).  Techniques exist that compute an 

instance ranking for classification models that typically do not produce such rankings, 

i.e., decision trees (Breiman, Friedman, Olshen, & Stone, 1984).  The instance ranking is 

used by the ROC algorithm to sweep through different decision thresholds from the 

maximum to the minimum ranking value in predetermined increments.  The ranking 

values are typically normalized to values between 0 and 1 (as an aside, the default 

decision threshold for most classifiers is set to .5 if the ranking value expresses the actual 

probability value of the instance being classified as true).  At each threshold increment, 

the performance of the model is computed in terms of the true positive and false positive 

rates and plotted.  This traces a curve from left to right (maximum ranking to minimum 

ranking) in the ROC graph.  That means that the left part of the curve represents the 

behavior of the model under high decision thresholds (conservative) and the right part of 

the curve represents the behavior of the model under lower decision thresholds (liberal).  

The following algorithm2 makes this construction a little bit more concrete, 

Function Draw-ROC 
  
Inputs: 
D test set 
p(i) ranking of instance i in D, indicates the probability or 

confidence that the instance i is positive, normalized to [0,1] 
P set of observed positive instances in D, where P ⊆ D 
N set of observed negative instances in D, where N ⊆ D 
  
for threshold = 1 to 0 by -.01 do  
 FP ⇐ 0  

                                                
2 Based on the algorithm published by Tom Fawcett (Fawcett, 2004). 



 TP ⇐ 0  
 for i ∈ D do  
  if p(i) ≥ threshold then  
   if i  ∈ P then  
    TP ⇐ TP + 1  
   else  
    FP ⇐ FP + 1  
   endif 
  endif 
 endfor 
 tpr ⇐ TP/#P 
 fpr ⇐ FP/#N 
 Add point (tpr, fpr) to ROC curve  
endfor 
 

Notice how this algorithm sweeps through the range of thresholds from high to 

low and measures the number of mistakes the classifier makes at each threshold level.  

This gives rise to the tpr and fpr at each threshold level. This in turn can be interpreted as 

a point on the ROC curve. 

Fig. 4(a) shows the ROC curve of the classifier from Fig. 2 with the decision 

thresholds annotated in color.  From this we can see that the optimal decision threshold 

for this model (maximum tpr, minimum fpr, also called optimal operating point) occurs at 

a threshold of .35 in the green region representing a tpr = .95 and an fpr = .45. As we 

would expect from our confusion matrix analysis, we can observe that it is a reasonable 

classifier.  We can also observe that it is a liberal classifier in that the optimal decision 

threshold of the curve lies in the liberal region of the ROC graph.  It is also interesting to 

observe that the performance given by the confusion matrix maps to a suboptimal point 

on the curve (given as ‘A’ on the curve).  This is due to the fact that the classification 

reported in the confusion matrix is based on the default decision threshold value of .5 

instead of the optimal threshold value of  .35. 



In Fig. 4(b) we can see two ROC curves for the same classifier as in part (a), one 

is based on the original test data and the other one is based on the skewed test data.  Both 

curves are virtually identical illustrating that ROC curves are not sensitive to class skew.   

Returning to Fig. 3 above, we can now interpret these curves a little bit more 

carefully.  In part (b) we see that the model only begins to commit false positive errors 

after it has almost reached a true positive rate of 100%.  This means that at this point the 

decision threshold has been lowered to a point that observed, negative instances are 

classified as positive.   Thus, when the decision threshold is set too low, a model will 

commit false positive errors.  However, in a near perfect classification model this will not 

happen until the curve has almost reached the ‘perfect performance’ point. 

In Fig. 3(c) we see that the model also behaves very nicely for a large range of 

decision threshold values.  However, compared to the model in part (b) it starts to commit 

false positive errors much earlier and therefore the slope of the curve in part (c) is flatter.   

Another way of stating this is, that there exists no decision threshold for which the model 

is able to separate the classes perfectly.  The model in Fig. 4(d) is not only inferior 

because its curve is the farthest away from the ‘perfect performance’ point but we can 

observe that for large ranges of the ranking values the model commits more false positive 

errors than it provides true positive classifications.  This shows up as concavities in the 

curve indicating that for certain ranges of the decision threshold the classification model 

performs worse than a random classifier. 



 
Figure 4: ROC curves of the classifier given in Fig. 2. (a) ROC curve with decision 
threshold values, (b) ROC curves of the classifier evaluated against original test data and 
the down sampled data. 

Model Selection 

A key notion in model assessment is model selection, that is, given two or more 

classification models, we need to pick one in order to be deployed.  The criterion to pick 

one model over the other(s) has to answer two fundamental questions: (a) it needs to be 

general enough to describe model performance over a broad range of possible scenarios 

and (b) it needs to be able to discern whether the performance difference between models 

is statistically significant.  It turns out that ROC curves answer both of these questions in 

a highly visual manner.  Consider Fig. 5(a), here we have two classifiers plotted in a 

ROC graph together with their respective 95% confidence bands (vertical bars) 

(Macskassy & Provost, 2004).  It is easy to see that the curve that stretches almost into 

the top left corner represents the performance of the superior model (for a tpr = 0.9 this 

model commits virtually no false positives).  In addition, because the confidence bands of 

the two curves are clearly separated we can state that the performance difference between 

the two models is statistically significant.  In Fig. 5(b) the situation is not so clear-cut.  



We again have two classifiers and the curve that reaches closer to the top left corner of 

the graph denotes the better performing model.  However, since the confidence bands 

overlap, the performance difference between these two models is not statistically 

significant.  In addition, closer inspection reveals that the confidence band for the upper 

curve is slightly wider than for the lower curve suggesting greater variability in the 

performance of the better performing model. 

 

 
Figure 5: ROC curves with 95% confidence bands. (a) Two classifiers with a statistically 
significant difference in their performance. (b) Two classifiers whose difference in 
performance is not statistically significant. 

Future Trends 

ROC analysis enjoys a continued growth of interest.  Since 2004 there have been 

regularly scheduled workshops, the Workshops on ROC Analysis in Machine Learning 

(ROCML), which bring together an international group of researchers.  Robust tools such 

as the ROCR package3 for the R environment (Sing, Sander, Beerenwinkel, & Lengauer, 

2005) contribute to the rapid adoption of ROC analysis as the preferred model analysis 

                                                
3 We used the ROCR package for this work. 



technique.  At a technical level, the most important development is the extension of this 

analysis technique from binary classification problems to multi-class problems providing 

a much wider applicability of this technique (Everson & Fieldsend, 2006; Lane, 2000; 

Srinivasan, 1999). 

Conclusions 

Although brief, we hope that this overview provided an introduction to the fact 

that ROC analysis provides a powerful alternative to traditional model performance 

assessment using confusion matrices.  We have shown that in contrast to traditional scalar 

performance metrics such as accuracy, recall, and precision derived from the confusion 

matrix, ROC analysis provides a highly visual account of a model’s performance over a 

range of possible scenarios.  We have also shown that ROC analysis is robust with 

respect to class skew, making it a reliable performance metric in many important 

application areas where highly skewed data sets are common (e.g. fraud detection). 
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Key Terms and their Definitions 

Receiver Operating Characteristic (ROC) Curve: A cost-benefit plot that describes 

the performance of a classification model. 

Model Assessment/Evaluation: The process of evaluating the key performance 

characteristics of a classification model.   This is usually done within the context of a 

problem domain with specific model performance requirements. 

Confusion Matrix:  A table that relates actual and predicted classifications by a model. 

Class Skew: In probability theory and statistics skewness is a measure of asymmetry of a 

distribution.  Class skew refers to the asymmetry of the class distribution. 

Classification Model/Classifier:  A mathematical construct such as a decision tree or 

neural network that models the relationship between independent and dependent variables 

of a classification problem.  Once such a model has been constructed it can be used to 

predict classifications on new data instances. 

Model Selection:  The process of selecting a model from a set of potential models given 

a specific classification problem.  The selection is usually based on a specific set of 

performance metrics dictated by the problem domain. 

Performance Metric: A performance-related measurement. 

Optimal Operating Point: The point on the ROC curve where a model has the largest 

true positive rate while committing the smallest number of false positives. 

 

 

 


